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Abstract. In bioinformatics, many learning tasks involve pair-input
data (i.e., inputs representing object pairs) where inputs are not inde-
pendent. Two cross-validation schemes for symmetric pair-input data
are considered. The mean and variance of cross-validation estimate devi-
ations from respective generalization performances are examined in the
situation where the learned model is applied to pairs of two previously
unseen objects. In experiments with the task of learning protein func-
tional similarities, large positive mean deviations were observed with the
relared scheme due to training—validation dependencies while the strict
scheme yielded small negative mean deviations and higher variances.
The properties of the strict scheme can be explained by the reduction
in cross-validation training set sizes when avoiding training—validation
dependencies. The results suggest that the strict scheme is preferable in
the given setting.
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1 Introduction

In supervised learning, the generalization performance is commonly estimated
by training a model on one part of the dataset (training set) and evaluating it
against another (validation set) to avoid optimistically biased estimates. Cross-
validation (CV) is a procedure to estimate the generalization performance by
aggregating the results of several such evaluations. [2].

A CV procedure consists of folds, each of which involving training and eval-
uating a model according to a training—validation split of the dataset. Since an
input (i.e., a data point) can belong to the training set of one fold and to the
validation set of another, CV can be used when the small size of the dataset
prevents from obtaining large enough training and validation sets in a single
split [6]. The properties of a CV estimator are influenced by the splitting scheme
as well as how the performance is measured.

In a general case, CV procedures assume that data are identically distributed
and the training set is independent from the validation set [2]. The conventional
approach of randomly partitioning data into training and validation sets is not
viable when the data contain dependencies [12].
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Fig. 1. There are three types of pairs in a symmetric pair-input learning task. The set
A contains those objects that are pair members in the dataset on which a model is
trained and cross-validated. The set B contains the objects not present in the dataset.
The AA, AB, and BB types of pairs differ in the number of members seen in the
dataset. The types AtA¢, AtAv, and Ay A, are the analogous types within a CV fold
with the subscripts referring to the training (¢) and validation (v) sets.

This study explores the properties of CV estimators in the case of symmetric
pair-input data. Pair-input data consist of inputs that represent pairs of objects
while symmetry refers to pair members being of a single type with a symmetric
relation. Among others, data of this type are encountered in bioinformatics when
considering the properties of protein pairs, such as binding [13] or functional sim-
ilarity. Research in biosciences typically focuses on specific aspects of organisms
and knowledge is consequently centered around a subset of proteins. Since the
protein pairs of which a particular property is known stem from a limited set of
proteins, it is common that a protein is a pair member in several inputs which
leads to strong dependencies (see, for example, [13]).

Object pairs were categorized in [13] by their composition with respect to a
given dataset. Figure 1 illustrates these three types: both members (AA), one
member (AB), or no members (BB) belonging to the set A that contains the
objects present in the dataset. It was observed that the CV estimator of the
generalization performance of a model learned from AA pairs using a conven-
tional scheme is acceptable when considering the performance on AA pairs but
optimistically biased when considering the performance on AB or BB pairs [13].

This study examines two CV schemes in the situation where predictions will
be made on BB pairs. They differ from conventional splitting schemes in that the
splitting is performed on objects, not on inputs, and validation sets are formed
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based on the selected objects. The relazed scheme, involving models trained on
the union of Ay Ay and Ay A, (see Fig. 1), is expected to be optimistically biased
because validation set inputs are exposed via shared pair members whereas the
strict scheme, involving models trained on A;A; and evaluated against A, A,
should not exhibit an optimistically biased behavior because the setup is analo-
gous to learning from AA pairs to predict BB pairs. The strict scheme is expected
to be pessimistically biased because the full model is trained on more data than
the CV models [1] and have higher variance than the relaxed scheme because its
training sets contain less data [11].

Experiments are performed on the prediction of the functional similarity of
two proteins from their sequences. While not a typical formulation of the protein
function prediction task, which is one of the major tasks in bioinformatics [9],
functional similarity serves as an example of a symmetric pair-input problem.

2 Cross-Validation Schemes

Let O be a set of objects and Z C X x ) a set of instances, where the input
space X = O? and the output space ) = {—1,1}. An instance z = (z,y) € Z
consists of an input * = (0,0') € O? and its associated label y such that
y =1 <= 1z € R, where R C O? is the symmetric relation of interest.
A sequence Z = ((z1,y1)s---5 (Tn,Yn)) € Z", where X = (x1,...,2,) and
Y = (y1,...,yn) are the input and label sequences, respectively, is called a
training set. The set Oz = {0 : (3))(X; = (0,0") V X; = (0',0))} is the set of
training set objects. An input cannot be associated with both labels. That is,
(z,y) € 2 = (2,—y) ¢ Z. Also, (F)(X; = (0,0')) = #)(X; = (¢,0))
because the inputs (0,0") and (0’,0) are assumed to have identical represen-
tations in addition to their associated labels being identical due to symmetry.

Instances having y = 1 are called positive instances and those having y = —1
negative instances. Let Dp and Dz be probability distributions over O and Z,
respectively.

The outputs of a prediction function fz : X — R, learned from the training
set Z, rank the inputs by how likely their associated y = 1. The generalization
performance of a prediction function is measured by its conditional expected
area under the ROC curve (AUC) [1]

A(fZ) = EZ+ND+VZ—ND— [H(fz(.’L‘.;,.) - fZ(x—))] ) (1)
where z4 = (24,1), z2— = (z—,—1), and H is the Heaviside step function with
H(0) = é, while D} and D_ are the conditional distributions of instances
derived from Dz given y = 1 and y = —1, respectively.

In each CV fold, a validation set Oy of objects is picked such that Oy C O.
The validation set V of instances is a subsequence of Z such that (3¢)(V; = (z,y))
= ((F)(Z; = (z,y)) No € Oy Ad" € Oy), where x = (0,0'), (see AyA, in
Fig. 1) while the training set 7" of instances is a subsequence of Z. In the relaxed
scheme (3)(Th = (v,9) <= ((3))(Z; = (@,9) A (0 ¢ Oy Vo ¢ Oy) (see
AsAy and AgAy in Fig. 1) while in the strict scheme (3i)(T; = (z,y)) <=
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((3N(Z; = (my)) Ao & Oy Ao ¢ Oy) (see AyA; in Fig. 1). The sequence
C=(W,T1),...,(V,,T,)) contains the validation and training set pairs of the
n folds.

The CV performance Acy(Z) is an estimator of A(fz) obtained from Z using
the learning algorithm that yielded fz. The quality of a CV scheme is evaluated
using the mean and variance of the deviation B(Z) = Acy(Z) — A(fz) which
follows the approach taken, for example, in [6] and [1]. The second moment about
zero of B(Z) is also considered.

3 Estimation of AUC

The properties of ACV(Z ) are influenced by how the validation set V' and the
training set 1" are selected in each fold but also by how cross-validation AUC is
calculated. The choice between the relaxed and strict schemes affects T, which
is the focus of this study, while the selection of Oy affects both V and T

Two methods to calculate cross-validation AUC are considered: averaging and
pooled AUC [5,1]. The former is the mean AUC over folds whereas the latter is
calculated from the concatenation of the predictions made in the folds.

In an earlier study, AUC estimators were analyzed in a non-pair-input situa-
tion. Non-zero mean deviations were observed for pooled AUC on certain kinds
of data which was attributed to predictions from several models being compared
although strictly not compatible. Also, estimators involving more comparisons
of positive—negative instance pairs were observed to have lower variance than
those with fewer comparisons. [1].

Object-leave-two-out CV includes a fold for each of the (7;) possible validation
sets fulfilling the condition |Oy| = 2, where m = |Ogz|. If X is restricted to the
inputs (o0,0’) such that o # o’ (like in this study, see Sect. 4.3), each validation
set contains only one instance and all instances are included in exactly one
validation set.

In object-n-fold CV, Oz is partitioned into n parts of approximately equal
sizes with the ith part being Oy in the ith fold. Consequently, some instances
do not belong to any of the validation sets and the number of excluded instances
increases as n increases (Fig. 2). To cover all instances, overlapping validation
sets can be selected such that two parts form a validation set in each fold which
results in (Z) folds. In this case, however, the pairs in which the members are
from the same part appear in n — 1 validation sets while the other pairs appear
only once (diagonal blocks vs. non-diagonal blocks in Fig. 2). As n approaches
m, overlapping object-n-fold CV approaches object-leave-two-out CV (Fig. 2).

4 Experiments

The properties of the relaxed and strict schemes were investigated by conducting
experiments on learning protein functional similarities. A protein is a biomolecule
composed of amino acid chains folded into a three-dimensional structure that
is capable of accomplishing (possibly jointly with other proteins) a particular
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Fig. 2. The validation sets (patterned areas) of object-2-fold CV (upper left) cover
more instances than those of object-3-fold CV (upper right). Both overlapping object-
3-fold CV (lower left) and object-leave-two-out CV (lower right) cover all instances
but three instances are present in two validation sets, distinguished by pattern types,
in the former. Dashed lines indicate the boundaries of the parts of Oz = {o1,..., 06}
while grey squares represent the excluded (o, 0) pairs.

task. How the amino acid sequence (and the structure) of a protein defines its
function is one of the major topics in bioinformatics.

The task of protein function prediction can be formulated as one of predicting
the function of a protein from its sequence [8] while other sources of information
may also be utilized as well [4,7]. In this study, instead of directly predicting the
function, the functional similarity of two proteins is considered because it fulfills
the requirements of symmetric pair-input data.

4.1 Data

Datasets were derived from the Universal Protein Resource! (UniProt) [14].
UniProt entries contain amino acid sequences of proteins together with di-
verse annotations, literature references, and cross-references to other databases.
Its UniProtKB/Swiss-Prot section contains manually curated entries while the
UniProtKB/TrEMBL section contains unreviewed, computer-annotated entries.
Only the former was used in the experiments in order to minimize noise.

! http://www.uniprot.org/
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The functional similarity of two proteins was determined by their Gene Ontol-
ogy annotations. Gene Ontology? (GO) [3] is a comprehensive classification and
widely adopted in bioinformatics. It provides hierarchical controlled vocabularies
for three complementary domains — molecular function, biological process, and
cellular component — referenced by UniProt entries.

Three datasets were created by considering one of the GO domains at the time
and the fourth by considering the domains jointly. The information regarding
the function was assumed to be complete when an entry had any GO annotation
belonging to the given domain(s). All such proteins were included in the dataset
while the others were discarded to avoid false negative labels. This produced
datasets ranging approximately from 387,000 to 511,000 proteins in size.

4.2 Features and Labels

Each protein sequence was represented by a vector containing the frequencies
of amino acids as well as the frequencies of bigrams of adjacent amino acids
categorized into four classes according to [10]. A protein pair was represented by
the sum of the two protein feature vectors. This low-dimensional representation
is more suitable for the K-Nearest Neighbor classifiers used in the experiments
(see Sect. 4.3) than high-dimensional representations.

A protein pair was labeled positive if its members had any GO annotation in
common. The hierarchy of GO classes was not taken into account.

4.3 Experiment Details

The set Z was defined as the set of instances covering all protein pairs (o, 0') such
that o # o’ to avoid trivially positive instances skewing performance scores. Both
Do and Dz were chosen to be uniform distributions. Since its exact value is im-
practical to calculate, the conditional expected AUC was estimated from a ran-
dom sample S with the Wilcoxon—-Mann—Whitney statistic [5]. For each dataset,
the sequence S was drawn without replacement from Z such that |S| = 10%. Let
Os = {o: (3)(S: = (,9) A (z = (0,0) Va = (o/,0)))}.

The relaxed and strict schemes were evaluated with all possible combinations
of the four datasets, two validation set selection methods (object-ten-fold or
object-leave-two-out), and two AUC calculation methods (averaging or pooled).
Note that averaging AUC cannot be calculated in the object-leave-two-out case
because each validation set contains only one instance.

The sampling distribution of deviations was obtained from one thousand in-
dependent repeats. In each repeat, a sequence O = (o1, ...,0,) of 100 proteins
was conditionally drawn without replacement from O given that o; ¢ Og. The
training set Z was formed by including the inputs (o, 0’) fulfilling the condition
(30)(0; = 0) A (3)(0; = o).

In all experiments, K-Nearest Neighbor classifiers were trained with inverse
distance weighing. The parameter K was varied from K =10 to K = 100 in
steps of ten to analyze its effect.

2 http://www.geneontology.org/
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Table 1. The observed mean deviations for K = 50. 10z and LTO refer to object-ten-
fold and object-leave-two-out CV while A and P refer to averaging and pooled AUC,
respectively.

Relaxed Strict
Dataset A-10x P-10x LTO A-10x P-10x LTO
Union 0.1799 0.1870 0.1919 -—0.0113 —0.0209 —0.0187

Molecular function  0.1509 0.1614 0.1642 —0.0167 —0.0282 —0.0285
Biological process 0.0673 0.0909 0.0907 —0.0508 —0.0402 —0.0410
Cellular component 0.1745 0.1797 0.1842 —0.0220 —0.0290 —0.0246

Table 2. The observed variances of deviations for K = 50. 10z and LTO refer to
object-ten-fold and object-leave-two-out CV while A and P refer to averaging and
pooled AUC, respectively.

Relaxed Strict
Dataset A-10x P-10x LTO A-10x P-10x LTO
Union 0.0020 0.0017 0.0009 0.0028 0.0028 0.0015

Molecular function  0.0032 0.0025 0.0012 0.0051 0.0046 0.0025
Biological process 0.0111 0.0086 0.0027 0.0160 0.0147 0.0064
Cellular component 0.0016 0.0015 0.0009 0.0027 0.0028 0.0016

5 Results and Discussion

The relaxed and strict schemes resulted in positive and negative mean devia-
tions, respectively, and the experiments with the relaxed scheme yielded lower
variances of deviations than their counterparts with the strict scheme. Increases
in K resulted in decreases in the means in both schemes, though the effect was
minor in the strict scheme, while the variances increased in the strict scheme
and decreased in the relaxed scheme. The peak generalization performance was
reached in the given range of K with the Union and Cellular component datasets.

Illustrating typical observations, Tables 1 and 2 show the means and vari-
ances, respectively, of the observed deviations of CV estimates from respective
(estimated) generalization performances for K = 50. The means of the observed
generalization performances for K = 50 are 0.5857, 0.6524, 0.7423, and 0.6351,
in the order of the datasets in the tables.

The absolute values of the deviation means are generally approximately an
order of magnitude lower and the deviation variances higher but of the same
order of magnitude in the experiments with the strict scheme than in their
counterparts with the relaxed scheme. The Biological process dataset differs from
the others by having notably lower absolute values in the relaxed setting, higher
absolute values in the strict setting, and higher variances in both settings.

The above observations are reflected in the second moments about zero being
approximately an order of magnitude lower in the experiments with the strict
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Fig. 3. The second moments about zero of the relaxed and strict schemes become equal
at approximately K = 30, K = 60, or K = 100 in the Biological process dataset (left)
whereas they are well-separated in the Molecular function dataset (right). Triangle,
square, and circle refer to P-10z, A-10z, and LTO (see Tables 1 and 2) whereas hollow
and solid symbols denote the relaxed and strict schemes, respectively.

scheme than in their counterparts with the relaxed scheme in all except the Bio-
logical process dataset. The changes in mean and in variance as K increases both
contribute toward the decreasing and increasing trends in the second moments
seen with the relaxed and strict schemes, respectively. However, as illustrated in
Figure 3, the point after which the relaxed scheme yields lower second moments
depends on the dataset and the CV details.

The absolute values of the deviation means are higher in the experiments
with pooled AUC than in their counterparts with averaging AUC in all but
one experiment pair. This is not surprising given that pooling can have either
a positive or negative effect on deviations [1]. An increase in the number of
positive—negative instance comparisons (A-10x < P-10x < LTO, see Table 2)
generally has a decreasing effect on variance, as expected, although A-10z and
P-10z are in the opposite order in two experiment pairs for high K values.

The observed deviation means suggest that the positive effect of training—
validation dependencies generally dominates over the negative effect of the re-
duced size of training sets and, consequently, that the strict scheme is preferable
to the relaxed scheme in the setting where the learned model will be applied to
pairs of two previously unseen objects. However, given the limited number of ex-
periments in this study, it remains unanswered to what extend these observations
can be generalized to other datasets and/or learning algorithms. Particularly, the
results obtained with the Biological process dataset raises the question whether
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the unexpectedly small differences in the absolute values of the mean deviations
between the two schemes are due to the properties of the dataset or due to the
schemes generally yielding more similar absolute values as generalization perfor-
mance increases. In the latter case, the strict scheme would not necessarily be
preferable at high performance levels although it would still have the advantage
of yielding conservative estimates.

5.1 Future Directions

The results of this study illustrate the potential of the strict scheme. In future
experiments, the scheme will be applied to a variety of learning algorithms and
datasets to get a better understanding of its behavior. With preliminary re-
sults from another dataset suggesting otherwise, it is of particular interest to
investigate whether higher absolute values of deviations should be expected at
higher levels of generalization performance as is hinted by the Biological process
dataset. Different approaches to select validation sets (see, for example, [2]) will
also be examined in order to discover their properties when operating on objects
instead of on instances. Last, the analysis of the strict scheme will be expanded
to the experimental setup outlined in [13] where some pairs of objects are not
included in the dataset due to incomplete knowledge of objects.

The two schemes considered in this study are expected to fail to reliably
estimate the generalization performance of a learned model when predictions
will be made on inputs where an object seen in the dataset is paired with a
previously unseen object (AB pairs in Fig. 1). Adapting the strict scheme to
this setting likely requires only minor modifications.

6 Conclusions

Two CV schemes for symmetric pair-input data were considered. They differ
from conventional CV schemes by acknowledging the fact that inputs represent
pairs of objects. They first make training—validation splits on objects and then
use the selected objects to form training and validation sets. The strict scheme
avoids dependencies between the training and validation sets that would arise
from shared pair members by discarding offending instances from the training
sets. Consequently, its folds are analogous to learning a model from a dataset
and making predictions on pairs that are composed of objects not encountered
in the dataset. The relaxed scheme utilizes all instances in each fold and is hence
similar to conventional CV schemes that assume independent instances.

The properties of the relaxed and strict schemes were examined in the task
of learning functional similarities of proteins. Four datasets were derived from
UniProt database and evaluated using various combinations of AUC calculation
method and validation set selection method. Positive mean deviations were ob-
served for the relaxed scheme while negative mean deviations were observed for
the strict scheme. The strict scheme yielded lower absolute values of deviation
means but higher deviation variances than the relaxed scheme. These observa-
tions can be explained by dependencies between training and validation sets,
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relative training set sizes, and the properties of the AUC calculation methods
used in the experiments.

The results suggest that the generalization performance of a model is better
estimated by the strict scheme than the relaxed scheme in the situation where
predictions will be made on pairs of previously unseen objects. Such pairs may
be encountered in significant numbers, for example, when predicting protein—
protein binding [13]. However, further experiments are needed to get a better
understanding of the properties of the strict scheme.
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