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Abstract. The study of complex networks has recently attracted in-
creasing interest because of the large variety of systems that can be
modeled using graphs. A fundamental operation in the analysis of com-
plex networks is that of measuring the centrality of a vertex. In this
paper, we propose to measure vertex centrality using a continuous-time
quantum walk. More specifically, we relate the importance of a vertex
to the influence that its initial phase has on the interference patterns
that emerge during the quantum walk evolution. To this end, we make
use of the quantum Jensen-Shannon divergence between two suitably de-
fined quantum states. We investigate how the importance varies as we
change the initial state of the walk and the Hamiltonian of the system.
We find that, for a suitable combination of the two, the importance of a
vertex is almost linearly correlated with its degree. Finally, we evaluate
the proposed measure on two commonly used networks.

Keywords: Vertex Centrality, Complex Network, Quantum Walk,
Quantum Jensen-Shannon Divergence.

1 Introduction

In recent years, an increasing number of researchers have turned their atten-
tion to the study complex networks [1]. Complex network are ubiquitous in a
large number of real-world systems. A non-exhaustive list of examples includes
metabolic networks [2], protein interactions [3], brain networks [4] and scientific
collaboration networks [5]. A fundamental task in complex network analysis is
that of measuring the centrality of a vertex, i.e., its importance. To this end, a
number of centrality indices have been introduced in the literature [1, 6–9]. Each
of these captures different but equally significant aspects of vertex importance.

Perhaps the most intuitive centrality measure is degree centrality [7]. This is
defined as the number of links incident upon a node, i.e., the degree of the node.
The degree centrality naturally interprets the number of edges incident on a ver-
tex as a measure of its “popularity”, or, alternatively, as the risk of a node being
infected in an epidemiological scenario. Closeness centrality [10], on the other
hand, links the importance of a vertex to its proximity to the remaining vertices
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of the graph. More precisely, the closeness centrality is defined as the inverse of
the sum of the distance of a vertex to the remaining nodes of the graph, i.e.,
CC(u) = n−1∑n

v=1 d(u,v) where d(u, v) denotes the shortest path distance between

nodes u and v. The betweenness centrality [7] is a measure of the extent to which
a given vertex lies on the paths between the remaining vertices, where the path
may be either that of shortest length or a random walk between the nodes. If
sp(v1, v2) denotes the number of shortest paths from node v1 to node v2, and
sp(v1, u, v2) denotes the number of shortest paths from v1 to v2 that pass through

node u, the betweenness centrality of u is BC(u) =
∑n

v1=1

∑n
v2=1

sp(v1,u,v2)
sp(v1,v2)

.

Note that this definition assumes that the communication takes place along the
shortest path between two vertices. A number of measures have been introduced
to account for alternative scenarios in which the information is allowed to flow
through different paths [1, 6–8].

Recently, there has also been a surge of interest in using quantum walks as a
primitive for designing novel quantum algorithms on graph structures [11]. Quan-
tum walks on graphs represent the quantum mechanical analogue of the classical
random walk on a graph. Despite being similar in their definition, the dynamics
of the two walks can be remarkably different. In the classical case the evolution
of the walk is governed by a double stochastic matrix, while in the quantum
case the evolution is governed by a unitary matrix, thus rendering the walk re-
versible and non-ergodic. Moreover, the state vector of the classical random walk
is real-valued, while in the quantum case the state vector is complex-valued. As
there is no constraint on the sign and phase of the amplitudes, different paths
are allowed to interfere with each other in both constructive and destructive
ways. This in turn gives rise to faster hitting times and reduces the problems of
tottering observed in classical random walks [11].

In this paper, we propose to measure the centrality of a vertex using a
continuous-time quantum walk. More specifically, we relate the importance of a
vertex to the influence that its initial phase has on the evolution of a suitably de-
fined quantum walk. To this end, we make use of the quantum Jensen-Shannon
divergence, a recently introduced generalisation of the classical Jensen-Shannon
divergence to quantum states [12]. Just as the classical Jensen-Shannon diver-
gence [13], the quantum Jensen-Shannon divergence is symmetric, bounded and
always defined. From a physical perspective, the QJSD is computed from density
matrices, whose entries are observables. As a consequence, it should be possible,
at least in theory, to design a quantum algorithm to compute the QJSD cen-
trality that could benefit from the power of quantum computers. However, the
design of such an algorithm is beyond the scope of this paper.

The remainder of this paper is organised as follows: Section 2 provides an
essential introduction to the basic terminology required for understanding the
proposed quantum mechanical framework. With these notions to hand, we intro-
duce our centrality measure in Section 3 and we study its properties. In Section 4
we apply the proposed measure to the analysis of two commonly used network
models, while the conclusions are presented in Section 5.
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2 Quantum Mechanical Background

The continuous-time quantum walk [14] is a natural quantum analogue of the
classical random walk. Given a graph G = (V,E), classical random walks model
a diffusion process over the node set V , and have proven to be a useful tool
in the analysis of its structure. Similarly, the continuous-time quantum walk is
defined as a dynamical process over the vertices of the graph. By contrast to the
classical case, where the state vector is constrained to lie in a probability space, in
the quantum case the state of the system is defined through a vector of complex
amplitudes over the node set V whose squared norm sums to unity over the nodes
of the graph, with no restriction on their sign or complex phase. These phase
differences allow interference effects to take place. Moreover, in the quantum case
the evolution of the state vector of the walker is governed by a complex valued
unitary matrix, whereas the dynamics of the classical random walk is governed
by a stochastic matrix. Hence the evolution of the quantum walk is reversible,
implying that quantum walks are non-ergodic and do not possess a limiting
distribution. As a result, the behaviour of classical and quantum walks differs
significantly, and quantum walks possess a number of interesting properties not
exhibited by classical random walks.

More formally, using the Dirac notation, we denote the basis state correspond-
ing to the walk being at vertex u ∈ V as |u〉. A general state of the walk is a
complex linear combination of the basis states, such that the state of the walk
at time t is defined as

|ψt〉 =
∑

u∈V

αu(t) |u〉 (1)

where the amplitude αu(t) ∈ C and |ψt〉 ∈ C|V | are both complex.
At each instant in time the probability of the walker being at a particular

vertex of the graph is given by the square of the norm of the amplitude of the
relative state. Let Xt be a random variable giving the location of the walker
at time t. Then the probability of the walker being at the vertex u at time t
is given by Pr(Xt = u) = αu(t)α

∗
u(t), where α

∗
u(t) is the complex conjugate of

αu(t). Moreover
∑

u∈V αu(t)α
∗
u(t) = 1 and αu(t)α

∗
u(t) ∈ [0, 1], for all u ∈ V ,

t ∈ R+.
The evolution of the walk is then given by the Schrödinger equation, where we

take the time-independent Hamiltonian of the system to be the graph Laplacian,
yielding

∂

∂t
|ψt〉 = −iL |ψt〉 . (2)

Given an initial state |ψ0〉, we can solve Eq. (2) to determine the state vector at
time t

|ψt〉 = e−iLt |ψ0〉 . (3)

Note that generally one may use any Hermitian operator as the Hamiltonian.
Common choices are the graph adjacency matrix, the normalised Laplacian and
the signless Laplacian.
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Finally, we can compute the spectral decomposition of the graph Laplacian
L = ΦΛΦ�, where Φ is the n × n matrix Φ = (φ1|φ2|...|φj |...|φn) with the
ordered eigenvectors φjs of L as columns and Λ = diag(λ1, λ2, ..., λj , ..., λn) is
the n×n diagonal matrix with the ordered eigenvalues λj of L as elements, such
that 0 = λ1 ≤ λ2 ≤ ... ≤ λn. Using the spectral decomposition of the graph
Laplacian and the fact that exp[−iLt] = Φexp[−iΛt]Φ� we can then write

|ψt〉 = Φe−iΛtΦ� |ψ0〉 . (4)

2.1 Quantum Jensen-Shannon Divergence

The density operator (or density matrix) is introduced in quantum mechanics to
describe a system whose state is an ensemble of pure quantum states |ψi〉, each
with probability pi. The density operator of such a system is defined as

ρ =
∑

i

pi |ψi〉 〈ψi| . (5)

The von Neumann entropy [15] HN of a density operator ρ is defined as

HN = − tr(ρ log ρ) = −
∑

i

ξi ln ξi (6)

where ξ1, . . . , ξn are the eigenvalues of ρ. If 〈ψi| ρ |ψi〉 = 1, i.e., the quantum
system is a pure state |ψi〉 with probability pi = 1, then the Von Neumann
entropyHN (ρ) = − tr(ρ log ρ) is zero. On other hand, for a mixed state described
by the density operator σ we have a non zero Von Neumann entropy associated
with it.

With the Von Neumann entropy to hand, the quantum Jensen-Shannon di-
vergence between two density operators ρ and σ is defined as

DJS(ρ, σ) = HN

(ρ+ σ

2

)
− 1

2
HN (ρ)− 1

2
HN (σ) (7)

This quantity is always well defined, symmetric and positive definite. Finally, it
can also be shown that DJS(ρ, σ) is bounded, i.e., 0 ≤ DJS(ρ, σ) ≤ 1.

3 QJSD Centrality

In order to measure the centrality of vertex v, we define two quantum walks
where v is initially set to be in phase and in antiphase with the respect to the
remaining nodes. Let the normalised graph Laplacian be the Hamiltonian of our
system, and let

∣
∣ψv−

0

〉
=

∑
u∈V α

v−
u (0) |u〉 and ∣

∣ψv+
0

〉
=

∑
u∈V α

v+
u (0) |u〉 denote

the quantum walks on G with initial amplitudes

αv−
j (0) =

{
−

√
dj

C if j = v

+
√
dj

C otherwise
αv+
j (0) =

{

+
√
dj

C ∀j (8)
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where C is the normalisation constant such that probabilities sum to 1. In other
words, we define the initial amplitude to be proportional to the square root of the
node degrees. Finally, let ρv+ and ρv− be the density operators which describe
the ensembles of quantum states

∣
∣ψv−

t

〉
and

∣
∣ψv+

t

〉
respectively, i.e.,

ρv− = lim
T→∞

1

T

∫ T

0

∣
∣ψv−

t

〉 〈
ψv−
t

∣
∣ dt ρv+ = lim

T→∞
1

T

∫ T

0

∣
∣ψv+

t

〉 〈
ψv+
t

∣
∣ dt (9)

Given this setting, we can measure how the initial phase of the vertex v
affects the evolution of the quantum walks by computing the distance between
the quantum states defined by ρv− and ρv+ . That is, we define the quantum
Jensen-Shannon divergence (QJSD) centrality of a vertex v as

CQJSD(v) = DJS(ρv− , ρv+) (10)

Note that the computational complexity of the QJSD centrality is bounded
by that of computing the eigendecomposition of the graph laplacian, i.e., O(n3).
Let ΦΛΦ� be the spectral decomposition of the graph normalised Laplacian and

let Pλ =
∑μ(λ)

k=1 φλ,kφ
�
λ,k be the projection operator on the subspace spanned

by the μ(λ) eigenvectors φλ,k associated with the eigenvalue λ of the graph
normalised Laplacian. Rossi et al. [16] have shown that ρ∞ =

∑m
λ=1 Pλρ0P

�
λ ,

where m denotes the number of unique eigenvalues of the graph normalised
Laplacian. Note that as a consequence of Eq. 9 we have that ρv− and ρv+ are
simultaneously diagonalisable. That is, there exist a single invertible matrix M
such that M−1ρv−M and M−1ρv+M are diagonal. More precisely, here M = Φ,
the n × n matrix Φ = (φ1|φ2|...|φj |...|φn) with the ordered eigenvectors φjs of
the Hamiltonian as columns.

3.1 Relation with Degree Centrality

We are now interested in studying the relation between the QJSD centrality
and the degree centrality. It has been shown, for example, that the degree and
the betweenness centrality are highly correlated [17]. This should not come as
a surprise, as we expect high degree vertices to be more often included in the
shortest path along a pairs of vertices.

Let the initial states of the walks be defined as in Eq. 8 and let the normalised
Laplacian be the Hamiltonian of our system. We start by observing that

∣
∣ψv+

0

〉
=∑

u∈V α
v+
u (0) |u〉 corresponds to the eigenvector φ0 associated with the zero

eigenvalue of the Hamiltonian, and as a consequence
∣
∣ψv+

0

〉
will remain constant

over time. In other words, we have that ρv+ =
∣
∣ψv+

0

〉 〈
ψv+
0

∣
∣. Note that the

spectrum of ρv+ is composed of a single eigenvector φ0 with eigenvalue equal to
1. Moreover, recall from Eq.9 that ρv− and ρv+ are co-diagonalisable matrices.
As a result, each eigenvalue of ρv− + ρv+ is a sum of eigenvalues of ρv− and ρv+ .
More precisely, when the two walks are initialised as in Eq. 8, all the eigenvalues
μi of

ρv−+ρv+

2 will be equal to the eigenvalues of ρv− , except for the eigenvalue
μ0 + 1 which is associated to the common eigenvector φ0.
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Fig. 1. The correlation between degree and QJSD centrality, for a star graph (red dots)
and a scale-free graph (blue squares). The blue line shows the predicted dependency
between the two centrality indices.

We now show that, as a consequence of this, the QJSD centrality is pro-
portional to the degree centrality. Note that since ρv+ has a single non-zero
eigenvalue which is equal to 1, we have that HN (ρv+) = 0. As a consequence of
this and of Eq. 7, we have that

DJS(ρv− , ρv+) = HN

(
ρv− + ρv+

2

)

− 1

2
HN (ρv−)

= −μ0 + 1

2
log2

μ0 + 1

2
−
∑

i	=0

μi

2
log2

μi

2
+

1

2

∑

i

μi log2 μi

=
μ0 + 1

2
− μ0 + 1

2
log2 (μ0 + 1) +

∑

i	=0

μi

2
− 1

2

∑

i	=0

μi log2 μi +
1

2

∑

i

μi log2 μi

= 1− 1

2
log2(μ0 + 1) +

μ0

2
log2

μ0

μ0 + 1
(11)

where μi denotes the ith eigenvalue of ρv− and we used the fact that
∑

i μi = 1.
We now proceed to show that μ0 is proportional to the degree of node v, and
therefore the QJSD centrality is proportional to the degree centrality. In fact,
we have that

μ0 = 〈φ0| ρ0 |φ0〉 =
〈
φ0

∣
∣ψv−

0

〉2
=

(

1− dv
|E|

)2

(12)

where dv is the degree of v and |E| denotes the number of edges in the graph.
In other words, when we take the normalised Laplacian as our Hamiltonian

and we initialise the walks according to Eq. 8, the QJSD centrality turns out to be
quasi-linearly correlated with the degree centrality. Fig. 1 shows the correlation
between the QJSD centrality and the degree centrality for a scale-free random
graph and a star graph. Recall that the degree centrality is normalised between
0 and 1 by dividing it by |V |(|V | − 1), i.e., the maximum cardinality of the
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(c) NLap + Uniform
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(d) NLap + Degree

Fig. 2. Correlation between the QJSD centrality and the degree centrality for different
choices of the Hamiltonian (adjacency matrix or normalised Laplacian) and of the
initial state (normalised uniform distribution or normalised degree distribution)

edge set. Note that the non-linearity of the correlation becomes evident only for
those nodes with degree close to |E|, for which we have that dv

|E| ≈ 0 and thus

μ0 ≈ 1 + dv

|E|
2
.

So far we assumed that the Hamiltonian of the quantum walk is the graph
normalised Laplacian. However, any Hermitian operator encoding the structure
of the graph can be chosen as an alternative. Similarly, there is no constraint on
the initial state of the walk, as long as it is a valid amplitude vector. Fig. 2 shows
the correlation between the QJSD centrality and the degree centrality computed
on a stochastic Kronecker graph for different choices of the initial state and the
Hamiltonian. More specifically, we let the Hamiltonian be either the adjacency
matrix or the normalised Laplacian of the graph, while the initial state is either
proportional to the node degree as in Eq. 8 or uniformly equal to 1/

√
n, where n

denotes the number of nodes in the graph. As expected, our centrality measure is
strongly correlated with the degree centrality when the Hamiltonian is the graph
normalised Laplacian and the initial state is proportional to the node degree (see
Fig. 2(d)). In general, we see that when the starting state is proportional to the
node degree, the correlation tends to be very high, while the choice of a uniform
initial state leads to a value of the centrality which is less dependent on the node
degree.

Hence, in an attempt to capture structural information which are not trivially
revealed by examining the node degree, we explore the consequences of letting the
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Fig. 3. Zachary’s karate club network, where we have drawn each node with a diameter
that is proportional to its QJSD centrality

walk start from a uniform amplitude vector and choosing the adjacency matrix
as the Hamiltonian. Moreover, in order to balance the strength of the positive
and negative signals, i.e., the contribution of the node amplitudes with either
positive or negative phases, we let the magnitude of the initial amplitude on the
node being analysed be equal to the sum of the amplitudes on the remaining
nodes, which gives the initial state

αv−
j (0) =

{− 1√
2

if j = v

+ 1√
2(|V |−1)

otherwise αv+
j (0) =

{
+ 1√

2
if j = v

+ 1√
2(|V |−1)

otherwise .

(13)

4 Experimental Evaluation

We now apply the QJSD centrality to a pair of commonly used network datasets,
namely Zachary’s karate club [18] and Padgett’s network of marriages between
the 16 most eminent Florentine families in the 15th century [19]. Fig. 3 shows
Zachary’s karate club network, where each vertex is drawn with a diameter that
is proportional to the QJSD centrality. We see that there are two main actors,
node #1 and node #2, which correspond to the instructor and the administrator
of the club. Note that using our measure the instructor turns out to be the node
with the highest centrality, which is also the most central according to the degree
centrality, while the betweeness centrality elects the administrator as the most
important node. However, the betweenness centrality indicates as the second
most important actor node #3, as this vertex has many contacts with both the
members of the administrator cluster and the members of the instructor cluster
and thus it is misunderstood as a center by the betweenness centrality. Finally,
node #4 is identified as the third most important by the degree centrality, leaving
node #3 at the fourth place, although the latter is more central in the sense that
it shares many links with both groups.

Padgett’s network of marriages is depicted in Fig. 4. In Table 1, we show the
ranking of the 15 families according to their QJSD centrality. As expected, the
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Fig. 4. Padgett’s network of marriages between eminent Florentine families in the 15th
century [19]. We omit the Pucci, which had no marriage ties with other families.

Table 1. The QJSD centrality of the families of Padgett’s network [19]

Family Centrality Family Centrality Family Centrality

Medici 0.4867 Castellan 0.3245 Salviati 0.2248
Ridolfi 0.4619 Barbadori 0.3205 Ginori 0.1993
Strozzi 0.4192 Albizzi 0.3172 Acciaiuol 0.1534
Tornabuon 0.4041 Guadagni 0.3091 Lambertes 0.1267
Bischeri 0.3586 Peruzzi 0.2990 Pazzi 0.1126

Medici easily outperform the Strozzi , who are their main rivals. This agrees
with the historical view that Medici’s supremacy was largely due to their skills
in manipulating the marriage network. Interestingly the Pazzi, which is the most
loosely connected family of the graph, achieve the lowest centrality. Note also
that the Ridolfi family, which connect two of the most influential families at
that time, the Medici and the Strozzi, is assigned a high centrality. Moreover,
the Tornabuon, which form a tightly connected clique together with the Medici
and the Ridolfi, is the fourth most central node of the network.

5 Conclusions

In this paper, we have proposed to measure vertex centrality using a continuous-
time quantum walk. We measured the importance of a vertex as the influence
that its initial phase has on the interference patterns that emerge during the
quantum walk evolution. We have showed that, under particular settings, the
resulting centrality measure is almost linearly correlated with degree centrality.
Thus, we have proposed an alternative starting state where the contribution of
the node amplitudes with positive and negative phases is equal. Finally, we have
evaluated the resulting measure to two commonly used network models.
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