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Abstract. Quantification of the rectilinear configuration of typeset rules (lines) 
opens the way to form classification and content extraction. Line detection on 
scanned forms is often accomplished with the Hough transform. Here it is  
followed by simultaneous extraction of the dominant perpendicular sets of ex-
tracted lines, which ensures rotation invariance. Translation and scale inva-
riance are attained by using minimal horizontal and vertical sets of distance  
ratios (“rule gap ratios”) instead of rule-edge locations. The ratios are logarith-
mically mapped to an alphabet so that the resulting symbol strings can be classi-
fied by. edit distance. Some probability distributions associated with these steps 
are derived. Analytical considerations and small-scale experiments on scanned 
forms suggest that this approach has potential merit for processing degraded 
forms. 

Keywords: forms, tables, rules, distance ratio, rotation invariance, scale inva-
riance, random-phase noise, edit distance. 

1 Introduction 

Many documents exhibit an isothetic configuration consisting of orthogonal sets of 
parallel components. Line segments are explicit in ruled tables and forms, and impli-
cit in parallel rows of text and justified margins and gutters. Rectilinear structures are 
also common in artifacts like cultivated fields, cities, buildings and machines: in fact, 
their presence is one of the prime clues for distinguishing man-made from natural. 
Although parallel lines play a role in other image processing and computer vision 
tasks as well, here we address only scanned or photographed form images. Fig. 1 
shows examples of forms that offer a rich line structure but may have been scanned at 
too low resolution or are too noisy for OCR-based classification. 

The “near-horizontal” lines shown in Fig. 1 were extracted by the Hough transform 
in rho-theta format. The line configurations include both rectilinear rules (the printing 
and publishing term for typeset lines), and spurious lines induced by accidental 
alignments of diverse page content. The images display various rule configurations, 
with the members of each class sharing essentially the same rule configuration but 
exhibiting different spurious lines. The task at hand is classifying new images  
into predefined classes. Since the forms are captured by a scanner or a camera, their 
position, scale and skew angle within the image are unknown.   
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The ratios of the distances between pairs of rules (rule gap ratios) are geometrical-
ly invariant features. (Invariant features are more commonly used in scene image 
analysis than in document recognition.) The ordered sets of horizontal and vertical 
ratio values are converted to a pair of symbol strings that characterize the ruling con-
figuration of the underlying form. The forms are then classified according to the 
(1,1,1) edit distance between new images and existing class representative. So we  

1. Distinguish isothetic rules from spurious lines formed by accidental alignments; 
2. Compute the minimum set of algebraically independent rule gap ratios; 
3. Map the ordered horizontal and vertical gap ratios into symbol strings; 
4. Classify the unknown images based on the edit distance between symbol strings. 

In the following sections we review prior work, examine each of the above steps, and 
give an example of their application to a set of degraded and mutilated form images. 
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Fig. 1. Examples of forms with explicit isothetic rule structure. The two forms on top are from 
web archives. The partial form image on the bottom is from our classification experiment. Here 
only lines (shown in green) within ±30° of horizontal are extracted. 
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2 Prior Work 

Line segment recognition has been steadily improved during the last three decades as 
part of table interpretation, form processing, and engineering drawing analysis. His-
torical form analysis became popular even as most contemporary forms migrated to 
the web. The Hough transform for line location has remained one of the leading me-
thods for line and arc extraction since its rediscovery by Duda and Hart in the early 
seventies [1]. It does not require edge linking and is therefore often preceded only by 
edge extraction with the venerable Prewitt filter [2]. Other 3×3 pixel edge filters  
(Sobel, Roberts) yield similar results. We have found neither research addressing the 
extraction and quantification of rectilinear rule structures independently of other doc-
ument content, nor prior application of orthogonal line filtering to Hough lines. 

Our interest in spatial sampling noise was triggered by peaks in the autocorrelation 
function corresponding to opposite stroke edges in scanned character images [3]. The 
variation (noise!) due to repeated scanning was exploited by Zhou and Lopresti to 
decrease OCR error [4]. Random-phase sampling noise was systematically investi-
gated in remote sensing [5,6] and in scanned documents [7], but pixel jitter is usually 
modeled as if it were independent random displacement of sensor elements [8]. The 
relationship between spatial and amplitude quantization in scanning was explored 
thoroughly by Barney Smith [9].  

Levenshtein introduced the edit distance for error-correcting codes in 1965 [10]. 
The optimal Wagner-Fischer algorithm was published a decade later [11]. Many vari-
ations of the original algorithms have appeared since then [12,13,14]. The role of the 
edit distance in communications and text processing was augmented by its application 
to genome sequencing. Developments relevant to document image analysis include 
normalization methods [15] and kernel techniques for embedding the edit distance 
into a vector space [16]. The public-domain EDIT DISTANCE WEIGHTED program 
that we use was posted in 2010 by B. Schauerte [17]. 

The current study was initiated during a phase of the MADCAP project [18] con-
cerned with categorization of a small subset of the collection of Kurdish documents 
recovered during the Anfal uprising [19,20]. The Hough transform parameters and 
preliminary results on classification of some degraded forms were presented at the 
2014 SPIE Conference on Document Recognition and Retrieval [21].  

3 Orthogonal Line Extraction 

The accidental alignments of handwriting, stamps, binder holes, checkmarks and oth-
er non-rule pixels may give rise to far more spurious lines than the number actual 
rules on the page (Fig. 2). Since in contrast to the randomly distributed spurious lines 
all the nominally horizontal (or vertical) rules have the same angle, an obvious way to 
distinguish them is to histogram all the line angles. Then the lines in the most popu-
lated bin will be the rules. This stratagem fails only if too many spurious lines fall into 
some other bin. Below we calculate the dominant term of the probability of such an 
event as a proxy for the actual probability. 
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Fig. 2. A low-resolution, noisy and skewed death certificate. Near-horizontal and near vertical 
lines extracted by the Hough Transform and rules retained by orthogonal filtering. 

Extreme skew is unlikely, therefore only lines within ±20° of the nominal and x- 
and y-axes need be extracted. Let there be R rules and S spurious lines on a page. 
Their angles are sorted into a histogram with N uniformly spaced bins (N > R+S). The 
rules are parallel and therefore fall into the same bin, but the skew detection will be 
incorrect if R or more of the spurious lines fall into some other bin. Under a (ques-
tionable!) i.i.d. assumption, the most probable such case is that R of the S spurious 
lines fall into a single bin and that each of the others occupies one bin. This can hap-
pen in as many ways as there are of picking single-occupancy bins. Therefore a lower 
bound on the probability that at least R of the S spurious lines fall into the same bin is: 

( )
21
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Table 1. Dominant term of the probability of false maxima in the angle histogram 

N R S PeR %  N R S PeR % 
20 3 3 0.27701  40 3 3 0.065746 
20 3 6 3.95461  40 3 6 1.122005 
20 3 9 6.61081  40 3 9 3.119688 
20 3 12 3.33205  40 3 12 4.099149 
20 6 6 0.00004  40 6 6 1.11E-06 
20 6 9 0.00242  40 6 9 7.94E-05 
20 6 12 0.01060  40 6 12 0.000579 

The shaded cells of Table 1 show that while the probability of a false maximum for 
3 rules and 6 spurious lines is at least an appreciable 3.9%, doubling the number of 
lines reduces the dominant term to 0.01%. This can be achieved by adding 90° to the 
theta coordinate of every line within 20° of the vertical axis and histogramming all  
the line angles together. In the image of Fig. 2, every visible vertical rule is found, 
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including the edge of the box at the top right of the form marked with a red oval, with 
no false positives. Simultaneous identification of orthogonal lines pays off. 

4 Rule Gap Ratios 

No further use of the theta coordinates is made. The computation of the rule gap ratios 
requires only sorting the Hough rho coordinates of each set of extracted and ortho-
filtered parallel lines and subtracting them pairwise to find the successive horizontal 
and vertical edge-to-edge rule gaps. Given N parallel rules, there are O(N2) pairs of 
rules and O(N4) possible ratios. It is clear, however, that there cannot be more than  
N-2 algebraically independent ratios from which the value of all the others can be 
calculated. We choose as basis ratios the ratios of consecutive gaps, defined for hori-
zontal or vertical lines located at x1, x2, …, xi, …, xN (w.r.t. an arbitrary origin) as:  

( ) ( )1 2 1
/

i i i i i
R x x x x+ + += − −  

There are N-2 such ratios, and any other ratio of line segments can be recovered 
from them. The proof is conceptually simple but notationally tedious, so we give an 
example instead. Let the three distances between four lines be a, b, and c (Fig. 3).  

|_____________|_______|_________________| 
 a    b  c 

|_____________|_______|_________________|
a    b c

 

Fig. 3. Ratios of rule gaps 

The two basis ratios are R1 =  a/b, and R2 = b/c. An arbitrary ratio such as 
(b+c)/(a+b) can be expressed in terms of the basis ratios as: 
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The general formula that proves the sufficiency of the basis ratios is: 
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The rule configuration of a page is preserved by the two sets of translation, scale 
and rotation invariant basis ratios. Lines are considered to be of infinite extent. If end-
point information is required, it is kept separately. The accuracy of the rule gap ratios 
is affected by edge location variability and by random-phase sampling noise. 

4.1 Edge Location Variability 

Some applications must cope with forms reprinted at different times and by different 
printers. Even if the variability of the line and line-edge locations as a fraction of page 
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size is small, it may have a significant effect on the gap ratios. Each gap ratio is a 
function of the position of three (parallel) rules. What is the probability density func-
tion (pdf) of the ratio as a function of the variability of the edges?  

The only line-segment ratio we found discussed in the literature is that resulting 
from of splitting a unit-length line segment by a uniformly distributed point L, which 
results in ratio W = L/(1-L) [22]. The probability density of W,  

 

f(w) = 1/(1+w)2, 

is skewed because its range is zero to infinity but its mean must be 0.5.  
We extended the calculation of the pdf of W = L/(1-L) to two independent (non-

adjacent) gaps of lengths L1 and L2 distributed uniformly: L1 ∈ x0±a and L2 ∈ y0±a. 
The resulting piecewise rational polynomial functions provide further insight:  
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Fig. 4. The rule edges x, y, and z are uniformly distributed over a range of 2a. What is the pdf 
of the gap ratio L1/L2?? 

What we must consider, however, is the more difficult three-variable case of a ba-
sis ratio formed by three adjacent edges located at x, y, and z, where x is uniformly 
and independently distributed over x0±a, y over y0±a, and z over z0±a  (Fig. 4). The 
gaps are L1 = y-x and L2, = z-y. The basis ratio is W = L1/L2, as in Fig. 3, 
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The gap lengths L1 and L2 are the difference of uniformly and independently 
distributed variables and therefore have a simple triangular distribution centered on the 
mean difference. But analytical formulation of the joint pdf of L1 and L2 is complicated 
by the statistical dependence induced by the shared edge y. After deriving the lengthy 
formula we must still resort to simulation to compute the pdf of the ratio W.  

The effect on the ratio of edge variability is illustrated in Fig. 5 for x0 = 1, y0 = 4,  
z0 = 10, and three values of a. Large values of a correspond to high rule edge variabili-
ty. W ranges from (y0-x0-2a)/(z0-y0+2a) to (y0-x0+2a)/(z0-y0-2a). As a approaches zero, 
the distribution converges to a delta function located at the nominal value of the ratio. 

Fig. 5. Frequency distribution of gap ratio between variable edge locations 

4.2 Random-Phase Sampling Noise 

The precise quantification of gap ratios, like that of all image features, is also ham-
pered by the random-phase noise induced by the arbitrary placement of any document 
with respect to the scanner’s or camera’s sensor array. This noise can be reduced, but 
not eliminated, by increasing the spatial sampling rate.  

The distances between rule edges are quantized to integer values by scanning. As a 
one-dimensional analogy, consider rule gaps of length L1 and L2 sampled at δ-length 
intervals (Fig. 6). After sampling, L1 will be of length L1/δ or L1/δ − 1, and L2 will 
be L2/δ or L2/δ − 1. (Gap length is the number of background pixels minus1.) The 
ratio can take only one of three values: (L1/δ  −1)/(L2/δ ),  (L1/δ  −1)/(L2/δ  
−1), and (L1/δ )/(L2/δ  −1). In the worst case, when, Li = Li + δ/4,: the three poss-
ible values occur with probabilities of 0.25, 0.50, 0.25. If random-phase sampling 
noise changes the mapping of any ratio to a symbol (cf. §5), then identical rule confi-
gurations will result in different symbol strings and therefore in non-zero edit distance 
between them.  

      L1    L2 

 _____________________________________________________________ 

 |   δ  |   δ  |   δ  |   δ  |   δ  |   δ  |   δ   |   δ   | 
 

Fig. 6. Random-phase noise. Here L1 = 4.2δ. After spatial sampling L1 will be either 3 or 4 
pixels long, depending on its position relative to the sampling grid. 
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5 Ratio Quantization and Edit Distance 

The smallest gaps in a document typically correspond to the space required to print or 
write a word or a number. Even densely printed documents have no more than 60 
lines of text; most forms have fewer than 20. The smallest gaps are likely to be those 
from double rule dashes. The largest gap can be no larger than page height. Gap ratios 
typically range from 0.1 to 10, and the smallest significant difference is about 30%.  

Uniform quantization of the ratios – for edit distance computation – would map the 
prevalent near-unity ratios into very few symbols. Logarithmic mapping of gap ratios 
to string symbols flattens the resulting symbol probability distribution. Therefore gap 
ratio R is mapped into bin k, where k ranges from 1 to N: 

10(log )( 2)
( ; , ) min max 1, 1 ,

2

R K N
k F R K N N

K

+
= = +     

         
−

 

The parameters N and K govern the logarithmic bin size. The domain of the map-
ping includes two semi-open intervals for very small and very large ratios (for  
|logR| > K). Setting N =24 and K=1.3 yields 22 finite bins increasing by 30% from 
R=0.05 to R = 20. The resulting symbol alphabet is {‘1’, ‘2’, …, ‘24’}. 

The metric used for classification is the Levenshtein edit distance. Schauerte’s 
open-source program accepts arbitrary weights for the cost of the insertions, deletions 
and substitutions necessary to convert one string into another, but lacking enough 
training data to estimate the optimal weights we set them all equal. With more data, 
substitutions could be also weighted according to the size difference of the gap ratios. 

The edit distance computation could take into account missing or spurious rules. 
When a symbol does not match, the algorithm can check whether combining adjacent 
gaps would reduce the edit distance. (A rule missed in one document is equivalent to 
a spurious rule in the other and can be treated analogously.) This check can be ex-
tended, at exponentially growing cost, to several consecutive gaps. 

6 Plausible Applications 

Deteriorated and poorly-scanned forms abound in historical census, military and mu-
nicipal records. Some of the recent interest in such documents is due to genealogical 
research (including its medical implications). Even contemporary forms may be de-
graded by repeated photocopying, reduced resolution for web display, or batch scan-
ning with a page-feed scanner without adequate skew and binarization control. 

Modern form identification is generally based on a barcode or some Form Identifi-
cation Number (FIN) prominently printed at the top or near one of the corners. In 
their absence, OCR’d forms can be identified using preprinted text specific to each 
type of form. Both the FIN and the preprinted labels usually exhibit enough  
redundancy to tolerate OCR errors. The ruling-based classification discussed here is 
appropriate only for forms that cannot be OCR’d and have an isothetic rule structure 
without too many other aligned edges. In principle the method could be applied hie-
rarchically, possibly via the quad tree [23], to forms with highly localized rules.  
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The rule detection, logarithmic gap ratio quantization and string matching were ap-
plied as part of the MADCAT project to a set of 158 extremely noisy scanned forms 
of 15 types (Fig. 7). These filled-out forms contain personnel information collected by 
Iraqi government agencies and regrettably only redacted or partial images can be 
presented. The forms were classified by a Nearest Neighbor classifier with the edit 
distance function. The resulting error rate was 11% (17 errors). Ten errors are due to 
groups 3 and 12. One error is unavoidable because Group 13, with only one member, 
has no reference pattern for Nearest Neighbor. There are 6 confusions between groups 
2 and 3 that that differ only by a single ruling. The Matlab program runs in 1 second 
per form on a 2 GHz laptop, with 83% of the time taken by the Hough transform.  

Assigned
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ERROR TOTAL

1 3 0 3
2 23 2 1 3 24
3 4 0 2 6 6
4 37 0 37
5 10 0 10
6 6 0 8

True 7 4 0 4
8 5 0 5
9 5 0 5

10 1 1 11 2 13
11 1 3 1 4
12 2 1 1 8 4 12
13 1 0 1 1
14 6 0 6
15 20 0 20

0 5 2 1 6 1 1 0 1 0 0 0 0 0 0 17 158  

Fig. 7. Results from leave-one-out edit-distance based classification of 158 MADCAT forms 

7 Envoy 

In the expectation of future large-scale endeavors on degraded but rule-rich corpora, 
we examined some benefits and drawbacks of three related ideas:  

• Simultaneous orthogonal filtering of Hough lines to eliminate of spurious lines. 
• Extracting gap ratios of parallel rules for geometric invariance.  
• Classifying the ratios by edit distance, bridging statistical and structural methods. 
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