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Abstract. Graph edit distance is a flexible and powerful measure of
dissimilarity between two arbitrarily labeled graphs. Yet its application
is limited by the exponential time complexity involved when matching
unconstrained graphs. We have recently proposed a quadratic-time ap-
proximation of graph edit distance based on Hausdorff matching, which
underestimates the true distance. In order to implement verification
systems for the approximation algorithm, efficiency improvements are
needed for the computation of the true distance. In this paper, we pro-
pose a Hausdorff heuristic that employs the approximation algorithm
itself as a heuristic function for efficient A* computation of the graph
edit distance. In an experimental evaluation on several data sets of the
IAM graph database, substantial search space reductions and runtime
speedups of one order of magnitude are reported when compared with
plain A* search.

Keywords: Graph matching, graph edit distance, A* search, Hausdorff
distance.

1 Introduction

Graphs are one of the most general data structures in pattern recognition for
representing objects. Individual parts of the objects are represented with nodes
which are linked with edges to represent binary relationships. Both nodes and
edges can be labeled with attributes, for instance in form of feature vectors. This
high representational power of graphs has proven successful in pattern recogni-
tion and led to widespread applications [1, 2], for example in bioinformatics [3],
image classification [4], and computer network analysis [5].

The complexity of the graph data structure usually leads to a high computa-
tional complexity when matching two objects. Therefore, many graph matching
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algorithms impose certain constraints on the graphs. For example spectral meth-
ods [6, 7], which are based on efficient eigendecomposition of the adjacency or
Laplacian matrix of a graph, primarily target unlabeled graphs or allow only
severely constrained label alphabets. Other examples include restrictions to or-
dered graphs [8] and graphs with unique node labels [9].

Graph edit distance (GED) [10] is a flexible measure of dissimilarity between
two graphs, which is able to cope with unconstrained graphs. In particular,
arbitrary labels are allowed on both nodes and edges. Originally proposed for
string matching [11], the concept of edit distance is to apply a series of edit
operations to one object in order to transform it into the other. The edit distance
then corresponds with the minimum cost among all possible edit paths.

However, the flexibility of GED comes at the cost of an exponential time
complexity with respect to the graph size. The search space of all possible edit
paths is usually traversed with a best-first A* search [12]. By using a heuristic
function to estimate the future cost of an incomplete edit path, the efficiency
of the search procedure can be greatly improved [13–15] but the computational
complexity remains the same.

In order to overcome the limitation of exponential time complexity, polyno-
mial approximation of GED is a promising line of current research. In [16], the
Hungarian algorithm [17] is used to obtain a cubic-time approximation of GED
by assigning nodes and their local edge structure of one graph to nodes and
their local edge structure of the other graph. Although only local structure is
considered, a high approximation quality is achieved and a strong performance
is reported for the task of pattern classification on different graph data sets [16].

Following the same idea of matching nodes and their local edge structure,
we have recently proposed an even faster quadratic-time approximation of GED
in [18, 19] based on Hausdorff matching [20]. Similar to the comparison of finite
subsets of a metric space by means of Hausdorff distance, each node of one graph
is compared with each node of the other graph only once to determine its best
matching cost, hence the quadratic time complexity. As expected, the deviation
from the true edit distance has proven to be larger when compared with the
cubic-time approximation. Still, the proposed Hausdorff edit distance (HED)
has achieved promising results for the task of pattern classification on diverse
graph data sets [18, 19]. It combines the high flexibility of GED to cope with
unconstrained graphs with a low quadratic time complexity, which makes HED
applicable to a wide range of real-world applications.

So far, a direct comparison of the proposed approximation algorithms with
the true edit distance could only be performed for relatively small graphs due
to the exponential time complexity of GED. There is a need to improve the
efficiency of GED for verification experiments, which can measure the approxi-
mation quality in the case of larger graphs observed in many real-world applica-
tions. As mentioned above, a common approach to improve the efficiency is the
development of accurate heuristic functions for A* computation of GED, which
can greatly reduce runtime and memory usage by avoiding a complete traver-
sal of the exponential search space of all possible edit paths. Note that only
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admissible heuristic functions, which underestimate the true edit distance, can
be used for exact computation of GED. Suboptimal variants of A* search like
Bayesian A* search [21, 22] do not guarantee a globally optimal solution. In-
stead, they are interesting for approximating GED as suggested in [23] for beam
search and weighted path length search.

In this paper, we propose a Hausdorff heuristic based on HED to improve
the efficiency of GED. Since HED underestimates the true edit distance, it is an
admissible heuristic function for A* search. The performance of the proposed
heuristic is experimentally evaluated on several data sets from the IAM graph
database [24] and is compared with plain A* search. Substantial search space
reductions and runtime speedups of one order of magnitude are reported.

The remainder of this paper is organized as follows. First, HED is reviewed in
Section 2. Afterwards, the proposed Hausdorff heuristic is presented in Section 3
and experimental results are reported in Section 4. Finally, we draw conclusions
in Section 5.

2 Hausdorff Edit Distance

In this section, we review the Hausdorff edit distance (HED) [18, 19]. After
providing some basic definitions in Section 2.1, HED is defined in Section 2.2.

2.1 Basic Definitions

A graph g is a four-tuple g = (V,E, μ, ν). V is the finite set of nodes, E ⊆ V ×V
is the set of edges, μ : V → LV is the node labeling function, and ν : E → LE

is the edge labeling function. LV and LE are label sets for nodes and edges, for
instance symbolic labels {α, β, γ, . . .} or the vector space R

n.
Given two graphs g1 = (V1, E1, μ1, ν1) and g2 = (V2, E2, μ2, ν2), edit opera-

tions transform nodes and edges of g1 into nodes and edges of g2. Three node
edit operations are usually considered for u ∈ V1 and v ∈ V2, namely substitu-
tions (u → v), deletions (u → ε), and insertions (ε → v). The same set of edit
operations is considered for edges p ∈ E1 and q ∈ E2, i.e. substitutions (p → q),
deletions (p → ε), and insertions (ε → q).

A cost function C assigns non-negative costs to node and edge edit operations.
An example for Euclidean labels is the Euclidean cost function with substitution
cost C(u → v) = ||μ1(u)− μ2(v)|| and C(p → q) = ||ν1(p)− ν2(q)||. The cost for
deletion and insertion is often set to a constant value. Without loss of generality,
we will assume C(u → ε) = C(ε → v) = Cn and C(p → ε) = C(ε → q) = Ce in
the following for all types of cost functions.

2.2 HED Definition

The Hausdorff edit distance HED(g1, g2, C) between two graphs g1 and g2 is
defined with respect to the cost function C as follows:

HED(g1, g2, C) =
∑

u∈V1

min
v∈V2∪{ε}

f(u, v, C) +
∑

v∈V2

min
u∈V1∪{ε}

f(u, v, C) (1)
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It consists of two summation terms that each calculate nearest neighbor dis-
tances between the two node sets similar to the Hausdorff distance between
finite subsets of a metric space. Nearest neighbors are determined with respect
to the node function f(u, v, C), which is defined as

f(u, v, C) =

⎧
⎪⎨

⎪⎩

Cn +
∑|P |

i=1
Ce

2 for node deletion (u → ε)

Cn +
∑|Q|

i=1
Ce

2 for node insertion (ε → v)
C(u→v)+HED(P,Q,C)

2

2 for node substitution (u → v)

(2)

where P is the set of edges adjacent to u and Q is the set of edges adjacent to v.
In the case of deletions, the node deletion cost Cn and half of the implied edge
deletion cost is accumulated. Node insertion costs are obtained accordingly. In
the case of substitution, half of the substitution cost is considered, which itself
consists of the node substitution cost C(u → v) and half of the implied edge cost.

In order to obtain an estimate of the implied edge cost, the edge sets P and
Q are matched in the same manner as the node sets, i.e. based on a Hausdorff
edit distance

HED(P,Q, C) =
∑

p∈P

min
q∈Q∪{ε}

g(p, q, C) +
∑

q∈Q

min
p∈P∪{ε}

g(p, q, C) (3)

with the corresponding edge function

g(p, q, C) =

⎧
⎪⎨

⎪⎩

Ce for edge deletion (p → ε)

Ce for edge insertion (ε → q)
C(p→q)

2 for edge substitution (p → q)

(4)

The two divisions by 2 for node substitutions in Equation 2 ensure that HED
approximates GED. Only half of the substitution cost is considered because
the substitutions, which are not required to be bidirectional, appear in both
summation terms in Equation 1. Only half of the implied edge cost is considered
because each edge edit operation is implied by exactly two nodes. In effect, an
optimal edit cost is assigned to each node without taking the assignments of the
other nodes into account. Therefore HED is always less than or equal to GED.

In order to limit the underestimation, lower bounds are used with respect to
the number of elements in the set. For HED(g1, g2, C), we use a lower bound of
||V1| − |V2|| ·Cn and for HED(P,Q, C), we use a lower bound of ||P | − |Q|| ·Ce.
For more details on HED, we refer to [18, 19].

3 Hausdorff Heuristic

In this section, a Hausdorff heuristic based on HED is presented for efficient
A* computation of GED. First, GED computation is discussed in Section 3.1.
Afterwards, the integration of HED as a heuristic into the A* search algorithm
is detailed in Section 3.2.
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Fig. 1. GED search tree

3.1 GED Computation

The search space for GED is usually spanned by all possible node edit operations
that transform V1 into V2. Edge edit operations are implied by the node edit
operations as soon as both nodes of an edge in g1 have been assigned to two
nodes in g2.

An example is shown in Figure 1 for V1 = {u1, u2} and V2 = {v1, v2, v3}. The
root of the search tree is an empty node assignment ∅. At the first level, the
first node of V1 is either assigned to one of the nodes in V2 or it is deleted. At
the second level, the second node of V1 is assigned in the same way considering
all remaining nodes in V2. At this leaf level, all remaining node insertions are
added to the node assignment N . Clearly, the number of entries in the tree is
exponential with respect to the number of nodes of the graphs.

Using A* best-first search, the non-expanded node assignments are kept in a
sorted open list, which is ordered by the cost function

f(N) = g(N) + h(N) (5)

where g(N) is the cost of all current node edit operations and implied edge edit
operations, and h(N) is a heuristic function that estimates the future cost of the
node assignment. Admissible heuristics are less than or equal to the real cost.
At each step of the search, the currently best node assignment from open with
the lowest cost function f(N) is removed and its successors are added to open.
As soon as the currently best node assignment is complete, i.e. it transforms V1

into V2, the cost of the assignment is returned as GED.

3.2 HED Heuristic

The proposed Hausdorff heuristic estimates the future cost of a node assignment
N by means of HED. We consider the subgraph g′1 of g1 that contains all free
nodes F1 ⊆ V1 according to N and the subgraph g′2 of g2 that contains all free
nodes F2 ⊆ V2. Then, we calculate the heuristic function

h(N) = HED(g′1, g
′
2, C) (6)

with respect to the underlying cost function C. Because HED underestimates the
edit distance between g′1 and g′2, the heuristic function h(N) underestimates the
future cost of the node assignment N and is therefore an admissible heuristic for
A* computation of GED.
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Algorithm 1. Hausdorff heuristic

Require: graphs g1, g2, cost function C, node assignment N
Ensure: minimum future cost c
1: for all free nodes u ∈ F1 ⊆ V1 according to N do
2: c1(u)← f(u, ε, C)
3: end for
4: for all free nodes v ∈ F2 ⊆ V2 according to N do
5: c2(v)← f(ε, v, C)
6: end for
7: for all nodes u in F1 do
8: for all nodes v in F2 do
9: cost← f(u, v, C)
10: c1(u)← min(cost, c1(u))
11: c2(v)← min(cost, c2(v))
12: end for
13: end for
14: cost←∑

u∈F1
c1(u) +

∑
v∈F2

c2(v)
15: return max(cost, ||F1| − |F2|| · Cn)

A straight-forward computation of Equation 6 is detailed in Algorithm 1.
First, the minimum edit costs of each free node u ∈ F1 and v ∈ F2 are calculated
in lines 1-13. Then, line 14 performs the summation according to Equation 1 and
line 15 applies the lower bound (see Section 2.2).

We would like to point out two implementation details, which are important
for efficiency. First, the sorted open list of the A* search is implemented as a
binary search tree that allows to add new elements with O(log(n)) time com-
plexity. Secondly, the function f(u, v, C) from Equation 2 is independent from
the node assignment N . Therefore it is pre-computed before the A* search is
executed, which leads to an efficient quadratic time complexity of O(|F1| · |F2|)
for Algorithm 1 with a low constant factor. In particular, the time complexity
is independent from the number of edges adjacent to the nodes.

4 Experimental Evaluation

In this section, we report experimental results achieved with the proposed Haus-
dorff heuristic. The results are compared with plain A* search as a reference,
i.e. GED computation with the trivial heuristic h(N) = 0.

In the following, the selection of suitable graphs is discussed in Section 4.1
and performance results are provided in Section 4.2.

4.1 Graph Selection

Several data sets from the IAM graph database [24] are considered that differ in
object domain and graph structure. First, the Letter I-III data sets containing
graphs of letter drawings, which are artificially distorted with three distortion de-
grees. Secondly, the Fingerprints data set containing graphs of fingerprints from
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Table 1. Data set statistics. Number of selected graphs, median number of nodes and
edges, minimum and maximum number of nodes.

Data Set Graphs |V |med |E|med |V |min |V |max

Letters I 200 6 4 4 8
Letters II 200 6 4 4 9
Letters III 200 5 5 4 8
Fingerprints 186 4 6 2 8
Molecules I 95 8 7 4 9
Molecules II 103 9 8 3 9

Table 2. Search space reduction. Average size of the open list after A* search.

Data Set Reference Hausdorff Heuristic Reduction Factor

Letters I 568.2 27.3 20.8
Letters II 2,829.0 300.3 9.4
Letters III 2,955.1 386.0 7.7
Fingerprints 6,282.3 2,104.8 3.0
Molecules I 61,994.3 6,094.3 10.2
Molecules II 111,852.1 18,911.7 5.9

the NIST-4 reference database [25]. Thirdly, the Molecules I data set based on
molecular compounds from the Chemical Carcinogenesis Research Information
System (CCRIS) database [26]. And finally, the Molecules II data set which
is based on molecular compounds from the AIDS Antiviral Screen Database of
Active Compounds [27]. Cost functions and their parameter values are adopted
from previous work [16, 19].

Due to the exponential time complexity of GED, only relatively small graphs
can be included in the evaluation. Besides the runtime, the required memory
space is also a limiting factor since the size of the open list may grow exponen-
tially during A* search. For each data set, we have selected the first n graphs
with less than 10 nodes such that each computation of the n · n edit distances
with plain A* search is feasible with less than one million node assignments. If
possible n = 200 was chosen. Table 1 lists the resulting data set statistics.

4.2 Results

The performance results for search space reduction are listed in Table 2. The
proposed Hausdorff heuristic is compared with plain A* search as a reference on
the six graph data sets. The average number of elements in the open list after
A* search is indicated. This number is directly related to the memory space
required for GED. Despite the choice of rather small graphs for experimental
evaluation, the average size of 111, 852.1 for the Molecules II data set is already
very high with respect to the imposed limit of one million node assignments.
The experiment was performed with 4GB RAM.
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Table 3. Computational speedup. CPU runtime in seconds.

Data Set Reference Hausdorff Heuristic Speedup Factor

Letters I 18.5 1.1 17.1
Letters II 109.7 11.2 9.8
Letters III 110.5 14.6 7.6
Fingerprints 196.4 61.3 3.2
Molecules I 523.5 36.8 14.2
Molecules II 1,224.6 165.3 7.4

The search space reduction achieved with the Hausdorff heuristic is about one
order of magnitude in all cases. The best result is obtained on the Letters I data
set, where 20.8 times less memory is required to compute GED. We assume that
this large reduction factor is related to the suitability of the label domain for the
Hausdorff heuristic. The Letters I data set contains weakly distorted drawings
of letters whose line endings are labeled with their Cartesian coordinates. Using
an Euclidean cost function, this type of node label is effective for selecting the
nearest neighbor of u ∈ V1 in V2 and vice versa in Equation 1, even if the local
edge structure is similar. Furthermore, we report strong results for molecular
compounds using a Dirac cost function for matching chemical symbols. On the
Molecules I data set, a reduction factor of 10.2 is reported.

The performance results for runtime reduction are provided in Table 3. Ex-
periments were conducted with an Intel Core i7 processor with 2.0GHz CPU
using a Java implementation. The runtime is indicated in seconds for matching
all n · n selected graphs. The speedups are closely related to the search space
reductions, which indicates that the computation of the Hausdorff heuristic does
not lead to a significant overhead. In all cases, a CPU runtime reduction of one
order of magnitude is obtained. The best result is achieved for the Letters I data
set, where 17.1 times less CPU time is required to compute GED when using
the Hausdorff heuristic.

5 Conclusions

In this paper, we have proposed a Hausdorff heuristic for efficient A* computa-
tion of graph edit distance (GED). The heuristic is based on the Hausdorff edit
distance (HED), a quadratic-time approximation of GED, which underestimates
the true distance and is hence admissible as a heuristic function for A* search.
Based on a domain-specific cost function, the proposed Hausdorff heuristic can
cope with unconstrained graphs. In particular, arbitrary labels are allowed on
both nodes and edges.

An experimental evaluation is reported for six data sets from the IAM graph
database. In all cases, the proposed heuristic has achieved substantial reductions
of one order of magnitude in memory space and runtime. The best performance
is reported for graphs from the Letters I data set, where 20.8 times less memory
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and 17.1 times less CPU time were required to compute GED when using the
Hausdorff heuristic instead of plain A* search.

In future work, we aim to include larger graphs in the experimental evaluation
and to compare and combine different heuristic functions. Our overall aim is
to implement an efficient verification system that is able to calculate the true
edit distance for large graphs in order to evaluate the approximation quality of
HED and other GED approximations. We expect that in addition to software
acceleration, a massive hardware acceleration will be necessary to compute GED
for larger graphs.
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