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Abstract. In this paper, we present a method to compute an embedding
matrix which maximises the dependence of the embedding space upon
the graph-vertex coordinates and the incidence mapping of the graph.
This treatment leads to a convex cost function which, by construction,
attains its maximum at the leading singular value of a matrix whose
columns are given by the incidence mapping and the embedded vertex
coordinates. This, in turn, maximises the correlation between the spaces
in which the embedding and the graph vertex coordinates are defined.
It also maximises the dependence between the embedding and the in-
cidence mapping of the graph. We illustrate the utility of the method
for purposes of approximating the colour sensitivity functions of a set of
over 20 commercially available digital cameras using a library of spectral
reflectance measurements.

1 Introduction

In the pattern analysis community, there has recently been renewed interest
in the embedding methods motivated by graph theory. One of the best known
of these is ISOMAP [1]. Related algorithms include locally linear embedding
which is a variant of PCA that restricts the complexity of the input data using
a nearest neighbor graph [2], and the Laplacian eigenmap that constructs an
adjacency weight matrix for the data-points and projects the data onto the
principal eigenvectors of the associated Laplacian matrix [3]. Collectively, these
methods are sometimes referred to as manifold learning theory.

Embedding methods can also be used to transform the graph-matching prob-
lem into one of point-pattern alignment. The problem is to find matches between
pairs of point sets when there is noise, geometric distortion and structural cor-
ruption. There is a considerable literature on the problem and many contrasting
approaches, including relaxation [4] and optimisation [5], have been attempted.
However, the main challenge in graph matching is how to deal with differences
in node and edge structure. One of the most elegant recent approaches to the
graph matching problem has been to use graph-spectral methods [6], and ex-
ploit information conveyed by the eigenvalues and eigenvectors of the adjacency
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matrix. For instance, Umeyama [7] has developed a method for finding the per-
mutation matrix which best matches pairs of weighted graphs of the same size,
by using a singular value decomposition of the adjacency matrices. Scott and
Longuet-Higgins [8], on the other hand, align point-sets by performing singular
value decomposition on a point association weight matrix. Shapiro and Brady
[9] have reported a correspondence method which relies on measuring the sim-
ilarity of the eigenvectors of a Gaussian point-proximity matrix. Kosinov and
Caelli [10] have improved this method by allowing for scaling in the eigenspace.
More recently, Sebastian and Kimia [11] have used a distance metric analogous
to the string edit distance to perform object recognition from a dataset of shock
graphs.

The main argument levelled against the techniques mentioned above is that
they adopt a heuristic approach to the relational matching problem by using a
goal-directed graph similarity measure. To overcome this problem, several au-
thors have proposed more general approaches using ideas from information and
probability theory. For instance, Wong and You [12] defined an entropic graph-
distance for structural graph matching. Christmas, Kittler and Petrou [4] have
shown how a relaxation labeling approach can be employed to perform matching
using pairwise attributes whose distribution is modelled by a Gaussian. Wilson
and Hancock [13] have used a MAP (maximum a posteriori) estimation frame-
work to accomplish purely structural graph matching. Recently, Caetano et al.
have proposed a method to estimate the compatibility functions for purposes of
learning graph matching [14].

Here, we focus on the recovery of an embedding matrix based upon the graph
and the embedding itself. We do this by maximising the correlation for both, the
node-set for the graph and the metric space in which the embedding is defined.
To this end, we depart from a cost function which aims at minimising the matrix
norm between the embedding and the incidence mapping of the graph. We then
rewrite the cost function so as to involve the eigenfunctions of two matrices of
inner products. We show the utility of the method presented here for purposes of
approximating the spectral sensitivity function of a set of over 20 digital cameras
using a library of reflectances of a calibration target, i.e. an X-Rite ColorChecker
chart.

2 Graph Theory and Spectral Geometry

As mentioned above, we aim at computing a linear mapping that can be used
to embed the graph-vertices into a space of finite dimensionality based upon
a known transformation to a subspace constrained by the edge space. In this
manner, the embedding will reflect the structure of the edge-space of the graph
while being based upon a known relationship between the graph vertex-set and
the target space {2. This has two main advantages. Firstly, the target space
for the recovered mapping can be used to constrain the embedding. Secondly,
note that the mapping sought here embeds the graph vertices using a linear
operator drawn from spectral geometry. This is not only practically useful but
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theoretically important since it provides a link between the spectra of graphs
and linear operators.

2.1 On the Incidence Mapping of Graphs

Here, we aim at recovering a mapping 7 which is a matrix whose dimensionality
is 2% | V |. In other words, we aim at recovering an operator which can embed
the nodes of a graph G into a space R. To commence, we require some for-
malism. Let G = (V, &, 4) denote the graph with node-set V; = {Vi1,...,Vjy},
edge-set £ = {e|V,, V. € V} and attribute-set 2 = {A1,..., Ay, |}

Here, we view, in general, the vertex-attributes A (a) as vectors, where each
of these has a one-to-one correspondence to a graph vertex. This also permits
the computation of the weight matrix YW with elements W(a, ¢) for the graph
G. The weight matrix W can be related to the un-normalised Laplacian through
the relationship £L = D — W, where D is a diagonal matrix such that D =
diag(deg(1),deg(2),...,deg(|V])) and deg(c) = ZLVZ‘I W(a,c) is the degree of
the node indexed c in the graph [6].

The use of the graph Laplacian is important, since it permits the use of the
incidence mapping. Note that the incidence mapping Z is independent of the
orientation of the edges in £. Moreover, it is an operator independent of the vertex-
basis, i.e. its permutation invariant [15], which can be recovered via a Young-
Householder [16] decomposition on the graph Laplacian such that £ = ZZ7.

2.2 Embedding Computation

With these ingredients, we can formalise the problem as that of recovering the
linear mapping 7 such that

win {700} = {1 - 7712} 1)

given the embedding Y € R?*VI of V in 2 and Z € RI*IVI, as before, is the
incidence mapping of G.

It is worth noting in passing that this is akin to point pattern matching set-
tings where the problem is that of finding a transformation which can be used
to map the data points onto their counterparts in the model point-set. Nonethe-
less its similarities, the main difference is that, here, given the coordinates Z, ,
and Y, ., of the embeddings and incidence mappings for the node v € V in the
dimensions v € I' and w € {2, we aim at recovering the entries ¢; ; of the matrix
7 such that

w5} = min {3 (102 - 3 butes b e

veY

rather than the corresponding permutation and rotation matrices.
Indeed, the cost function above could be tackled using a least squares solution.
This naturally leads to a solution akin to a linear regressor whereby ¢,, , can be
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viewed as the slope of the lines Y, o, = ¢u Zwer Zy,~- This can be viewed as a
minimisation on the distance about the Y, ., variables [17]. Note that it would be
more desirable to use the dintance, i.e. norm, spanned by both, the embedding
and the incidence mapping. Thus, we rewrite the cost function above making
use of the matrix My, , = [V. ,|Z. 4], where V.., = V1,0, V2w -- ,yMw]T and
Zy=1Ti~,T2~,... ,IMW]T as follows

PR FIC TR Y (EUWED bl I ST

el ~veEV yer

where, by construction, £ and 1 are the eigenvectors of MZ;,'YMW/Y and
M,, ML _, respectively [18].
The advantage of Equation 3 resides in the fact that, as we will see in the

following section, the term

§T M,

P,y = max { T }
e L &
maximises both, the correlation, in the geometric sense, of both, the pairs Y. .,
Z. and Y,., Z,,.. This is, it maximises the dependence of the recovered em-
bedding upon the incidence mapping and that of the target space on the vertex
coordinates. Moreover, as an added advantage, the computation of ¢,, , can be
done in a straightforward manner via the application of Singular Value Decom-
position (SVD) to the matrix M,, , [18], i.e. ¢, - is the leading singular value
of M, .

2.3 Max-Correlation

Now we examine the link between the cost function above and the eigenvectors &
and 1. To this end, we make use of the matrix of scalar products H = MwﬁMgﬁ.
Note that, since the developments here apply equally to the MEWMWW, we focus
on H throughout the section.

Let & be the [*" eigenvector of H scaled so its sum of squares is equal to the
corresponding eigenvalue 7;. Since H¢; = 7&; and (JJ T)gl = H¢;, it follows that
the squared distance between a pair of entries in the matrix H can be written

as
N

I =y 7= m(&(i) — &) = H(i, i) + H(j, j) — 2H(,j)  (4)
1=1
where 7; and 7; are coordinates in the embedding space such that their inner
product corresponds to the entry indexed 4, j of H and N is its rank.
With these ingredients, we can recover the variables &; for the vertices in the
graph such that the weighted correlations between their embedding vectors are
maximum or minimum by extremasing the quantity

GZZH&‘W —fﬂh‘HQ (5)
1,J
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To take our analysis further, we use Equation 4 and, after some algebra, write

e =Y (E7H(i,i) + H(, ) — 266 H(, ) (6)

(2]

Note that, Equation 6 can be divided into two sets of terms, one for the diagonal
and the other for the off-diagonal elements of H as follows

e=2M Y H(i,i)— Y 26¢H(, j) (7)
i 1,7

where M is the order of H and we have used the fact that

D_EMH( ) = N D €H (1) (8)

and

D_EFH(, 1) =Y EH( ) 9)

Note that maximising the first term in the right-hand side of Equation 7
implies minimising the second one and vice versa. The proof of this hinges in the
properties of spectral radii of symmetric matrices [19, 20]. This is also consistent
with the work of Chung on isoperimetric inequalities [21]. Thus, we can focus
on the term

é=—Y 26&H(, j) (10)
(2]
i#]
_ Furthermore, to write Equation 10 in compact form, we can define a matrix
H which comprises the off-diagonal elements of H as follows

o [HG) i
H(i, j) = 11
(i) {O otherwise (11)
and write .
¢ = —2IITHIT (12)
where & = [¢1,&,---,&um]T is a column vector of order M whose it" element

is given by &;. Note that the expression above is a Rayleigh quotient. Thus,
maximising € is equivalent to minimising fTI:I§ , which implies that £ is given
by the eigenvector of H which corresponds to the eigenvalue whose rank is the
smallest. In this case, £ is the maximiser of the correlation between the vectors
7; and 7;.

3 Recovering Camera Spectral Sensitivity Functions

In computer vision, video and graphics, we rely upon cameras and rendering
contexts to capture and reproduce colour information. Moreover, the accurate
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capture and reproduction of colours as acquired by digital camera sensors is
an active area of research which has applications in colour correction [22-24],
camera simulation [25] and sensor design [26].

To better understand the relation between the spectral radiance and the colour
output of digital cameras, recall that we can express the colour output of the
detector at pixel u as follows

Io(u) = g(u)S(u)” diag(Qu)L, (13)

where Ij(u) is the image radiance for any of the three colour channels k =
{R,G, B} at the pixel u. S(u) is a vector indexed to wavelength whose entries
are given by the surface reflectance S(\, u) at the wavelength \. L is the power
spectrum of the light with the elements L(\) corresponding to the spectral power
at the wavelength A. Qj is a vector whose element @Q(\) corresponds to the
spectral sensitivities of the k" colour sensor at the wavelength \. When dealing
with flat surfaces such as colour charts, we can assume that g(u) = 1. This
expression has been used widely in the literature [27] and is consistent with
reflectance models in computer vision, such as that in [28].

By inspection, it is straightforward to note that, in Equation 13, if the object
reflectance and illuminant power spectrum are known, the camera spectral sen-
sitivity functions are, indeed, a linear mapping which “embeds” the product of
the reflectance and the illuminant into the colour space. Further, we can view
the product of the reflectance and the illuminant as the incidence mapping as
presented previously and the ensuing colour triples as the embedding ). As a
result, the matrices M,, - are defined in the colour and wavelength spaces. This
is, {2 corresponds to the colour and I" to the wavelength domain.

In the following experiments, we employ the dataset presented in [29]. This is
one of the most complete studies on commercial digital camera spectral responses
comprising 28 commercial models’ Note that the dataset presented in [29] does
not contain colour imagery, but rather the sensitivity functions themselves. Thus,
for the dataset in [29], we have used the ground-truth power spectrum of the
illuminants and the reflectance for each of the colour tiles in a semi-gloss (SG) X-
Rite ColorChecker target with 140 colour patches. This is straightforward since
the ColorChecker is a flat surface whose mean-scattered power can be easily
computed.

3.1 TIlluminants

Throughout the section, we use two standard calibrated light sources. This is
in line with the standard illuminants defined by the CIE [30]. Our calibrated
light sources correspond to the A and D series of illuminants. For our A series
illuminant, we have used a tungsten-filament light with a correlated colour tem-
perature (CCT) [31] of 2700°K. Our D series light is an artificial sunlight with
a CCT of 6500°K (D65).

! These can be downloaded from http://www.cis.rit.edu/jwgu/research/
camspec/db. php
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It is worth noting in passing that the use of these two light sources is also
aimed at spanning across a wide variety of real-world settings. This is as the
A series illuminant correspond to the incandescent filament lights widely used
in households and street lighting, whereas the D series illuminant accounts for
outdoor environments.

3.2 Reflectance Library

Recall that we also require the spectral reflectance of the color tiles in our X-Rite
target so as to compute the covariance matrices used by our method. To this end,
we have acquired the reflectance of each colour tile in the X-Rite charts using
a StellarNet Bluewave Spectrometer. The spectrometer delivers a spectrum of
1716 samples per tile over the visible and near infrared range. The measurements
have been effected using a two-way integrating sphere and a halogen-Deuterium
calibrated light source in the [200nm — 1700nm| range.

Note that, for our reflectance library, we have followed the ISO standard for
the visible spectrum and archived the reflectance in the range [400nm, 780nm],
which yields a total of 599 samples per tile over the 164 colours in the two charts.
It is worth stressing in passing that we have opted for the ISO standard over
the CIE since the latter is a subset of the former (the CIE standard dictates
the visible range is given by the interval [400nm, 700nm]) [32]. As mentioned
earlier, for our reflectance, we the 140 tiles of 100 different colours including the
white ones. The inclusion of the white tile is important since this allows for the
illuminant power spectrum computation as required in Equation 13.

3.3 Experiments

With the spectral and colour data in hand, we proceed to provide a quantitative
analysis regarding the approximation yielded by our method. To this end, we
have used the Euclidean deviation, in degrees, between the sensitivity functions
approximated by our method and the corresponding ground truth.

We have used these two metrics so as to account for both, variations in the
“shape” of the colour sensitivity functions and power spectrum of the illuminant
with respect to the ground truth as well as colour variations induced by the ap-
proximation presented here. For our dataset, we have used the colours extracted
from the trichromatic imagery of the X-Rite ColourChart as acquired by each
camera. For both datasets, we have compared these ground truth data to the
colours computed using the sensitivity functions and illuminant power spectrum
approximated by our method when applied to the colour checker reflectance
library.
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Average angular error (in degrees)
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Fig. 1. The average angular error on the spectral responses across three channels for
each cameras in the dataset presented in [29]
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Fig. 2. Colour sensitivity functions for a sample camera in our dataset. The two pan-
els show the ground truth and approximated sensitivity functions for the Nikon D80
camera in [29].

Figure 1 shows the Euclidean angular errors, in degrees, for the sensitivity
functions corresponding to the cameras in the dataset. Note that the Euclidean
angular errors are often in the order of 12 degrees for the dataset in [29].

To illustrate the quality of the approximation in a qualitative manner, in
Figure 2 we show the ground truth and approximated colour sensitivity func-
tions a sample camera in the dataset. Note the close accordance of the colour
sensitivity functions approximated by our method with respect to the ground
truth. Note, however, that even for 16.94 degrees average error yielded by the
method presented here, the overall shape approximated by our approach is in
good accordance with the ground truth (in the first panel).
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4 Conclusions

In this paper, we present a method to compute an embedding which maximises
the dependence of the embedding matrix upon the graph-vertex coordinates
and that of the target space on the incidence mapping. This treatment leads
to a convex cost function whose optimum is attained by the leading singular
value of a matrix whose columns are given by the incidence mapping and the
embedded vertex coordinates. We illustrate the utility of the method for purposes
of approximating the colour sensitivity functions of a set of over 20 commercially
available digital cameras from a single image of a colour calibration target. We
do this by using a set of spectral reflectance measurements. Thus, our spectral
sensitivity recovery via the computation of the corresponding embedding can be
viewed as the result of maximising the relationship between the colour values
yielded by the camera and the spectra in the reflectance library.
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