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Abstract. For the application of well-established image analysis algo-
rithms to low frame-rate image sequences, which are common in bio-
imaging and long-distance extrapolation, we are required to up-convert
the frame-rate of image sequences. For the motion analysis of low frame-
rate image sequences, we introduce a method for semantic segmentation
of the dominant plane, which is the largest planar area on an image
plane, from a low frame-rate image sequence, which is common for im-
age sequence obtained by remote extrapolation.

1 Introduction

In this paper, we introduce a method for semantic segmentation of the dominant
plane from the optical flow field of a low frame-rate image sequence combining
image registration [5] and optical flow computation [8, 7].

The optical flow field is a fundamental feature for the interpretation of tem-
poral image sequences [6]. For the motion analysis from low frame-rate image
sequence, we are required to generate a dense optical flow fields, since well-
established algorithms for motion analysis do not assume the use of low frame-
rate image sequences.

For the detection of safe areas for navigation, the robot probe detects the
dominant plane, which is the largest planar area on an image plane, from a
sequence of images captured by a camera mounted on the robot. In the image,
the safe areas and obstacle areas for navigation are detected using the optical
flow field and homography of the ground plane [2-4]. Figure 1 (a) shows a cycle
for autonomous navigation using optical flow.

Using an uncalibrated monocular camera as a sensor for obtaining information
on the environment, in ref. [1], a featureless robot navigation method based on a
planar area and an optical flow field computed from a pair of successive images
is proposed. A planar area in an environment is called a dominant plane, and
it corresponds to the largest part of an image. We accept the following five
assumptions.
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Fig. 1. Observation-Perception-Decision-Action cycle for vision-based robot naviga-
tion. (a) First, a mobile robot equipped with a camera observes the environment. Next,
an optical flow field relative to the robot motion is computed from images obtained
by the camera. The optical flow field is used to decide the local path. (b) The mobile
robot has a camera, which corresponds to its eyes. The robot perceives an optical flow
field from its ego-motion. (c¢) If the camera moves a distance 7" approximately parallel
to the dominant plane, the optical flow vectors on the obstacle and on the dominant
plane areas have the same distance 7. However, they differ at the same time.

1. The ground plane is the planar area.

. The camera mounted on the mobile robot is looking downward.

3. The robot observes the environment using the camera mounted on itself for
navigation.

4. The camera on the robot captures a sequence of images while the robot is
moving.

5. The planar area occupies more than 1/2 on the image.

[\

These assumptions are illustrated in Figs. 1 (b) and (c).

Since the planar flow vector on the ground plane is equal to the optical flow
vector & on the dominant plane, we use the difference between these two flows to
detect the dominant plane. From the assumption 1 and 2, we have the following
property.

Property 1. Corresponding points on a dominant plane in a pair of successive
images are combined by homography.

2 Dominant Plane and Optical Flow

Setting H to be a 3 x 3 matrix [14], the homography between two images
of a planar surface can be expressed as & = HE, where £ = (z,9,1)" and
¢ = (2',4',1)T are the homogeneous coordinates of corresponding points in two
successive images. Assuming that the camera displacement is small, the matrix
H can be approximated by affine transformations. These geometrical and math-
ematical assumptions are valid when the camera is mounted on a mobile robot
moving on the dominant plane. Therefore, the corresponding points & = (z,y)"
and ' = (2/,')" on the dominant plane are related by ' = Az + b, where
A and b are a 2 x 2 affine-coefficient matrix and a two-dimensional vector, re-
spectively, which are approximations of H. This geometric relation implies that
u(z,y,t +1) = Ax + b — x and that the next property is satisfied.
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Property 2. On the dominant plane, the optical flow vector is stationary and
the planar-flow vector on the ground plane is equal to the optical flow vector
T =u.

We call ' — x the planar flow. The RANSAC-based method [11] for the estima-
tion of the affine coefficients is described as Algorithm 1.

Algorithm 1. Planar Flow
Require: Planar area u
Ensure: Affine coefficients A and b
Set the region counter m < 0
repeat
Randomly select three points from {x};
Estimate A and bin ' = Az + b
Compute planar flow field u' = ' — =
if |u —u/| <eand #(Ju —u'| <e) > m then
assign these points as the plane;
m <+ #(lu—u'| <e)
end if
until predetermined number of times;

Once the affine coefficients are estimated, we can extract a segment for the
dominant plane. We use the difference between these two flows for semantic
segmentation of the dominant plane. Therefore, if |u(x,y,t) — u(z,y,t+1)| <€
for a small positive number ¢, we conclude that the point & = (z,y)" lies on
the dominant plane. If an obstacle exists in front of the robot, the planar flow
on the image plane differs from the optical flow on the image plane as shown in
Fig. 1 (c).

3 Semantic Segmentation Using Subframe Motion
We develop an algorithm to compute the optical flow field of a temporal image

sequence f(x,t+ 5), in which we set ui(x,t) from f(x,t) and f(x,t +1). For
the convenience of analysis, we set

FH@) = F@,t+ 1), fo(@t) = [@.0), @)= f@it ), ()
v=u1(x,t), w:u%(w,tJr;). (2)

Algorithm 2 shows the procedure for dominant plane detection using subframe
optical flow computation.
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Fig. 2. Geometrical relations among images sequence and computational results. (a)
Geometrical relations among g, f~, f1, u, v and w. (b) Computational results the
original and subframe optical flow fields for the Etllinger-Tor sequence.

For large-displacement image sequences, we compute the dominant plane from
v and w, which are computed from f(x,y,t) and f(z,y,t + 1/2), and from
flx,y,t +1/2) and f(z,y,t + 1), respectively, using the subframe optical flow
computation method derived in the previous section. We conclude that the point
x = (z,y)" lies on the dominant plane if |u — w| < e.

For f(x,t) and f(x,t+ 1), if the relation

Vf(m,t)%Vf(a:,t—l—;):Vf(m,t)+5(a:) (3)

is satisfied, we have the next theorem.

Theorem 1. The relation V[ (v+w)+ f 20, where V f(z,t) Tv+ fi(z,t) =0
and Vf(z,t+ 3)Tw+ fi(z,t + 1) =0, is satisfied *.

Setting g(x) = f*(x — w), g(x) = f~(x + v) and u = v + w, Theorem 1
implies that we can have g, v and w as the minimisers of

J(g,v,w) =1 +I_ 4+ oG+ U + 4V, (4)

where
= z)— [Tz —w))?de, I_ = x) — [ (z +v))de
I~ [ @) - e —w)ids, I = [ @)~ @+ v)iin
G:/Q\Vg|2da:, U:/Q(\Vv\2+\Vw|2)dm, V=|v+w—ul (6)

Figure 2 shows the relations among u, v, w and g and computational results of
them.

Using the subframe optical flow, we extract a segment corresponding to the
dominant plane Dy using Algorithm 2. In Algorithm 2, for a pair of successive
images f; and f;+1, u; is the optical flow field between f; and f;y1, and v; and
w; are the subframe optical flow fields between f; and g, and between g and

! From egs. (1) and (3), we have the relation Vf(z,t) " (v+w)+ fi = 0, since fi(-,t+
;) :f(il!,t+1) *f(il),tﬁ* ;) and ft(at+1) :f(w7t+1;)7f(wvt)
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fi+1, respectively, where g is the interframe image. Furthermore, the procedure
Compute InterFrame(f;, fi+1, ws, @, 8,7) computes g;, v; and w; from f;, fit1
and wu; using the method proposed in the previous section. Moreover, in the
algorithm u; is computed from f; and f;11 using the large-displacement optical
flow computation technique in [13].

Algorithm 2. Plane Detection
Require: Images fi, fi+1, fi+2, Flow field w;, u;+1, Parameters a, 3,y
Ensure: Plane D
(gi, vi, w;) < Compute InterFrame(f;, fi+1, wi, @, 3,7)
Set the region counter m + 0
repeat
Compute affine coefficients by Planar-Flow(v;);
Estimate planar flow field ¥; from affine coefficients;
if |lw; — ¥;| < € and #(|w; — ¥;| < €) > m then
assign these points as the plane d;
m <— #(\uh — ﬁ;‘ < 6)
end if
until predetermined number of times;
output the plane Dy as a binary image;

From J(g,v,w), for g, v and w, we have the system of partial differential
equations

1 1 1
Ag— _F(g,v,w) =0, Av — aG*(g,u,w) =0, Aw — CuG*(g,u,w) =0, (7)

B
where
F(g,v,w) =2g(z) — (f(z+v) + [ (z —w)),

G (gvw) =y t+w—u)+(f (z+v) —g@)VI (®+v), ()
G (g, u,w) =y(v+w—u)+ (g9(z) — (@ —w)Vi(z-w).

The mimimisation of J(g, v, w) is achieved by numerically solving eq. (7). Using
semi-implicit discretisation of the associated diffusion equations such that

1
atg = Ag - 6F(gav>w)a
atv = Av — ;Gi(gauaw)a (9)
Jrw = Aw — 1 GT(g,u,w),

«@
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we solve the system of iteration forms [12]

+1
gty g™ _ Agnth) — 1F(g(”),'u(”),'w(")),
T B
+1
(D) _ () — Ap(nHD) 1 G_(g(”),u(n),w(n)), (10)
T o
+1
wi D —aw Aw+D) _ 1 Gt (g™, u™ w™).
T o

4 Numerical Examples

In experiments, we compared the statistics of the optical flow field computed by
our method and by the pyramid-based Horn-Schunck method [8]. On the ground
plane which corresponds to the dominant plane, since the optical flow field is
smooth, we adopt the Ly regularisation terms, that is, the regularisation term
of the Horn-Schunck method is the square of the Frobenius norm trvVuVu' of
the vector gradient Vu of the optical flow field u.

“(d) 501250 (¢) Flow HSu  (f) Flow LDOF u

Fig. 3. Images and optical flows of Soll3 and Sol250. (a) Soll3. (b) Optical flow of
Sol13 computed by the Horn-Schanck method with pyramid transform [9]. (¢) Optical
flow of Sol13 computed by the large-displacement method [13]. (d) Sol250. (e) Optical
flow of Sol250 computed by the Horn-Schanck method with the pyramid transform [9].
(f) Optical flow of Sol250 computed by the large-displacement method [13].

Figure 3 shows images and their optical flow fields computed by two methods.
The top and bottom rows show images and optical flow fields of Sol13 and So0l205,
respectively. (b) and (e) show optical flow fields of Sol13 and Sol250, respectively,
computed by the Horn-Schanck method [8] with pyramid transform (HSP). (c)
and (f) show optical flow fields of Soll3 and Sol 250, respectively, computed by
the Large-Displacement Optical Flow method [13] (LDOF).
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(a) HSPw  (b) LDOF w Sol13  (c) TOSR v Sol13 (d) TOSR w Soll3

(e) HSP u Sol250  (f) LDOF w Sol250 (g) TOSR v Sol250 (h) TOSR w Sol250

Fig. 4. Norm Histogram of Soll3 and Sol250. The top and bottom rows shows re-
sults for Sol13 and Sol250, respectively. From left to right, the histograms of u com-
puted by the Horn-Schunck method with pyramid transform, 4 computed by the large-
displacement optical flow method, v and w, which are computed by our method -the
temporal optical flow superresolurion, respectively.

Table 1. Kurtosis of histograms

HS v LDOF uw TOSR v TOSR w
Soll3 7.04 50.33 33.66 15.82
Sol250 2.71 115.51  92.75 81.63

Figure 4 shows the histograms for the ls-norms of the optical flow vectors
for the results of Fig. 3. In Fig. 4, the top and bottom rows show results for
Sol13 and Sol250, respectively. Furthermore, from left to right, the histograms
of u computed by the HSP method, u computed by the LDOF method, v and
w, which are computed by our flow-field up-conversion based on the Temporal
Optical flow Superresolution (TOSR).

Figure 5 shows the second time derivatives of the histograms, since the second
time derivatives of distributions allow to detect peaks in the distributions. Table
1 shows the kurtoses of optical flow fields computed by the HSP method, the
LDOF method and TOSR method. Kurtoses of optical flow field computed by

Table 2. Unification of dominant plane segments by three methods for Soll3 and
S01250. The entries are |Dq|/|Dy| for o{ H, B, P} and k = 1,2, 3.

Soll3 Dp Dp Dpg average Sol250 1.00 0.80 0.80 0.87
D1 0.990.34 0.51 0.61 D; 1.000.80 0.80 0.8
D> 0.630.71 0.88 0.74 D2 0.820.98 0.99 0.93
D3 0.230.870.71 0.60 D3 0.78 0.99 0.98 0.92



270 S. Inagaki and A. Imiya

W W "

i i

+ v Soll3

(b) ht:w ‘Soll3v

v 501250 (d) he w

Fig. 5. Second Time derivatives of the histograms of Soll3 and Sol250. The vertical
line in each figure show the peak of the histogram. The horizontal line in each figure
corresponds to the total variation of the optical flow vectors [, |[Vu|dax. The green curve
in each figure shows the ration |£2(k)|/|f2|, where £2(k) is the region corresponding to
the k-th bin in the histogram.
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s .

B '(e). $01250 (f) Binarisation  (g) Homography  (h) Peak-based

Fig. 6. Results for Sol13 and Sol250. The top and bottom rows show results for Sol13
and Sol250, respectively. From left to right, original images and results computed by
image binarisation, the peak detection and the homograpy-based method, are shown.

the LDOF and TOSR methods are both larger than those by the HSP method. In
each frame, the histograms of the norm of the optical flow vectors computed by
the HSP method are unimodal with wide divergence. Therefore, we cannot detect
the dominant plane from the optical field. The histograms of the norm of the
optical flow vectors computed by our method are, however, multimodal or with
small divergence. If semantic planar segments exist in a frame, the optical flow
vectors are stationary on this region. Then, the peaks appear in the histogram
of the norm of th optical flow vectors. Comparison of the optical flow fields by
two methods leads to the conclusion that the LDOF method can detect these
peaks and that the HSP method fails to detect these peaks in both examples.
However, since as described in the previous sections, for the semantic segmen-
tation of the dominant plane as a safe area in the workspace, we are required
to have three successive frames of images. Therefore, we generate two successive
optical flow fields from a pair of successive images using the temporal superres-
olution of the optical flow field. As shown in Fig. 4, we can extract a semantic
segment using statistical bias of the optical flow vectors on the dominant plane.
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Fig. 7. Unification of the results obtained by three methods. The top and bottom row
are results for sol13 and sol250, respectively. From left to right, the unification results
for one-, tow- and three methods, respectively.

Setting h(u(zx),t) for * = (x,y) to be histogram of |u(z)|, the peaks ¢ in
the histogram are bins which satisfy the relations h(u(x),t) > 2average,h(u(x))
and h(u(x),t) > 2average,hy (u(x)). The peak-based segmentation detects the
region Dp = {x|t € T for h(u(x),t)}. Furthermore, we extract a segment D =
{z|f(z,y,t) > A} by binarising grey-values of images using A computed by the
Otsu threshold method [15].

Figure 6 shows the results. For the comparison, we also computed seman-
tic segments using Dp and Dpg. These results show that our proposing method,
which combines the homgraphy and temporal optical flow superrealution,
achieves semantic segmentation from a video sequence for navigation. Table 2
and Figure 7 show the results of the unification of the results obtained by three
methods. Using the Boolean functions

1,ifx € Dp
0, otherwise,

(11)

fH(w)_{l,ifaceDH fu )_{17ifac€DB

0, otherwise, 0, otherwise,

fr(z) _{

we define the three regions,

Dy = {=|fu(@) V fo(@) v frlz) = 1}, (12)
Dy = {(fule A f5(@) V (fo(@) A fo(@) V (f(@) A fu(@) =1}, (13)
Dy = {fu(@) A fo(@) A fol@) = 1}, (14)

For k = 1,2,3, Dy, is the collection of pixels which are categorised as elements
of dominant plane by the k different algorithms. Then, we evaluate |D,|/|Dy|
for ao{H, B, P} and k = 1,2,3, where |D| is the area of region D, since the
ground truths are not prepared for these image sequences. In Fig. (7), the top
and bottom row are results for sol13 and so0l250, respectively, and From left to
right, the unification results for one-, tow- and three methods, respectively, are
shown. These results show that unification of the three methods improves the
results.
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5 Conclusions

In this paper, we introduced a method for semantic segmentation of the dominant
plane on an image sequence from a low-frame rate optical flow field.

In refs. [1] and [10], a dominant plane detection was achieved from a triplet
of successive images. We have proposed a method for the detection of the dom-
inant plane from low-frame rate image sequences using sub-frame optical flow
computation.
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