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Abstract. A change detection algorithm for multi-dimensional data
reduces the input space to a single statistic and compares it with a
threshold to signal change. This study investigates the performance of
two methods for estimating such a threshold: bootstrapping and control
charts. The methods are tested on a challenging dataset of emotional
facial expressions, recorded in real-time using Kinect for Windows. Our
results favoured the control chart threshold and suggested a possible
benefit from using multiple detectors.

1 Introduction

Detecting a change point in a sequence of observations is a well researched sta-
tistical problem with applications in areas such as Economics [1], Data Stream
Mining [2] and Quality Control [3]. The basic premise of change point detec-
tion is that, given a sequence of observations x1, x2, ..., xn, there exists a change
point t such that x1, x2, ..., xt was generated exclusively by some process P0 and
xt, xt+1, ..., xn was generated exclusively by some other process P1.

Detecting change points in multivariate data is a challenging problem. A va-
riety of multivariate change detectors have been proposed [4–6], some of which
amount to a novel combination of univariate detectors, while others take a di-
mensionality reduction approach. In the latter case, the multidimensional data is
reduced to a single statistic which should ideally correlate with the appearance of
change. One of the main issues with such detectors is identifying a threshold on
the single statistic for flagging a change. Here we examine the suitability of two
approaches to setting a threshold: bootstrapping and control charts. Figure 1
illustrates the multivariate change detection process.

2 Related Work

Change detection has been an active area of research for more than 60 years, de-
veloping out of methods for statistical quality control. Being well researched and
statistically grounded, Control Charts are the basis for many methods such as
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Fig. 1. Illustration of the process of change detection in streaming multidimensional
data and the role of the threshold. The data was obtained from Kinect while a partic-
ipant was acting a sequence of emotional states: i. Happiness, ii. Sadness, iii. Anger,
iv. Indifference, v. Surprise.

CUSUM (Cumulative Sum) charts and EWMA (Exponentially Weighted Mov-
ing Average) charts. Some of the earliest work in the field is that of Shewhart
[3, 7] and his development of the control chart for sequential process control,
now widely adopted by industry. The field is now very broad, with a number
of reference monographs including Wald [8], Basseville and Nikiforov [9] and
Brodsky and Darkhovsky [10] although largely focussed on univariate data.

There are differing approaches to the problem of detecting change in multivari-
ate data. Lowry and Montgomery [11] reviewed multivariate control charts for
quality control. Consider n p-dimensional vectors of observations x1,x2, . . . ,xn.
It is possible to simply create p individual charts, one for each feature, not re-
ducing the dimensionality of the data. However, this approach does not account
for correlation between the features. Even truly multivariate control chart ap-
proaches such as the Hotelling Control Chart [12] can be equated to dimension-
ality reduction and thresholding, as it reduces the p dimensions of the data to a
single T 2 statistic. The list below demonstrates the inconsistency of approaches
to setting such a threshold.

Work: Decision method
Zamba & Hawkins [13]: γ set according to a desired false alarm rate.

Song et al. [14]: Original statistical test.
Dasu et al. [5]: Monte Carlo Bootstrapping.
Kuncheva [15]: Signficance of log-likelihood ratio.
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The scope of this work is concerned with establishing a method for threshold
setting that is applicable to multiple approaches to change detection.

3 Multivariate Change Detectors

Here we assume that the change detection criteria are calculated from pre-
specified windows of data W1 and W2. Change is sought between the distri-
butions in the two windows.

3.1 Parametric Detectors: Hotelling

The two windows of data contain points x = [x1, . . . , xp]
T ∈ �p. Hotelling [16]

proposes a statistical test for equivalence of the means of the two distributions
from which W1 and W2 are sampled. The null hypothesis is that W1 and W2 are
drawn independently from two multivariate normal distributions with the same
mean and covariance matrices. Denote the sample means by μ̂1 and μ̂2, the
pooled sample covariance matrix by Σ̂, and the cardinalities of the two windows
by M1 = |W1| and M2 = |W2|. The T 2 statistic is calculated as

T 2 =
M1M2(M1 +M2 − p− 1)

p(M1 +M2 − 2)(M1 +M2)
× (μ̂1 − μ̂2)

T Σ̂−1(μ̂1 − μ̂2) (1)

Under the null hypothesis, T 2 has F distribution with degrees of freedom p
and M1 +M2 − p+1. The T 2 statistic is the Mahalanobis distance between the
two sample means multiplied by a constant. The p-value of the statistical test is
instantly available and the desired significance level will determine the change
threshold.

The obvious problem with the Hotelling test is that it is only meant to detect
changes in the position of the means. Thus it will not be able to indicate change
of variance or a linear transformation of the data that does not affect the mean.

3.2 Semi-parametric Detectors: SPLL

The semi-parametric log-likelihood criterion (SPLL) for change detection [6]
comes as a special case of a log-likelihood framework, and is modified to ensure
computational simplicity. Suppose that the data before the change comes from
a Gaussian mixture p1(x) with c components each with the same covariance
matrix. The parameters of the mixture are estimated from the first window of
data W1. The change detection criterion is derived using an upper bound of the
log-likelihood of the data in the second window, W2. The criterion is calculated
as

SPLL = max{SPLL(W1,W2), SPLL(W2,W1)}. (2)

where

SPLL(W1,W2) =
1

M2

∑

x∈W2

(x− μi∗)TΣ−1(x− μi∗). (3)
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where M2 is the number of objects in W2, and

i∗ = arg
c

min
i=1

{
(x− μi)

TΣ−1(x− μi)
}

(4)

is the index of the component with the smallest squared Mahalanobis distance
between x and its centre.

If the assumptions for p1 are met, and if W2 comes from p1, the squared
Mahalanobis distances have a chi-square distribution with p degrees of freedom.
The expected value is p and the standard deviation is

√
2p. If W2 does not come

from the same distribution, then the mean of the distances will deviate from
p. Subsequently, we swap the two windows and calculate the criterion again,
this time SPLL(W2,W1). By taking the maximum of the two, SPLL becomes a
monotonic statistic.

3.3 Non-parametric Detectors: Kullback-Leibler Distance

In this approach, the data distribution in window W1 is represented as a collec-
tion of K bins (regions in �p), with a probability mass value assigned to each
bin. Call this empirical distribution P̂1. The data in W2 is distributed in the bins
according to the points’ locations, giving empirical distribution P̂2. The criterion
function is

KL(P̂2||P̂1) =

K∑

i=1

P̂2(i) log

{
P̂2(i)

P̂1(i)

}
(5)

where i is the bin number, and P̂ (i) is the estimated probability in bin i.
If the two distributions are identical, the value of KL(P2||P1) is zero. The

larger the value, the higher the likelihood that P2 is different from P1. Note that
we have only approximations of P1 and P2. The usefulness of the KL criterion
depends on the quality of the approximations and on finding a threshold λ such
that change is declared if KL > λ.

In Dasu et al.’s change detector [5], W1 is expanded until change is detected,
giving a good basis for approximating P1. On the other hand, P2 has to be
estimated from a short recent window, hence the estimate may be noisy. Dasu
et al. approximate the P1 probability mass function by building kdq trees which
can be updated with the streaming data. Other approximations are also possible,
including the clustering approach for SPLL.

The KL distance criterion is not related to a straightforward statistical test
that will give us a fixed threshold λ, which was one of the motivations behind
our study.

4 Threshold Setting Approaches

Hotelling T 2 detector has the advantage of a statistically interpretable threshold.
However, it has a serious shortcoming in that it only detects change in the mean
of the data. To equip SPLL and KL with a similar type of threshold, here we
examine two threshold setting approaches for the change detection statistic.
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4.1 Bootstrapping

Let |W1| = M1. To determine a threshold, a bootstrap sample of M1 objects
is drawn from W1. A discrete probability distribution P̂1 is approximated from
this sample. Subsequently, another sample of the same size is drawn from W1

and its distribution Q̂1 is evaluated. For example, if P̂1 is a set of bins, Q̂1

is calculated as the proportion of the data from the second bootstrap sample
in the respective bins. The match between P̂1 and Q̂1 is estimated using, for
example, KL distance (5), which gives the change statistic. Running a large
number of such Monte Carlo simulations, a distribution of the change statistic
is estimated, corresponding to the null hypothesis that there is no change (all
samples were drawn from the same window,W1). We can take the Kth percentile
of this distribution as the desired threshold. This approach was adopted by Dasu
et al. [5] where the probability mass functions were approximated by a novel
combination of kd-trees and quad trees, called kdq-trees. We direct the reader
to [5] for an in-depth definition of kdq-trees. One drawback of this approach is
the excessive computation load when a new threshold is needed.

4.2 Control Chart

A less computationally demanding alternative to bootstrapping is a Shewhart
individuals control chart to monitor the change statistic. Inspired by this, our
hypothesis is that the process underlying an appropriate change statistic will
exhibit an out-of-control state when change occurs. Using a window of T obser-
vations, we calculate the centre line x̄ as the mean of the values of the statistic
returned from the change detector, and its standard deviation σ̂. The upper and
lower control limits are calculated as

x̄± 1.96
σ̂√
T
. (6)

If either of the control limits are exceeded, change is signalled. This (rather naive)
threshold estimation assumes that the change statistic has normal distribution,
and that we have a sufficiently large window so as to get reliable estimates. The
above value is for significance level α = 0.05. The bootstrap threshold does not
rely on any such assumption but is more cumbersome.

5 Experimental Investigation

All thresholds considered here, including the threshold of the Hotelling method,
are meant to control the type I error (“convict the innocent”, or accepting that
there is a change when there is none). If we set all these thresholds to 0.05, we
should expect to have false positive rate less than that. Nothing is guaranteed
about the type II error (“free the guilty”, or missing a change when there is
one). Thus we are interested to find out how the three chosen change detectors
behave for the two type of thresholds, in terms of both error types.
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5.1 Facial Expression Data

We chose a challenging real-life problem to test the change detectors. Sustained
facial expressions of five emotions were taken to be the stable states, and the
transition from one emotion to another was the change.

While a number of facial expression databases exist, they require camera
equipment and intermediate computer vision techniques to record data. In our
approach, we utilise the Face Tracking toolkit distributed with the Kinect SDK
to extract data directly from the device. This approach lends itself to analysis of
real-time streaming data The advantage of having a minimal setup is that data
capture does not have to be intrusive. This presents the opportunity of capturing
real-time data about a participant’s posture and facial expression whilst they
interact with the computer.

The Kinect Face Tracking SDK utilises the Active Appearance Model (AAM)
[17], taking into account the data from the depth sensor to allow head and face
tracking in 3D. The features we take from the Kinect are as follows:

• Features extracted by the Kinect software

◦ Face Points : 123 3D points on the face
◦ Skeleton Points : 10 3D points on the joints of the upper body
◦ Animation Units: 6 Animation Units [−1, 1]

• Six animation units and their equivalents in the Candide3 model

Animation Unit Candide3 [18] Description
AU0 AU10 Upper Lip Raiser
AU1 AU26/27 Jaw Lowerer
AU2 AU20 Lip Stretcher
AU3 AU4 Brow Lowerer
AU4 AU13/15 Lip Corner Depressor
AU5 AU2 Outer Brow Raiser

5.2 Data Capture

Each participant sat with their eyes trained on a computer screen, with a Kinect
observing them. Emotional transitions are triggered by visual instructions. The
participants were asked to hold their facial expression until instructed to change
it. The duration of a facial expression is 3 seconds. The timestamps of these
instructions are logged to provide the true positive values for the experiment.
Thus each experimental run produces about 5 expressions × 3 seconds × 30
FPS = 540 frames. Figure 2 shows an example of one of the animation units
throughout one run. The periods of sustained facial expressions are labelled.
The initial warm-up period, as well as the transition periods of 7 frames are also
indicated.

The process is facilitated by a bespoke application written in the C# language,
which utilises the Kinect SDK to retrieve frames from the sensor and extract
the features. The application acts as a TCP client which connects to a server
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Fig. 2. An example of an animation unit along one experimental run for collecting
data. The dashed vertical lines are the time points where the participant is prompted
to change their facial expression. The shaded regions are transition stages.

running in MATLAB, where the extracted features and timestamps are streamed
in real-time, ready for analysis.

5.3 Experimental Methodology

The experiment was conducted using the Animation Units from six participants,
each of whom recorded ten runs using the apparatus. Human reaction time to
visual stimuli is 180-200 ms. In a recording at approximately 30 frames per
second, a true positive detection should appear no earlier than 180/30 = 6
frames after the labelled change (prompt to change the facial expression). For
each run, we test Hotelling, KL Distance with Bootstrapping, KL Distance with
Control Charts, SPLL with Bootstrapping and SPLL with Control Charts. The
protocol below was followed for each run and for each participant:

1. Split the data into segments by label.

2. Sample a window W1 of T contiguous frames from a random segment S,
with cardinality |S| = M and random starting frame F , 7 ≤ F ≤ (M − T ).

3. Sample W2 from a random segment. If drawn from the same label as W1,
test for false positives, else test for true positives.

4. Calculate the threshold from W1 using the chosen method.

5. Calculate change statistic from W1 and W2 and compare with the thresh-
old. Store ‘change’ or ‘no change’, as well as the time taken to execute the
iteration steps.

6. Repeat 1–5 K times sampling W1 and W2 from the same label, K times
sampling W1 and W2 from different random labels. Calculate and return the
true positive and false positive rates for the chosen detector and threshold.

Five hundred runs were carried out for determining the bootstrapping thresh-
old.

To simulate a window of running change statistic only from data window W1,
we adopted the following procedure. A sliding split pointm was generated, which
was varied from 3 to T − 3. This point was used to create windows W ′

1, with



On Optimum Thresholding of Multivariate Change Detectors 371

data from 1 to m, and W ′′
1 , with data from m+ 1 to T . The statistic of interest

was calculated from these sub windows, which were assumed to come from the
same distribution.

We used T = 50, in order that the window size be above 50% of an expression
duration. While there is a great deal of literature on the subject of adaptive
windowing [19–21], this is beyond the scope of this paper. Such a technique
could be used to set T . We set K = 30. The experiment was performed on a
Core i7-3770K 4.6GHz Windows machine with 16GB RAM.

5.4 Results

We can examine the relative merit of the detectors and thresholds by plotting
them on a Receiving Operating Characteristic (ROC) curve. The x-axis is ‘1−
Specificity’ of the test, which is the false positive rate, and the y-axis is the ‘Sen-
sitivity’ of the test, which is the true positive rate. Each run for each participant
can be plotted as a point in this space. An ideal detector will reside in the top
left corner (point (0,1)), for which true positive rate is 1 and false positive rate
is 0. The closer a point is to this corner, the better the detector is.

Figure 3 shows 30 points (6 participants× 5 detector-threshold combinations).

 

 

Fig. 3. Results for the 5 detector-threshold combinations. Each point is the average
(FP,TP) for one participant, across the K = 30 iterations and 10 runs.

Each point corresponds to a participant. The marker and the colour indicate
the detector-threshold combination. The figure shows that, although the detec-
tors are not perfect individually, the points collectively form a high-quality ROC
curve.

All thresholds were calculated for level of significance 0.05. Applying this
threshold is supposed to restrict the false positives to that value. This happened
only for the SPLL detector. The price for the zero FP-rate is a low sensitivity,
making SPLL the most conservative of three detectors. The Hotelling detector
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does not live up to the expectation of FP < 0.05. It is not guaranteed to have
that FP rate if the assumptions of the test are not met - clearly the situation
here. Between this test and KL with bootstrap threshold, Hotelling is both faster
and more accurate (lower FP for the same TP). The best combination for our
type of data appeared to be the KL detector with the control chart threshold. It
exhibits an excellent compromise between FP and TP, and is faster to calculate.

Interestingly, the threshold-setting approach did not affect SPLL but did affect
the KL-detector. The control chart approach improved on the original bootstrap
approach by reducing dramatically the false positive rate without degrading
substantially the true positive rate.

We note that the way we sampled W1 and W2 may have induced some opti-
mistic bias because the samples from the same label could be overlapping. This
makes it easier for the detectors to achieve low FP rates than it would be in true
streaming data. Nevertheless, this set-up did not favour any of the detectors or
threshold-calculating methods, so the comparison is fair.

The execution time analyses favoured unequivocally the control-chart ap-
proach to finding a threshold. Also SPLL is the slowest of the detectors, fol-
lowed by KL and Hotelling. Therefore we recommend the KL-detector with a
control-chart threshold.

6 Conclusion

This paper examines the use of control charts as an alternative to the more
traditional bootstrap approach for determining a threshold for change detectors.
Our experimental study with a real-life dataset of facial expressions taken in real
time favoured the KL-detector with a control chart threshold.

We also observed that the statistical significance of the thresholds (type I
error) is not matched in the experiments, except for the SPLL detector. The non-
parametric bootstrap approach, was expected to give a more robust threshold,
not affected by a false assumption about the distribution of the change statistic.
The opposite was observed in our experiments for the KL-detector. The reason
for this could be that the window was too small to account for the variability of
the data sampled from the same label. The results of the experiment led us to
recommend the KL-detector with a control chart threshold for difficult streaming
data such as facial expressions and behavioural analysis. SPLL with control chart
threshold would be preferable where a conservative detector is needed. The same
detection accuracy would be achieved with a bootstrap threshold but the extra
computational expense is not justified.

Observing the excellent ROC curve shape offered by the collection of detec-
tors, a combination of change detectors with different threshold-setting strategies
looks a promising future research avenue. Investigation of adapting methods for
classifier fusion to this problem is required, to assess the feasibility of creating a
decision ensemble of change detectors.
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