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Abstract. Although there are many existing alternative methods for
using structural characterizations of undirected graphs for embedding,
clustering and classification problems, there is relatively little literature
aimed at dealing with such problems for directed graphs. In this pa-
per we present a novel method for characterizing graph structure that
can be used to embed directed graphs into a feature space. The method
commences from a characterization based on the distribution of the von
Neumann entropy of a directed graph with the in and out-degree con-
figurations associated with directed edges. We start from a recently de-
veloped expression for the von Neumann entropy of a directed graph,
which depends on vertex in-degree and out-degree statistics, and thus
obtain a multivariate edge-based distribution of entropy. We show how
this distribution can be encoded as a multi-dimensional histogram, which
captures the structure of a directed graph and reflects its complexity. By
performing principal components analysis on a sample of histograms, we
embed populations of directed graphs into a low dimensional space. Fi-
nally, we undertake experiments on both artificial and real-world data
to demonstrate that our directed graph embedding method is effective
in distinguishing different types of directed graphs.

Keywords: directed graph embedding, von Neumann entropy, entropy
distribution.

1 Introduction

There has been a considerable body of work aimed at extracting features from
undirected graphs which reflect their structure and complexity. With such fea-
tures to hand, especially multi-dimensional ones, then problems such as graph
embedding, clustering and classification can be addressed using standard ma-
chine learning and pattern recognition techniques. Unfortunately, there is very
little work on the corresponding problems for directed graphs. This is unfortu-
nate since many of the most common networks structures, e.g. the World Wide
Web, exist in the form of directed graphs.

Motivated by the need to fill this gap in literature, in this paper we aim
to develop a method based on information theory to extract multi-dimensional
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features that can be used to characterize the structure of directed graphs, and
hence render them amenable to embedding, clustering and classification. The
starting point is a recent result where we have shown how to compute the von
Neumann entropy for a directed graph using the configurations of in and out-
degrees on directed edges.

1.1 Related Literature

Quantifying the intrinsic complexity of undirected graphs is a problem of fun-
damental practical importance in network analysis and pattern recognition. A
good recent review of the state of the art can be found in the collection of pa-
pers edited by Dehmer and Mowshowitz [1]. Moreover, the entropy measures
have also been shown to be an effective tool for representing the complexity in
graph structure. Han et al. [2] have shown how to approximate the calculation
of von Neumann entropy in terms of simple degree statistics rather than needing
to compute the normalized Laplacian spectrum.

However, while the problem of computing the entropy of undirected graphs
is well studied, the literature on directed graphs is rather limited. One recent
exception is the work of Berwanger et al. [3], who have proposed a new parameter
for the complexity of infinite directed graphs by measuring the extent to which
cycles in graphs are intertwined.

We now turn our attention to embedding methods, which has become a topic
of considerable interest for characterizing patterns and graphs in recent years.
Broadly speaking, with different choices of graph structure characteristics, there
are many existing alternative measures for embedding undirected graphs into fea-
ture vectors. An interesting method is provided by Ren et al. [4], who have used
the polynomial coefficients determined by the Ihara zeta function to construct
a feature vector, which shows good performance in graph clustering. Moreover,
feature vectors can also be derived by embedding graphs into a feature space
based on dissimilarity embedding [5]. Unfortunately, there are relatively few
corresponding methods developed for embedding directed graphs into a feature
space. One exception is the work proposed by Chen et al. [6], who have sug-
gested a directed graph embedding method by preserving the local information
of vertices in a directed graph. Similarly, directed graph embedding can also be
obtained by retaining the information of directionality of the graph [7].

1.2 Contribution

The motivation of this paper is to explore whether we can extract multi-
dimensional structural features from directed graphs, and hence apply standard
techniques from pattern recognition and machine learning to embed, cluster and
classify data in the form of samples of directed graphs. One natural way of cap-
turing the structure of a graph at the complexity level, is to use an entropic
characterization. Hence we commence by computing the von Neumann entropy
associated with each edge in a directed graph. An analysis, extending our own
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previously published work [8] shows that the entropy depends on the configu-
ration of in and out-degrees of the two vertices defining a directed edge. This
leads us to a four-dimensional characterization of directed graph structure, which
depends on the distribution of entropy with the in and out-degrees of pairs of
vertices connected by a directed edge. We represent this distribution by a four-
dimensional histogram, which can be encoded as a long-vector for the purposes
of analysis. To curb the size of the histogram, we show how to requantize the
bin-contents using quantiles of the four cumulative degree distributions.

2 Graph Embedding via Von Neumann Entropy
Distribution

In this section, we start from an approximation of the von Neumann entropy
of a directed graph [8], and quantify the entropy associated with each directed
edge. We show that this entropy is determined by the in and out-degrees of the
start and end vertices connected by a directed edge. Based on this observation
we explore the multivariate distribution of directed edge entropy with the dif-
ferent combinations of vertex in and out-degrees that define edges in a graph. In
practice this distribution can be computed by constructing a multi-dimensional
histogram whose bins are indexed by the in and out-degrees of the connected
vertices and whose contents accumulates the entropy contributions over the di-
rected edges in the graph. The contents of the histogram can be represented by a
multi-dimensional array whose contents can be encoded as a long-vector, which
serves as a feature vector for the graph.

One of the problems that potentially limits this approach is that the vertex
degree is unbounded. Hence, the size of histogram can become large. Moreover, it
can become populated by a large number of empty bins. This renders the analysis
of the feature vector unstable. In order to keep the vector length constant and
reduce the number of empty bins, we requantize the degree bins of the histogram
using quantiles of the cumulative distribution function (CDF). Specifically, we
determine the m-quantiles, which divides the ordered vertex degree data into
m essentially equal-sized parts. This allows us to relabel each vertex with two
quantile labels (1, 2, . . . ,m), one for in-degree and the second for out-degree. As
a result, the length of our proposed feature vector is not affected by the variance
of the degree distribution.

2.1 Edge-Based Local Entropic Measure

Suppose G(V,E) is a directed graph with vertex set V and edge set E ⊆ V ×V ,
then the adjacency matrix A is defined as follows

Auv =

{
1 if (u, v) ∈ E
0 otherwise

(1)

The in-degree and out-degree of vertex u are

dinu =
∑
v∈V

Avu doutu =
∑
v∈V

Auv (2)
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Recently, commencing from Passerini and Severini’s work [9], Ye et al. [8]
have extended the calculation of von Neumann entropy from undirected graphs
to directed graphs, using Chung’s definition of the normalized Laplacian of a
directed graph [10], with the result that

HD
V N =

1

2|V |
{ ∑

(u,v)∈E

dinu
dinv dout2u

+
∑

(u,v)∈Eb

1

doutu doutv

}
(3)

where Eb = {(u, v)|(u, v) ∈ E and (v, u) ∈ E} is the set of bidirectional edges.
In particular, if the cardinality of Eb is very small (|Eb| � |E|), i.e. a graph

is strongly directed (SD), this expression can be simplified one step further by
ignoring the summation over Eb in Eq.(3),

HSD
VN =

1

2|V |
∑

(u,v)∈E

{
dinu

dinv dout2u

}
(4)

These approximations sum the entropy contribution from each directed edge,
and these are based on the in and out-degree statistics of the directed edge.
In other words we can compute a normalized local entropy measure for each
directed edge. Specifically, for an edge (u, v) ∈ E, we compute

Iuv =
dinu

2|E||V |dinv dout2u

(5)

as the entropy contribution. If this edge is bidirectional, i.e. (u, v) ∈ Eb, then we
add an addition entropy contribution

I ′uv =
1

2|Eb||V |doutu doutv

(6)

This local measure represents the entropy associated with each directed edge
since for arbitrary directed graphs, we have

∑
(u,v)∈E Iuv+

∑
(u,v)∈Eb

I ′uv = HD
V N

and for strongly directed graphs, we also have
∑

(u,v)∈E Iuv = HSD
V N . Moreover,

this measure avoids the bias caused by graph size, which means that it is the
edge entropy contribution determined by the in and out-degree statistics, and
neither the vertex number or edge number of the graph that distinguishes a
directed edge.

2.2 Feature Vector Extracted from Entropy Distribution

Our directed graph characterization is based on the statistical information con-
verged by the distribution of directed edge entropy with the in and out-degrees
of the start and end vertices. We represent this distribution of entropy using a
four-dimensional histogram over the in and out-degrees of the two vertices.

As noted above, one potential problem is that the bin-contents can become
sparse in a high dimensional histogram. To overcome this problem we turn to
the cumulative distribution function. Suppose a directed graph G(V,E) has |V |
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vertices which have been sorted according to in-degree (or out-degree) in the
sequence din1 ≤ din2 ≤ · · · ≤ din|V |. Let P (X = dini ) be the in-degree probability
distribution of the graph. The corresponding cumulative distribution function
for the in-degree is given by

FX(dini ) = P (X ≤ dini )

where i = 1, 2, . . . , |V |. This function describes the probability that a given in-
degree X takes on a value less than or equal to dini .

Quantiles are intervals of equal size over the cumulative distribution function.
They divide the ordered data din1 , din2 , · · · , din|V | into a number of equal-sized
data subsets. Since vertex degree is always a non-negative integer, the quantiles
can thus be viewed as new quantization of the degree based on its statistical
distribution. We define our degree quantiles over the cumulative distribution of
degree for the entire sample of graphs under study, and produce requantized
versions of the individual entropy histograms for each individual graph. Suppose
the number of quantiles in each dimension of the degree distribution is fixed to
be m. Then, for example, the m-quantiles of the in-degree distribution can be
obtained as follows

Qj = argmin
din
i

{
FQj (d

in
i )− j

m

}
(7)

where i = 1, 2, . . . , |V | and j = 1, 2, . . . ,m. It is clear that these degree quantiles
satisfy Q1 ≤ Q2 ≤ · · · ≤ Qm and in fact, Qm = din|V |.

With the sample degree quantiles to hand, we assign each vertex degree quan-
tile labels. We first examine the original in-degree dinu of a vertex u, if dinu satisfies
the condition that Qk−1 < dinu ≤ Qk, then its in-degree quantile is qinu = k. The
corresponding out-degree quantile labels can also be obtained in the same man-
ner. Since all the vertices in the graph have in-degree and out-degree quantile
labels ranging from 1 to m, we can then simply construct the directed edge en-
tropy histogram whose size in each dimension is fixed to m. The histogram is
stored as a four-dimensional array.

To do this, we first construct a m × m × m × m array M whose elements
represent the histogram bin-contents, and whose indices represent the degree
quantile labels of the vertices. For instance, the elementM(1, 2, 3, 4) accumulates
the entropy contribution for all the directed edges starting from vertices with
out-degree quantile label 1 and in-degree quantile label 2, pointing to vertices
with out-degree quantile label 3 and in-degree quantile label 4. We then compute
the bin-contents by summing the directed edge entropy contributions over the
sample graph. The histogram bins contain all directed edges having the same
quantile label combinations. We store the accumulated sum in the corresponding
element of array M . The elementwise accumulation is formally given as

Mijkl =
∑

qout
u =i,qinu =j

qout
v =k,qinv =l
(u,v)∈E

{
dinu

2|E||V |dinv dout2u

}
(8)
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If the graph contains bidirectional edges, we additionally accumulate the follow-
ing quantity

M ′
ijkl =

∑
qout
u =i,qinu =j

qout
v =k,qinv =l
(u,v)∈Eb

{
1

2|Eb||V |doutu doutv

}
(9)

where i, j, k, l = 1, 2, . . . ,m. To extract a feature vector from M , we can simply
list all the elements in the array, with the result that

v = (M1111,M1112, · · · ,M111m,M1121,M1122, · · · ,Mmmmm)T (10)

Clearly, this feature vector has length m4.
It is worth pausing to consider the case of strongly directed graphs. For such

graphs, from Eq.(4) it is clear that directed edge entropy does not depend on doutv .
As a result the dimensionality of the corresponding histogram can be reduced
from four to three by ignoring the third index k in Mijkl (Eq.(8)). This leads to
a new feature vector with length m3. In the following discussion, to distinguish
between these two kinds of feature vectors, we name the former full-form (FF)
while the latter strongly-directed (SD).

When accumulated in this way we effectively count directed edges with the
same configurations of degree quantile labels, and weight them according to
their entropy. If the different quantile labels were independent, we would expect
a uniform histogram. However, structure in the individual sample graphs due
to preferred combinations of vertex in-degree and out-degree will give rise to a
non-uniform distribution. To some extent, the quantization of the distribution of
entropy with degree according to quantile labels, may dilute this structure due to
merging adjacent degree bins. However, the directed edge entropy contribution
is based on the original vertex in and out-degree statistics, and the m-quantiles
play a role in diminishing the bias caused by different populations of directed
graphs. Therefore our proposed representation can still be effective in capturing
statistical information concerning the local structural properties in the graph.
By embedding graphs into a space spanned by feature vectors, it provides a
theoretically principled and efficient tool for graph characterization tasks, which
captures the graph characteristics at both the statistical and structural levels.

3 Experiments and Evaluations

In this section, we aim to evaluate the experimental performance of our suggested
directed graph characterization. Specifically, we first explore the graph clustering
performance of our method on a set of random graphs generated from three
classical random graph models. Then we apply our method to some real-world
data, including the COIL object recognition data and protein database, and
report the graph classification results.
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3.1 Datasets

We commence by giving a brief overview of the datasets used for experiments in
this paper. We use three different datasets, the first one is synthetically generated
artificial networks, while the other two are extracted from real-world systems.

Artificial Data: Contains a large number of directed graphs which are randomly
generated according to a) the classical Erdős-Rényi model, b) the “small-world”
model, and c) the “scale-free” model. The different graphs in the database are
created using a variety of model parameters, e.g. the graph size and the vertex
connection probability in the Erdős-Rényi model, the edge rewiring probability
in the “small-world” model and the number of added connections at each time
step in the “scale-free” model.

COIL Data: Contains object recognition data collected by Nene et al. [11],
in which each 3D object consists of 72 images collected from equally spaced
changes in viewing direction over 360 degrees. For each image, we establish a
3-nearest neighbour graph on the extracted feature points, i.e. each feature point
have three directed edges going to its nearest neighbour points, thus the graph
is directed and the out-degree of all vertices is 3. There are two subsets in this
database, one contains the directed graphs extracted from 4 different 3D objects
while the other contains graphs from 8 objects.

Protein Data: Is extracted from the protein database previously used by Riesen
and Bunke [12]. It consists of over 200 graphs, representing proteins labelled with
their corresponding enzyme class labels from the BRENDA enzyme database.
The database consists of six classes (labelled EC 1, . . . , EC 6), which represent
proteins out of the six enzyme commission top level hierarchy (EC classes). The
proteins are converted into graphs by first replacing the secondary structure
elements of a protein with vertices, and then constructing a 3-nearest neighbour
graph for the secondary structure elements. The graphs are thus directed.

3.2 Graph Clustering Performance

To investigate the clustering performance of our proposed directed graph charac-
terization, we perform principle component analysis (PCA) on both FF feature
vectors and SD feature vectors extracted from the randomly generated graphs in
the Artificial Data. These feature vectors are long-vectors formed by concatenat-
ing the elements of the four and three-dimensional histograms respectively. Here
we select different parameter settings to generate 500 normal directed graphs
and 500 additional strongly directed graphs for each of the three random graph
models, with graph size ranged between 100 and 150. Moreover, in all the ex-
periments in this section, we choose the number of quantiles m = 3, giving all
the FF feature vectors with a constant length m4 = 81, while for SD feature
vectors, the length is m3 = 27.

Figures 1(a), (c) and (d) each show that by embedding different random
graphs into a feature space spanned by the first three principal components
constructed from the feature vectors, the three classes of random graphs display
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some clear separation between each other. However in Fig.1(b), which is the plot
of SD feature vectors extracted from normal directed graphs, the “small-world”
graphs and “scale-free” graphs show some overlap. This suggests the FF fea-
ture vectors are efficient in distinguishing any normal directed graphs while the
SD feature vectors are effective only for strongly directed graphs, which is an
expected result. Therefore in the following experiments we use the FF feature
vectors in our analysis.
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Fig. 1. Clustering performance for random graphs using PCA: a) FF feature vectors
extracted from normal directed graphs; b) SD feature vectors extracted from normal
directed graphs; c) FF feature vectors extracted from SD graphs; d) SD feature vectors
extracted from SD graphs. Red: Erdős-Rényi graphs; blue: “small-world” graphs; black:
“scale-free” graphs.

3.3 Graph Classification Results

To take this analysis one step further, we evaluate the classification performance
of our method on the graphs in COIL DATA and Protein Data, using standard
vector-based clustering and classification algorithms. In the following evaluation,
we perform the 10-fold cross-validation using two classifiers, namely support vec-
tor machine (SVM) classifier associated with the sequential minimal optimization
(SMO) [13] and the Pearson VII universal kernel (Puk), and k-nearest neighbour
(kNN) classifier. All the SMO-SVM and kNN parameters are optimized for each
method on a Weka platform, and all experiments are performed on an Intel(R)
Core(TM) i7-3770 CPU @ 3.40 GHz processor, with 8 GB memory.

In Fig.2 we report the average classification rates of 10 runs for both SVM and
kNN classifiers as a function of quantile number m on three different datasets,
including the 4-object data and 8-object data in COIL Data and Protein Data.
Figure 3 gives the relationship between the average runtime and the quantile
number of the experiments on these datasets.

From Fig.3 we find that the experimental runtime for all three classification
problems grows as the quantile number increases, which is as expected since
greater quantile number leads to greater size of the feature vector, resulting in the
greater computational complexity. Moreover, it is clear that our directed graph
characterization is computationally tractable as the runtime does not increase
rapidly even when the size of the feature vector becomes particularly large.
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Fig. 2. Average classification rates for both SVM and kNN classifiers with different
quantile numbers on datasets: a) 4-object data; b) 8-object data and c) Protein Data.
Square: SVM classifier; circle: kNN classifier.
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Fig. 3. Average experimental runtime with various quantile numbers for different clas-
sification problems. Square: 4-object problem; circle: 8-object problem; star: protein
problem.

Turning attention to the classification results reported in Fig.2(a), (b) and
(c), we find the performance is particularly good on 4-object data, with a classi-
fication accuracy over 98%, and on 8-object data and 6-class protein database,
the accuracy is still acceptable (50% to 60%). Moreover, as the increase of the
quantile number, the classification rates for both classifiers on all three datasets
witness a slight growth, reaching a peak when the quantile number reaches 3,
then they drop significantly. This is because in the graphs of these datasets,
all vertices have the same out-degree 3, therefore when m = 3 the correspond-
ing feature vectors can precisely preserve the information of the vertex in and
out-degree statistics, which guarantees that m = 3 gives the best classification
performance and any greater quantile number will lead to a decrease of classi-
fication accuracy. Furthermore, with this choice of quantile number, the exper-
imental runtime is relatively low, which suggests that our method can achieve
a sufficient accuracy without causing expensive computation. Overall, based on
these observations we claim that that our directed graph characterization can be
both accurate and computationally efficient in clustering and classifying directed
graphs when the appropriate parameters are selected.
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4 Conclusion

In this paper we have suggested a novel and effective method for directed graph
characterization based on the multivariate distribution of local von Neumann
entropy contribution with vertex in-degree and out-degree. This provides a com-
plexity level characterization of graph structure based on the statistical infor-
mation residing edge degree distribution. By representing graphs using feature
vectors that encode the entropy distribution, both clustering and classification
can be addressed using standard pattern recognition and machine learning tech-
niques. We have undertaken experiments to demonstrate that our method is
both accurate and computationally efficient in dealing with both artificial and
real-world data. In the future, we intend to explore kernels defined over the inner
products of our entropy distribution feature vectors.

References

1. Dehmer, M., Mowshowitz, A., Emmert-Streib, F.: Advances in Network Complex-
ity. Wiley-Blackwell (2013)

2. Han, L., Escolano, F., Hancock, E., Wilson, R.: Graph characterizations from von
neumann entropy. Pattern Recognition Letters 33, 1958–1967 (2012)

3. Berwanger, D., Gradel, E., Kaiser, L., Rabinovich, R.: Entanglement and the com-
plexity of directed graphs. Theoretical Computer Science 463, 2–25 (2012)

4. Ren, P., Wilson, R., Hancock, E.: Graph characterization via ihara coefficients.
IEEE Transactions on Neural Networks 22, 233–245 (2011)

5. Bunke, H., Riesen, K.: Improving vector space embedding of graphs through feature
selection algorithms. Pattern Recognition 44, 1928–1940 (2010)

6. Chen, M., Yang, Q., Tang, X.: Directed graph embedding. In: IJCAI, pp. 2707–2712
(2007)
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