
Approximate Graph Edit Distance Guided

by Bipartite Matching of Bags of Walks

Benoit Gaüzère1, Sébastien Bougleux2, Kaspar Riesen3,�, and Luc Brun1

1 ENSICAEN, GREYC CNRS UMR 6072, France
{benoit.gauzere,luc.brun}@ensicaen.fr

2 Université de Caen Basse-Normandie, GREYC CNRS UMR 6072, France
bougleux@unicaen.fr

3 University of Applied Sciences and Arts Northwestern Switzerland
kaspar.riesen@fhnw.ch

Abstract. The definition of efficient similarity or dissimilarity measures
between graphs is a key problem in structural pattern recognition. This
problem is nicely addressed by the graph edit distance, which constitutes
one of the most flexible graph dissimilarity measure in this field. Unfor-
tunately, the computation of an exact graph edit distance is known to
be exponential in the number of nodes. In the early beginning of this
decade, an efficient heuristic based on a bipartite assignment algorithm
has been proposed to find efficiently a suboptimal solution. This heuristic
based on an optimal matching of nodes’ neighborhood provides a good
approximation of the exact edit distance for graphs with a large number
of different labels and a high density. Unfortunately, this heuristic works
poorly on unlabeled graphs or graphs with a poor diversity of neighbor-
hoods. In this work we propose to extend this heuristic by considering a
mapping of bags of walks centered on each node of both graphs.

1 Introduction

Graphs provide a generic data structure which allows to encode fine properties
of a large variety of objects such as shapes or molecules. The use of a graph rep-
resentation to address pattern recognition problems implies to define a similarity
measure between graphs. A widely used approach consists in using the graph edit
distance, which allows to measure the distortion required to transform one graph
into another. The distortion between two graphs G and G′ can be encoded by
an edit path defined as a sequence of operations transforming G into G′. Such a
sequence may include node or edge insertions, removals and substitutions. Given
a non-negative cost function c(.), associated to each operation, the cost of an edit
path is defined as the sum of its elementary operation’s costs. The optimal edit
path is defined as the one associated to the minimal cost among all edit paths
transforming G into G′. This minimal cost then corresponds to the edit distance
between G and G′. Unfortunately, beside its appealing properties, the compu-
tational time of the graph edit distance is known to grow exponentially with

� Kaspar Riesen is supported by the Hasler Foundation Switzerland.

P. Fränti et al. (Eds.): S+SSPR 2014, LNCS 8621, pp. 73–82, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

74 B. Gaüzère et al.

the number of implied nodes [9,2]. A close relationship exists between graph edit
distance and morphism between graphs. Indeed, Bunke [1] has shown that under
special conditions on the costs of node and edge insertions, removals and substi-
tutions, computing the graph edit distance is equivalent to compute a maximum
common subgraph of two graphs. More generally any mapping between the set
of nodes and edges of two graphs induces an edit path which substitutes all
mapped nodes and edges, and inserts or removes the non-mapped nodes/edges
of the two graphs. Conversely, given an edit path between two graphs such that
each node and each edge is substituted only once, one can define a mapping
between the substituted nodes and edges of both graphs.

This close relationship between mappings and edit distance constitutes the
main principle of the heuristic proposed by Riesen and Bunke [7] in order to
decrease the exponential growth of the computational cost of the graph edit
distance according to the number of considered nodes. This heuristic builds
a mapping between the node sets of two graphs using a bipartite assignment
algorithm, and deduces an edit path from this mapping. The cost of this edit
path, which may not be optimal, is considered as an approximation of the exact
edit distance. The optimal bipartite assignment algorithm is based on a cost
function defined between the neighborhoods of each pair of nodes of the two
graphs. The idea behind this heuristic being that a mapping between nodes
with similar neighborhoods should induce an edit path with a low cost. However,
this heuristic may work poorly on unlabeled graphs and more generally in cases
where neighborhoods do not allow to easily differentiate the nodes.

In this paper we propose to extend this heuristic by considering a bipartite as-
signment algorithm between bags of walks incident to each node of both graphs.
Hence, within this framework, a mapping of direct neighborhoods is similar to
a mapping of bags of walks of length 1.

Our paper is structured as follows: Section 2 defines the bipartite assignment
problem, and Section 3 defines the computation of an approximate edit distance
from a bipartite assignment algorithm together with the heuristic defined in [7].
Section 4 defines an efficient computation of the bag of walks associated to each
node of a graph, together with the costs of substituting, inserting or removing
such a bag. Finally, Section 5 presents experiments on molecule datasets showing
the accuracy gain obtained using our approach.

2 Assignment Problem

2.1 Linear Sum Assignment Problem (LSAP)

Let X = {xi}i and Y = {yi}i be two sets with |X |= |Y|=n. Assigning the n ele-
ments ofX to the n elements of Y can be described by a bijective mapping X →Y,
reduced to a permutation of {1, . . . , n} if indices of elements are considered. Pro-
vided a matrix C∈R

n×n
+ so that Ci,j = c(xi → yj)= c(yj →xi) measures the cost

of assigning element xi ∈X to element yj ∈Y, the Linear Sum Assignment Prob-
lem (LSAP) finds an optimal permutation ϕ̂ ∈argmin

ϕ∈Sn

∑n
i=1 Ci,ϕ(i), where Sn is

Approximate Graph Edit Distance Using Bags of Walks 75

the set of all permutations of {1, . . . , n}. Recall that any permutation ϕ can be as-
sociated to a permutation matrixP∈ {0, 1}n×n satisfying Pi,j = δi,ϕ(i), where δi,j
is the Kronecker delta (δi,j =1 if i= j and 0 else). Note thatP is doubly stochastic
(sum of rows is equal to 1 and similarly for columns). Then, the LSAP corresponds
to find an optimal permutation matrix

P̂ ∈ argmin
P∈Pn

n∑

i=1

n∑

j=1

Ci,j Pi,j , (1)

where Pn denotes the set of all n×n permutation matrices.
The LSAP may also be formulated as a maximization problem, and is also

known as the maximum weighted bipartite matching problem. It can be solved
by the Hungarian or Kuhn-Munkres algorithm in O(n3) time complexity [5,6],
and it has been generalized in many directions, see [3] for more details.

2.2 LSAP with Insertion and Removal of Elements

Let X and Y be two sets, with n= |X | and m= |Y|. As before, each element
xi ∈X can be assigned to an element yj ∈Y according to a given substitution
cost matrix C(X ,Y)∈R

n×m
+ with [C(X ,Y)]i,j = c(xi → yj). Also, assume that

each element of both X and Y can be deleted, or equivalently inserted, that
is assigned to the null element denoted by ε. Removal and insertion of an el-
ement xi ∈X have the same cost c(xi → ε)= c(ε→xi), and similarly for the
elements of Y. Removal-insertion costs associated to the n elements of X can
be represented by the matrix Cε(X)∈R

n×n, with [Cε(X)]i,j = c(xi → ε) if i= j
and +∞ else. Similarly consider Cε(Y)∈R

m×m. In other terms, each set is
augmented with null elements, Xε=X ∪{εi}i=1,...,m and Yε =Y ∪{εi}i=1,...,n,
such that |Xε|= |Yε|=n+m. Following [7], the optimal linear sum assignment
Xε →Yε, according to the cost matrix

Cε(X ,Y)= [Ci,j]i,j =

[
C(X ,Y) Cε(X)
Cε(Y) 0

]

∈ [0,+∞](n+m)×(n+m), (2)

substitutes at most min(n,m) elements of X to at most min(n,m) elements of Y,
with insertion or removal of the remaining ones. Since the substitution of empty
elements should not cause any cost, we always have c(εi→ εj)= 0 (lower right
submatrix of Cε(X ,Y)). An optimal assignment Xε →Yε can then be defined as
a matrix P minimizing the total cost functional

A(Cε(X ,Y),P) =
n∑

i=1

m∑

j=1

Ci,j Pi,j

︸ ︷︷ ︸
substitution

+
n∑

i=1

Ci,m+i Pi,m+i +
m∑

j=1

Cn+j,j Pn+j,j

︸ ︷︷ ︸
removal/insertions

(3)

among the set Pn,m,ε of all doubly substochastic matrices

P=

[
Q R
S 0

]

∈ {0, 1}(n+m)×(n+m),

76 B. Gaüzère et al.

where Q∈{0, 1}n×m represents the (partial) assignment X →Y, and
R∈{0, 1}n×n and S∈{0, 1}m×m are diagonal matrices representing removal and
insertions. Columns and rows of P are constrained to satisfy

Pi+j,j +
n∑

i=1

Pi,j =1, ∀j=1, . . . ,m, and Pi,j+i +
m∑

j=1

Pi,j =1, ∀i=1, . . . , n.

According to Section 2.1, the computation cost of the assignment is O((n+m)3).
This assignment problem with edition is used to design approximate graph edit
distances, as described in the following section.

3 Approximate Graph Edit Distance Based on the LSAP

We consider simple labeled graphs denoted by G=(V,E, μ, ν), where V is the
finite set of nodes, E⊂V ×V is the set of edges, μ :V →LV is the node labeling
function, and ν :E→LE is the edge labeling function. LV and LE are label sets
for both nodes and edges (e.g. the vector space R

n or a set of symbolic labels).
As mentioned in Section 1, a major drawback of graph edit distance is its

computational complexity. In fact, the problem of finding the minimum cost
edit path between G and G′ can be reformulated as an instance of a Quadratic
Assignment Problem (QAP), known to be NP-complete. Hence, exact compu-
tation of the graph edit distance is limited to graphs of rather small size in
practice.

3.1 Graph Edit Distance Approximation

The graph edit distance approximation framework introduced in [7] reduces the
QAP of graph edit distance computation to an instance of an LSAP which can
be, in contrast with QAPs, efficiently solved. The algorithmic framework mainly
consists of the following three steps.

Step 1. First, the graphs to be matched are subdivided into individual nodes
plus local structures whereon a cost matrix Cε, as defined in Eq. (2), is built.

Formally, let us consider an input graph G=(V,E, μ, ν) together with a bag
of bags of structural patterns B= {Bi}i=1,...,|V |. Every bag Bi is associated to
a node ui ∈V and characterizes the local structure of G around node ui. The
target graph G′ =(V ′, E′, μ′, ν′) and its corresponding bags of structural pat-
terns B′ = {B′

i}i=1,...,|V ′| are given analogously. We define a cost c(Bi→B′
j) for

the substitution of two bags of patterns, and a cost c(Bi → ε) as well as a cost
c(ε→B′

j) for the removal and insertion of a bag, respectively. Given the cost
model and following the scheme outlined in Section 2 we build the cost matrix
Cε(B,B

′), encoding the cost of substitutions, insertions, and removals of bags
of structural patterns.

Approximate Graph Edit Distance Using Bags of Walks 77

Step 2. In the second step of the approximation framework, an assignment algo-
rithm is applied to the square cost matrix Cε(B,B

′) in order to find a minimum
cost assignment between both set of bags (possibly including removals and/or
insertions of bags):

P̂ ∈ argmin
P∈P|B|,|B′|,ε

A (Cε(B,B
′),P) . (4)

Note that each bag Bi is associated to a single node ui, and therefore, the optimal
assignment defined by Eq. (4) provides an optimal assignment between the nodes
of both graphs with respect to their bags of patterns. That is, the permutation
P̂ provides a mapping ψ :V ∪{ε}→V ′ ∪{ε} of the nodes V of G to the nodes
V ′ of G′. Due to the definition of the cost matrix, which allows both insertions
and removals of elements, the mapping ψ includes node assignments of the form
ui→u′j, ui→ ε, ε→u′j, and ε→ ε.

Step 3. Clearly, the mapping ψ can be interpreted as a partial edit path be-
tween the graphs G and G′ considering edit operations on nodes only. Thus,
in the last step this partial edit path is completed with respect to the edges.
This can be accomplished since edit operations on edges are implied by edit
operations on their nodes. That is, whether an edge is substituted, removed, or
inserted, depends on the edit operations performed on its nodes. Hence, given
the set of node operations in ψ, the global edge structures from G and G′ can
be edited accordingly. The cost of the complete edit path is finally returned as
an approximate graph edit distance between graphs G and G′.

3.2 Defining Bags of Structural Patterns

Note that the edit path corresponding to the approximate edit distance value
considers the edge structure of G and G′ in a global and consistent way while
the optimal permutation P̂ is able to consider the structural information in an
isolated way only (bags of local structural patterns). This is due to the fact
that during the optimization process of the specific LSAP, no information about
neighboring node mappings is available. Hence, the definition of powerful struc-
tural patterns is a crucial task in this approximation framework.

In [7], every bag Bi of structural patterns represents the set of edges incident
to node vi ∈ V . Formally, assume that node vi has incident edges Evi , then we
define Bi = { (vi, vk)∈Evi : vk ∈V }. The present paper introduces a major gen-
eralization of this formalism. That is, rather than “the star neighborhood” of
every node, bags of walks centered on each node are considered as bags of struc-
tural patterns. Both the computation of these bags of walks and the definition
of an adequate cost model on them are described in the next section.

4 Walks and Approximate GED for Labeled Graphs

Recall that a walk of length k in a simple graph G=(V,E, μ, ν), or k-walk, is a
sequence (ui)i of (k+1) nodes of V such that (ui, ui+1)∈E for all i=1, . . . , k.
Any k-walk (ui)i, in a labeled graph, can be associated to a sequence

78 B. Gaüzère et al.

s = (sl)l = (μ(u0) ν(u0, u1) μ(u1) ν(u1, u2) · · · μ(uk−1) ν(uk−1, uk) μ(uk))

of (2k+1) labels, alternating node and edge labels. Let Bi be the bag of se-
quences of (2k+1) labels associated to all k-walks starting at node vi ∈V . Now
given two graphs G and G′, together with their bags B= {Bi}i=1,...,|V | and
B′ = {B′

i}i=1,...,|V ′| of bags of label sequences, for each pair of bags (Bi, B
′
j) ∈

B×B′, the substitution cost c(Bi→B′
j) can be defined by comparing the label

sequences. This is equivalent to the comparison of two bags of labeled k-walks,
starting at nodes vi and v

′
j respectively.

By assuming that the substitution of node or edge labels does not depend
on the labels themselves when they are different, the edit cost between two
sequences s∈Bi and s

′ ∈B′
j can simply be defined from the number of common

labels at the same position in both sequences:

c(s→ s ′)= cns

k∑

l=0

δ2l+1 + ces

k∑

l=1

δ2l, (5)

where δl =0 if sl = s′l and 1 else, and cns and ces denote node and edge substi-
tution costs, respectively. When s= s ′, the associated k-walks are equivalent,
or similar, and c(s→ s ′)= 0. In other cases, different labels at the same posi-
tion in s and s′ appear at least once, the k-walks are said to be different. Since
to compute this cost, k-walks needs to be explicitly extracted, it is difficult to
derive a cost between bags which is computationally attractive. So we propose
to restrict the knowledge of each k-walk to its terminal nodes (begin and end
nodes), together with their labels, which allows to consider the cost

ĉ(s→ s′) =

{
0 if s= s′

(δ1 + δ2k+1 + k− 1) cns + k ces else,
(6)

so that non-terminal node labels and also edge labels are treated as if they were
pairwise different when sequences are different. Obviously the cost ĉ satisfies
c(s→ s′)� ĉ(s→ s′) for any s and s′.

Any optimal mapping between the walks of two bags according to Eq. (6)
should include a mapping of similar walks with 0 cost. The cost of an optimal
mapping between two bags of walks may thus be rewritten as:

[C(B,B′)]i,j = 0 · |Bi ∩B′
j |+ min

P∈P|Bi\B′
j
|,|B′

j
\Bi|,ε

A
(
Cε(Bi \B′

j , B
′
j \Bi),P

)
, (7)

which separates similar and different k-walks. Determining if k-walks (sequences)
are similar can be achieved through the construction of the direct product of
the two corresponding labeled graphs (Section 4.1). This also allows to derive
assignment costs for the remaining different k-walks (Section 4.2).

4.1 Similar Walks

The direct product of two labeled graphs G=(V,E, μ, ν) and G′ =(V ′, E′, μ′, ν′)
is the graph G×G′ =(V×, E×, μ×, ν×). The node set and the edge set are given
by V× =

{
(vi, v

′
j)∈ V ×V ′ : μ(vi)=μ′(v′j)

}
and E×, where E× is defined by

Approximate Graph Edit Distance Using Bags of Walks 79

{(
(vi, v

′
j), (vk, v

′
l)
) ∈ V× ×V× : (vi, vk)∈E ∧ (v′j , v

′
l)∈E′ ∧ ν(vi, vk)= ν′(v′j , v

′
l)
}

such that μ×((vi, v′j))=μ(vi)=μ′(v′j) for all node (vi, v
′
j)∈V×, and similarly

ν×((vi, v′j), (vk, v
′
l))= ν(vi, vk)= ν′(v′j , v

′
l) for all edge ((vi, v

′
j), (vk, v

′
l))∈E×. In

particular, a walk from node (vi, v
′
j) to node (vk, v

′
l) in G×G ′ corresponds to a

walk from vi to vk in G, and to a similar walk from v ′
j to v ′

l in G ′, both having
the same sequence of node and edge labels by construction ([4] for an overview).
This allows to partially match the two bags with a zero cost according to Eq. (7).
Recall that the number of k-walks, between any pair of nodes of a graph, can
be computed by Wk, where W is the adjacency matrix of the graph. So, the
number of k-walks common to the two graphs G and G′ can be deduced from
Wk

×, where W× defines the adjacency matrix of the direct product graph. Note
that a walk in G similar to p walks in G′ will be duplicated p times in the direct
graph product.

4.2 Different Walks

Given a k value, and two different k-walks s and s′, c(s, s′) can only take four
different values depending on the values of δ1 and δ2k+1. This last point drasti-
cally simplifies the optimal assignment of the bags Bi and B

′
j defined by Eq. (7),

which can be efficiently approximated through histograms encoding terminal
node’s labels of sequences.

Let hi :LV →N be the histogram function which assigns to each label l∈LV ,
the number of k-walks ending at a node of label l in the bag Bi. This number of
k-walks can be efficiently computed using Wk. Similarly consider histograms h′j
and h×(i,j). From the definition of the direct product, we have h×(i,j) = zi z

′
j , where

zi (resp. z
′
j) defines the number of k-walks in Bi (resp. B

′
j), for each node label,

which are similar to at least one k-walk in B′
j (resp. Bi). The number of k-walks,

in each bag, which can be matched with 0 cost, is thus given by min{zi, z′j}. The
remaining k-walks in Bi is then given by hi\j =hi− min{zi, z′j}. Similarly we
consider hj\i = hj − min{zi, z′j}. Since computing zi and z′j may be computa-
tionally costly using an implicit enumeration of walks, hi\j is approximated by

ĥi\j =hi − min{hi, h′j ,
(h×(i,j))1/2�}, and similarly for h′j\i. According to (6), the

cost of assigning the bag Bi to the bag B′
j is finally given by:

[C(B,B′)]i,j =((δ1 + k− 1) cns+ k ces)

|LV |∑

l=1

min
{
ĥi\j(l), ĥ′j\i(l)

}

+ ((δ1 + k) cns + k ces)min
{
ri,j , r

′
j,i

}

+ ((δ1 + k) cnri+ k ceri)
∣
∣ri,j − r′j,i

∣
∣ ,

(8)

where cnri and ceri denote node and edge removal/insertion costs, and ri,j cor-
responds to the k-walks of Bi not similar to a k-walk of B′

j , and whose terminal
nodes need also to be substituted:

80 B. Gaüzère et al.

ri,j =

|LV |∑

l=1

ĥi\j(l)−min
{
ĥi\j(l), ĥ′j\i(l)

}
, (9)

and similarly for r′j,i. The first line of (8) corresponds to substituted k-walks
ending with the same node label (δ2k+1 =0 in Eq. 6), the second line corre-
sponds to substituted k-walks ending with a different node label (δ2k+1 =1 in
Eq. (6)), and third line to the remaining k-walks to be removed/inserted. From
Eq. (8) and Eq. (9), the cost of removing/inserting a bag, i.e. the cost of remov-
ing/inserting all its k-walks, is given by [Cε(B)]i,i =((k+1) cnri+ k ceri) |Bi|,
and [Cε(B

′)]i,i = ((k+1) cnri+ k ceri) |B′
i|. The costs given by (8) and this last

equation allow to construct the cost matrix Cε(B,B
′) in order to build the op-

timal assignment of bags of walks B and B′. An efficient approximation of the
GED is then deduced from this optimal assignment (Sec. 3.1).

5 Experiments

Our new heuristic to compute an approximate edit distance has been tested on
4 graph datasets1 encoding molecular graphs. For all these experiments, inser-
tion/removal costs have been arbitrarily set to 3 for both edges and nodes and
substitution cost to 1 for edges and nodes, regardless of node’s or edge’s labels.
Graphs included within the 4 datasets have different characteristics: Alkane and
PAH are only composed of unlabeled graphs whereas MAO and Acyclic corre-
spond to labeled graphs. In addition, Alkane and Acyclic correspond to acyclic
graphs having a low number of nodes (8 to 9 nodes in average) whereas MAO
and PAH correspond to larger cyclic graphs (about 20 nodes in average). Ta-
bles 1 and 2 show a comparison of the accuracy of our proposition with state of
the art method [7] and exact edit distance. First, Table 1 shows the percentage
of distance matrix entries corresponding to a gain (i.e. computed edit distance is
lower), a loss or no changes on the accuracy of our approximation method versus
the one proposed by [7]. As we can see in column “Gain”, our approach provides
a more accurate approximation of the edit distance for 45% to 98% of molecules’
pairs while we observe a loss on the accuracy for only < 1% to 27% of computed
edit distances, depending on the dataset. Same conclusions are observed in Ta-
ble 2 which shows the average edit distance for each dataset and each method
together with the average time required to compute the associated edit distance
matrix. We can note that the time required to compute our edit distances is
higher, but still comparable, than the one required by [7]. However, one can
note that computation times obtained for the lines 1 and 2 have been computed
using a Java implementation [8] whereas line 3 corresponds to a Matlab imple-
mentation. Finally, results for A� method for MAO and PAH datasets are not
displayed since it takes too much time to compute. These first results allow us
to highlight the gain on the accuracy induced by using our matching approach
instead of the one initially proposed by [7]. In addition, we can note that taking

1 These datasets are available at http://iapr-tc15.greyc.fr/links.html

http://iapr-tc15.greyc.fr/links.html

Approximate Graph Edit Distance Using Bags of Walks 81

Table 1. Accuracy comparison between
our approach and [7]

Dataset Gain Loss Equality Size

Alkane 45% 28% 27% 3
PAH 73% 14% 13% 4
MAO 98% 2% < 1% 4
Acyclic 56% 24% 21% 4

Table 2. Average edit distance (d̄) and aver-
age time in seconds (t̄) for each method and
each dataset (BW=bags of walks)

Alkane Acyclic MAO PAH

d̄ t̄ d̄ t̄ d̄ t̄ d̄ t̄

A� 15 28 800 17 172 800 - - - -
[7] 35 20 35 22 105 20 138 40
BW 33 55 31 86 49 129 120 390

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

(a) Scatter-plot of our approach (x-axis)
and [7] (y-axis)

Method MAO PAH

k 1 3 5 1 3 5

[7] 68% 62% 54% 59% 63% 61%
BW 93% 90% 71% 79% 78% 74%

(b) Classification results

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5

(c) Percentage of distance matrix’s en-
tries corresponding to an accuracy gain
using our approach versus the size of con-
sidered walks (k) for each dataset

Fig. 1. Classification of MAO and PAH using k-ppv and walk size comparisons

into account a larger radius than the direct neighborhood (i.e. walk size > 1)
allows us to increase the percentage of distance matrix’s entries corresponding
to an accuracy gain using our approximation, with maximum percentage ob-
tained for walks of size equals to 3 or 4 (Figure 1(c)). However, we can note that
the accuracy decreases when considering walks up to 5 nodes. This observation
can be explained by the tottering phenomenon which induces non representative
walks into the computation of the cost matrix. In addition, we can note that this
observation is stronger for Acyclic and Alkane datasets which are more prone
to tottering since they are both composed of smaller molecules than PAH and
MAO.

82 B. Gaüzère et al.

In order to validate our proposition on prediction problems, we predicted
the classes of PAH and MAO molecules thanks to a k-ppv algorithm, with k
equals to 1, 3 and 5. Table in Figure 1(b) shows the percentage of correctly
classified molecules using a 10-fold cross validation. As observed in previous
experiments, the gain on the accuracy provided by our approximation (line 2,
Table in Figure 1(b)) allows us to obtain significantly better classification results
than the ones obtained by the approximation method proposed in [7] (line 1,
Table in Figure 1(b)). This classification experiment shows thus the relevance of
our contribution for prediction problems. This accuracy gain is also shown by the
scatter plot of our approximation (x-axis) and the approximation of [7] (y-axis)
on PAH and MAO datasets (Figure 1(a)). Points over the diagonal corresponds
to a better accuracy of our approach than the one obtained by [7].

6 Conclusion

We have presented in this paper a natural extension of a well known heuris-
tic computing an approximate graph edit distance between labeled graphs. Our
heuristic is based on an assignment of bags of walks incident to each node. Ex-
periments show that the proposed heuristic brings a significant decrease of the
graph edit distance compared to the previous heuristic at a cost which remains
much lower than the computational cost of the exact edit distance. Moreover,
according to our experiments our heuristic provides a significant gain on classi-
fication results using a kppv classifier. Our future work will consist to test other
types of patterns and to compare explicit vs implicit enumeration of patterns.

References

1. Bunke, H.: On a relation between graph edit distance and maximum common sub-
graph. Pattern Recognition Letters 18(9), 689–694 (1997)

2. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recogni-
tion. Pattern Recognition Letters 1, 245–253 (1983)

3. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. SIAM (2009)
4. Hammack, R., Imrich, W., Klavžar, S.: Hanbook of Product Graphs, 2nd edn.

Discrete Mathematics and its Applications. CRC Press, Taylor & Francis (2011)
5. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research

Logistics Quaterly 2, 83–97 (1955)
6. Munkres, J.: Algorithms for the assignment and transportation problems. Journal

of the Society for Industrial and Applied Mathematics 5(1), 32–38 (1957)
7. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of

bipartite graph matching. Image and Vision Computing 27, 950–959 (2009)
8. Riesen, K., Emmenegger, S., Bunke, H.: A novel software toolkit for graph edit

distance computation. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang,
X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 142–151. Springer, Heidelberg (2013)

9. Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for
pattern recognition. Systems, Man and Cybernetics 13(3), 353–363 (1983)

	Approximate Graph Edit Distance Guided by Bipartite Matching of Bags of Walks

	1 Introduction

	2 Assignment Problem

	2.1 Linear Sum Assignment Problem (LSAP)

	2.2 LSAP with Insertion and Removal of Elements

	3 Approximate Graph Edit Distance Based on the LSAP

	3.1 Graph Edit Distance Approximation

	3.2 Defining Bags of Structural Patterns

	4 Walks and Approximate GED for Labeled Graphs

	4.1 Similar Walks

	4.2 Different Walks

	5 Experiments

	6 Conclusion

	References

