
Flip-Flop Sublinear Models for Graphs

Brijnesh Jain

Technische Universität Berlin, Germany
brijnesh.jain@gmail.com

Abstract. Extending linear classifiers from feature vectors to attributed
graphs results in sublinear classifiers. In contrast to linear models, the
classification performance of sublinear models depends on our choice as
to which class we label as positive and which as negative. We prove that
the expected classification accuracy of sublinear models may differ for
different class labelings. Experiments confirm this finding for empirical
classification accuracies on small samples. These results give rise to flip-
flop sublinear classifiers that consider both class labelings during training
and select the model for prediction that better fits the training data.

Keywords: graph matching, classification, perceptron learning.

1 Introduction

Linear models are one of the most simple prediction methods that make strong
assumptions about the structure of the underlying data and yields stable, but
possibly inaccurate predictions [4]. In addition, linear methods form a basis for
understanding and devising nonlinear ones.

Application of linear methods, however, is confined to real-valued feature vec-
tors. In [5,12], linear models have been generalized to sublinear models for graphs.
Similarly as for linear models, an understanding of sublinear methods is essential
for understanding extensions of non-sublinear models on graphs [6,7].

Here, we are interested in understanding the relationship between the perfor-
mance of sublinear models and the different ways with which we can label the
classes. In two-class problems, it is common practice to label one class as positive
and the other as negative. For linear models, the classification performance is
independent of how we label both classes. The reason is that each vector has
an additive inverse. The existence of an inverse allows us to interpret the class
regions separated by a hyperplane H in two ways: the normal of H points to the
positive class. The additive inverse of a normal of H is also a normal pointing
towards the opposite direction. Thus, normal and its additive inverse define the
same class regions but with different class labels. As a consequence, there is a
dual to each linear function that defines the same class regions but with flipped
labels. Since a well-defined addition on graphs is unknown within the framework
of sublinear models, the question arises whether there is also a dual for each
sublinear function on graphs.

This contribution proves that in almost all cases there is no dual of a sub-
linear function. Empirical evaluation on relatively small samples confirm that

P. Fränti et al. (Eds.): S+SSPR 2014, LNCS 8621, pp. 93–102, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

94 B. Jain

the classification performance of sublinear models depend on whether we label
a given class as positive or negative. These findings suggest to devise flip-flop
sublinear models that choose the class labeling resulting in better classification
accuracy. In experiments we show that flip-flop sublinear models perform better
than standard sublinear models.

2 Sublinear Models on Attributed Graphs

This section introduces sublinear models for graphs as proposed by [12].

2.1 The Space of Attributed Graphs

Let A be a set of node and edges attributes. For the sake of convenience, we as-
sume that A is the Euclidean space Rd, though the theory presented in this paper
can be adapted to the case where node and edges attributes come from arbitrary
and possibly disjoint sets. We consider graphs of the form X = (V , E ,A), where
V represents a set of vertices, E a set of edges, and A ⊆ A a set of attributes of
the nodes and edges. Node attributes take the form xii ∈ A for each node i ∈ V
and edges attributes are given by xij ∈ A for each edge (i, j) ∈ E . By XG we
denote the space of all graphs with attributes from A.

Without loss of generality, we may assume that edges must have non-zero
attributes. Then each graph can be regarded as a complete graph, where non-
edges are treated as edges with zero-attribute. Note that vertices may have zero
as well as non-zero attributes. Including non-edges as edges with zero attribute
allows us to express graphs X by a matrix X = (xij) with elements xij ∈ A.

2.2 Sublinear Dot Product

We equip the space XG with a graph similarity, called sublinear dot product.
Suppose that X is a graph with matrix representation X. The particular

form of the matrix depends on how the nodes of X are ordered. Since there is
no canonical ordering of the nodes, each re-ordering may result in a different
matrix representation of X . Let [X] denote the equivalence class of all matrices
obtained by permuting the nodes of graph X in all possible ways. We write
X ′ ∈ X to denote that X ′ is a representtive of the equivalence class [X].

To formulate the sublinear dot product of two graphs X and Y , we assume
that both graphs have the same number of nodes. If this is not the case, we can
safely add isolated nodes with zero attribute to the smaller graph until both
graphs have the same number of nodes.

Let X = (xij) and Y = (yij) be matrix representations of X and Y , resp.,
of the same size. Then we define the dot product of X and Y by

XTY =
∑

i,j

xT
ijyij ,

Flip-Flop Sublinear Models for Graphs 95

where xij
Tyij denotes the dot product between attribute vectors xij and yij .

Observe that the dot products xij
Tyij correspond to node and edge similarities.

The sublinear dot product maximizes the dot product over all possible matrix
representations and is of the form

X · Y = max
{
XTY : X ∈ X,Y ∈ Y

}
.

As shown in [8], we can equivalently express X · Y by

X · Y = max
{
XTY : X ∈ X

}
= max

{
XTY : Y ∈ Y

}
,

where Y ∈ Y is an arbitrarily chosen matrix representation for the first equation
and X ∈ X for the second equation. We call X and Y optimally aligned, if

X · Y = XTY .

The sublinear dot product extends the dot product from vectors to graphs. It is
straightforward to verify that the function fY (X) = X · Y as a pointwise max-
imizer of dot products is sublinear, that is convex and positively homogeneous.
For this reason, we call X · Y sublinear. Though the sublinear dot product is
not linear, it shares similar geometrical properties and generalizes the concept
of maximum common subgraph [8]. It can be reduced to a special case of the
graph-edit distance and is widely used in different guises as a common choice of
proximity measure for graphs [2,3,17].

2.3 Sublinear Models for Graphs

Sublinear Functions. Sublinear functions on graphs are functions of the form

f(X) = W ·X + b, (1)

where W is the weight graph and b ∈ R is the bias. We assign a graph X to
class y = +1 if f(X) ≥ 0 and to class y = −1 if f(X) < 0. Then the equation
f(X) = 0 defines a decision surface

Hf = {X ∈ XG : f(X) = 0} ⊆ XG

that separates both class regions.

The Learning Problem. The goal of learning consists in finding a weight
graph W and bias b such that the s-linear discriminant f(X) = W · X + b
minimizes the expected risk

E(f) =

∫

XG
L(f(X), y) dP (X, y), (2)

where P (X, y) is the joint probability distribution on XG × Y and L(ŷ, y) is a
differentiable loss function that measures the cost of predicting class ŷ when the
actual class is y.

96 B. Jain

Since the distribution P (X, y) is usually unknown, the expected risk E(f)
can not be computed directly. Instead, we approximate the expected risk by
minimizing the empirical risk

EN (f) =
1

N

N∑

i=1

L(f(Xi), yi)

on the basis of N training examples (Xi, yi) ∈ XG × Y.

Subgradient Learning Rules. To minimize the empirical risk EN (f), we
present the margin perceptron algorithm for graphs. For this let f(X) = W ·X+b
be a sublinear function. We define a tube Tf,λ around the decision boundary Hf

consisting of all graphsX with |f(X)| ≤ λ, where λ ≥ 0 is the margin parameter.
Suppose that (X, y) is a new training example. The margin perceptron updates
the weight graph and bias if one of the two cases occurs: (1) f misclassifies X ,
or (2) f correctly classifies X , but X lies in the tube Tf,λ. Both conditions are
met when y · f(X) ≤ 0. In this case the update rule is of the form

W ← W + η · y ·X
b ← b+ η · y,

where η is the learning rate and W ∈ W and X ∈ X are optimally aligned
matrix representations of W and X , that is W ·X = W TX.

As shown in [12], the update rule of the graph perceptron minimizes the
empirical risk EN (f), where the underlying loss function is of the form

L(f(X), y) = max {0, λ− y · f(X)} .

For λ = 0, we obtain the graph perceptron algorithm as a special case. Conver-
gence is discussed in [11,12].

3 Flip-Flop Sublinear Models

The main result of this contribution is Theorem 1 stating that the performance
of sublinear models depends on which of both classes is labeled as positive class.
As an implication of Theorem 1, we introduce flip-flop sublinear models.

Each sublinear function f(X) = W ·X + b separates the graph space XG into
two class regions of the form

R+(f) = {X ∈ XG : f(X) ≥ 0} and R−(f) = {X ∈ XG : f(X) < 0},

where R+(f) is the region for the positive and R−(f) the region of the negative
class. We define the class-dual of f as a sublinear function f ′(X) = W ′ ·X + b′

separating XG into class regions of the form

R+(f
′) = R−(f) and R−(f ′) = R+(f).

Flip-Flop Sublinear Models for Graphs 97

By definition, the class-dual f ′ is a sublinear function that implements the same
class regions as f but with flipped labels. In vector spaces, each linear function
h(x) = wTx+ b with non-zero weight w has a unique class-dual, which is of the
form h′(x) = −wTx− b. This statement is invalid in graph spaces as shown by
the next result (a proof is presented in [13]).

Theorem 1. There is no class-dual of a sublinear function with probability one.

Suppose that the graph space is partitioned in two class regions R+ and R−.
Consider the expected classification accuracy of the sublinear function f

Cref [f] =

∫
[f(X), y] dP (X, y),

where [f(X), y] = 1 if f correctly classifiesX as y, and 0 otherwise. The subscript
of Cref refers to the current labeling of the classes as the reference labels. If
there is a sublinear model f∗ with Cref [f

∗] = 1, then f∗ perfectly separates
both classes. When flipping the labels, we assign graphs from class region R+

negative and graphs from class region R− positive labels. Under the assumption
that Cref [f

∗] = 1, Theorem 1 yields

max
f

Cflip[f] < Cref [f
∗] = 1,

where Cflip is the expected classification accuracy when the original class labels
have been flipped. In a more general setting, we arrive at the following result:

Corollary 1. For two-class problem, we generally have

max
f

Cref [f] �= max
f

Cflip[f],

where the maximum is taken over all sublinear functions on graphs.

Corollary 1 gives rise to flip-flop sublinear models that selects the labeling re-
sulting in a better separation of the data:

Algorithm 1. (Flip Flop Classifier)

Input:
Sample S ⊆ XG × Y.

Procedure:
Learn sublinear classifier f(X) on the basis of S with accuracy αS(f).
Construct dual sample S ′ according to (X, y) ∈ S ⇔ (X,−y) ∈ S ′.
Learn sublinear classifier f ′ on the dual sample S ′ with accuracy αS′(f ′).

Return:
Classifier and labeling that yields a higher classification accuracy

f∗ = argmax
f,f ′

{
αS(f), αS′(f ′)

}

98 B. Jain

4 Experiments

Experiments on two-class problems aims at investigating the behavior of sublin-
ear models under different class-labelings. Experiments on multi-class problems
aim at assessing the performance of flip-flop sublinear models in a practical
setting when class-labeling is random-like.

4.1 Data

We selected subsets of the following training data sets from the IAM graph
database repository [16]: letter (low, medium, high), fingerprint, grec, and coil.
The letter data sets compile distorted letter drawings from the Roman alphabet
that consist of straight lines. Lines of a letter are represented by edges and
endpoints of lines by vertices. The distortion levels are low, medium, and high.
Fingerprint images of the fingerprints data set are converted into graphs, where
vertices represent endpoints and bifurcation points of skeletonized versions of
relevant regions. Edge represent ridges in the skeleton. The grec data set consists
of graphs representing symbols from noisy versions of architectural and electronic
drawings. Vertices represent endpoints, corners, intersections, or circles. Edges
represent lines or arcs. The coil13,16 and coil42,44 data sets are subsets of the
coil-100 data set consisting of objects corresponding to the subscripted pairs of
indices 3, 16 and 42, 44 (starting at index 0). The first pair of indices refers to
images representing two different types of rubber cats and the second pair to
images representing two different types of cups. After preprocessing, the images
are represented by graphs, where vertices represent endpoints of lines and edges
represent lines. All datasets consist of a fixed training-, validation-, and test-set.

4.2 Experiments – Label Dependency

Data. We considered the following two-class problems: (1) letters A and H of
the letter-high data set, (2) letters E and F of the letter-high data set, (3) classes
0 and 1 of the fingerprint data set, (4) coil13,16, and (5) coil42,44.

Experimental Protocol. For each data set, we randomly sampled 50% off all
data for training in a stratified manner. The remaining examples formed the
test set. Then we applied the graph-perceptron algorithm (λ = 0) using the
graduated assignment algorithm [3] for computing the sublinear dot product.
We recorded the classification accuracy on the training- and test-examples. The
learning-rates of the perceptron algorithm were taken from [12]. We repeated
this experiments 50 times. Next, for each data set, we flipped the labels of both
classes and repeated the same experiment again 50 times.

Results and Discussion. Table 1 summarizes the results. The Shapiro-Wilk
test at significance level α = 0.05 rejected in about half of the cases the hypoth-
esis that the classification accuracies are normally distributed. For this reason,

Flip-Flop Sublinear Models for Graphs 99

Table 1. Results of the graph-perceptron algorithm for two-class classification prob-
lems using the original and the flipped class labeling. Shown are the average classifica-
tion accuracies over 50 trials, the standard deviation and the p-values obtained from
the Mann-Whitney U-Test. Rows marked with ′+′ refer to a class labeling with better
results than rows marked with ′−′. The quantity d/N is the ratio of the dimension d
of the largest matrix representation of a training graph and the number N of training
examples.

training test
d/N avg std p-val avg std p-val

Letter-HighA,H 0.3
+ 100.0 0.0

0.000
96.2 2.0

0.000− 95.4 1.4 89.2 2.7

Letter-HighE,F 0.3
+ 98.4 0.9

0.007
90.3 2.8

×0.259− 97.6 1.6 89.8 2.2

Fingerprint0,1 0.8
+ 99.8 0.1

0.000
96.3 0.3

0.000− 73.2 3.3 72.0 3.2

Coil13,16(cats) 59.1
+ 100.0 0.0

×0.230
89.2 7.0

0.000− 99.6 1.3 75.2 9.4

Coil42,44 (cups) 41.0
+ 100.0 0.0

0.000
87.3 5.5

0.000− 97.4 4.2 70.2 6.85

we applied the Mann-Withney U-Test for testing the null hypothesis whether
the classification accuracies of the original labeling and the flipped labeling come
from the same distribution. In all but two cases (marked as ×), the resulting
p-values were less than the significance levels α = 0.01 and α = 0.05. In these
8 out of 10 cases, we rejected the null hypothesis and accepted the alternative
hypothesis that the accuracies come from different distributions.

The results show that the average accuracies are different in 8 out of 10 cases
and that the differences are significant. From this we conclude that the average
accuracy of a graph-perceptron depends on our choice as to which class we label
as positive and negative. Recall that Theorem 1 and its implications consider
the expected classification accuracy. Empirical classification accuracies based on
finite samples of relatively small size according to the ratio d/N confirm that
the theoretical findings are of practical relevance.

In all cases, a class labeling with better average accuracy results in a better
average generalization performance. This also holds when the difference on the
training set is not statistically significant as in the Coil13,16 data set. Conversely,
a statistically significant difference on the training set does not guarantee a
statistically significant difference on the test set as shown for Letter-HighE,F .

As expected generalization performance was lower than the performance on
the training examples. Notable is the strong decrease of generalization perfor-
mance for both Coil data sets indicating overfitting. Inspecting the ratio d/N of
the dimension of the largest matrix representation of a graph in the training set
and the number N of training examples shows that the dimension is roughly 40
and 60 times higher than the number of training examples. According to Covers

100 B. Jain

Function Counting Theorem, we can always find a separating decision surface
for the training set provided the classes are labeled favorably and the training
examples are in general position. In addition, we can also expect good results
on the training data, when the class labeling is unfavorable. Due to the high
dimension and the low number of training examples, it is likely that the learned
models do not generalize well.

4.3 Experiments – Flip-Flop Sublinear Models

Data. We considered the following multi-class problems: letter (low, medium,
high), fingerprint, and grec.

Experimental Protocol. To cope with multiple classes, we applied the flip-flop
perceptron and the flip-flop margin perceptron algorithm using a one-versus-
all approach. For computing the sublinear dot product, we again applied the
graduated assignment algorithm [3]. The learning-rates and margin parameters
were taken from [12]. For each data set, we trained both flip-flop sublinear models
on the union of the training and validation data. We assessed the generalization
performance on the test data. We repeated this experiment 10 times. We used
the given splits instead of random splits of the training and test data in order
to make the results comparable to other methods.

Results and Discussion. Table 2 summarizes the training and test results of
the flip flop perceptron and flip flop margin perceptron algorithm for multi-class
problems.

We first compare the training results of the four different graph perceptron
algorithms. We observe that on average both flip-flop perceptrons better sepa-
rate the training data than their standard counterparts. We also observe that
for flip-flop classifiers, the margin perceptron does not yield the best training
results on three out of five data sets (Letter M, F’print, GREC). This is in con-
trast to the standard versions of both perceptron algorithms. Finally, we see that
the differences are small compared to those obtained in our first experiments on
two-class problems. One reason for this is that our experiments on two-class
problems consider the extreme case of an unfavorable vs. a favorable labeling,
whereas these experiments consider the natural labeling vs. the favorable label-
ing. The natural labeling in a one-against-all classification approach labels the
corresponding single class as positive and all other classes as negative. For most
classes, this labeling turns out to be the favorable one, such that flipping the la-
beling is necessary only in few cases. Thus, for most one-against-all dichotomies
in these experiments, the natural labeling coincides with the favorable labeling.

Next, we compare the test results of the four different graph perceptron algo-
rithms. The first observation to be made is that both flip-flop perceptrons per-
form better on average than their standard counterparts on all but the GREC
data set.

Flip-Flop Sublinear Models for Graphs 101

Table 2. Training and test classification accuracies for multi-class problems. The num-
ber of classes is shown in parentheses next to the identifier of the respective data set.
Shown are the average accuracy, standard deviation, and maximum accuracy over 10
runs of perceptron (perc), margin perceptron (mperc), flip-flop perceptron (ffperc),
and flip-flop margin perceptron (ffmperc) for training and test data. Generalization
performance is compared against graph Bayes (bayes2), generalized learning graph
quantization (glgq), similarity-kernel SVM (sk-svm), support vector machine applied
on dissimilarity embeddings after dimension reduction using PCA (pca+svm), and op-
timized dissimilarity space embedding (odse.v2). Results for entries with a dash – are
not available. Results marked with an asterique ∗ are not comparable, because the grec
data set as used in [1] differs from the on publicly available at [16].

train Letter L (15) Letter M (15) Letter H (15) F’print (4) GREC (22)
avg max avg max avg max avg max avg max

ffperc 97.0±0.5 97.6 93.3±0.4 94.0 86.7±0.8 87.7 87.1±0.5 88.0 99.5±0.3 100.0
ffmperc 98.9±0.2 99.2 93.1±0.2 93.5 88.9±0.5 89.7 86.5±0.7 87.3 99.4±0.2 99.8

perc 96.9±0.3 97.5 92.0±0.6 93.1 84.3±0.7 85.3 80.0±1.7 81.8 98.2±0.3 98.6
mperc 96.9±0.3 97.2 92.6±0.5 93.7 86.4±0.5 87.1 80.7±2.9 84.3 99.0±0.2 99.1

test Letter L (15) Letter M (15) Letter H (15) F’print (4) GREC (22)
avg max avg max avg max avg max avg max

ffperc 95.6±0.5 96.1 89.4±0.6 90.3 83.5±0.9 84.3 82.3±0.7 83.4 96.1±0.4 96.6
ffmperc 97.0±0.4 97.5 90.4±0.8 91.7 85.6±0.7 86.5 83.1±0.5 84.0 96.9±0.3 97.4

perc [12] 94.5±0.7 96.0 86.1±1.1 87.5 80.7±1.1 82.5 76.8±1.6 79.1 96.3±0.5 97.0
mperc [12] 95.5±0.3 95.7 88.7±0.6 89.5 84.1±0.5 84.8 79.5±2.6 82.4 97.5±0.6 98.1

bayes2 [9] – – 80.4 79.2 89.9
glgq [10] – – 88.4 84.8 97.5

sk-svm [1] 99.2 94.7 92.8 81.7 92.2∗

pca+svm [1] 99.2 94.9 92.1 82.2 92.0∗

odse.v2 [14] 99.0 96.8 96.2 – 97.9

Letus compare the results of theflip-flopclassifiers againstbayes2andglgq.Both
are also classifiers based on the graph orbifold framework. Bayes2 is based on bell-
shaped distributions around center graphs and glgq is an extension of generalized
learning vector quantization to the graph domain. The results show that both flip-
flop classifiers are superior than bayes2 but perform worse compared with glgq.

Finally, we compare both flip-flop classifiers against other state-of-the-art al-
gorithms. From the results we see that sk-svm, pca+svm, and odse.v2 are clearly
superior on all letter data set and therefore more robust against noise. The pic-
ture changes when it comes to the F’print and GREC data set. The graph per-
ceptrons algorithms are slightly better on F’print and comparable to odse.v2 on
GREC. These findings are similar to linear in vector spaces: graph perceptrons
are simple methods that yield possibly inaccurate results. Further improvements
are possible in two ways: first, by more extensively exploring the hyperparame-
ters, and second, by controlling the VC dimension via the number of nodes and
edges of the weight graph (for details see [12]).

102 B. Jain

5 Conclusion

Theorem 1 states that there is no dual of a sublinear model with probability
one. An immediate consequence of this result is that the expected classification
performance of sublinear models depends on our choice as to which class we label
as positive and which as negative. Experiments on finite samples of relatively
small size compared to the dimensionality of the data confirm the theoretical
findings for empirical classification performance. This justifies flip-flop classifiers
that consider both labelings during training and select the model with the better
classification performance of the training data.

References

1. Bunke, H., Riesen, K.: Improving vector space embedding of graphs through feature
selection algorithms. Pattern Recognition 44(9), 1928–1940 (2011)

2. Cour, T., Srinivasan, P., Shi, J.: Balanced graph matching. In: NIPS (2006)
3. Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching.

IEEE Trans. on Pattern Analysis and Machine Intelligence 18(4), 377–388 (1996)
4. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning.

Springer, New York (2001)
5. Jain, B., Wysotzki, F.: Multi-Layer Perceptron Learning in the Domain of Graphs.

IJCNN 3, 1993–1998 (2003)
6. Jain, B., Wysotzki, F.: Structural perceptrons for attributed graphs. In: Fred, A.,

Caelli, T.M., Duin, R.P.W., Campilho, A.C., de Ridder, D. (eds.) SSPR&SPR
2004. LNCS, vol. 3138, pp. 85–94. Springer, Heidelberg (2004)

7. Jain, B.: Structural Neural Learning Machines. PhD thesis, TU Berlin (2005)
8. Jain, B., Obermayer, K.: Structure Spaces. The Journal of Machine Learning Re-

search 10, 2667–2714 (2009)
9. Jain, B., Obermayer, K.: Maximum likelihood for gaussians on graphs. In: Jiang,

X., Ferrer, M., Torsello, A. (eds.) GbRPR 2011. LNCS, vol. 6658, pp. 62–71.
Springer, Heidelberg (2011)

10. Jain, B., Obermayer, K.: Generalized learning graph quantization. In: Jiang,
X., Ferrer, M., Torsello, A. (eds.) GbRPR 2011. LNCS, vol. 6658, pp. 122–131.
Springer, Heidelberg (2011)

11. Jain, B., Obermayer, K.: Learning in Riemannian Orbifolds. arXiv preprint
arXiv:1204.4294 (2012)

12. Jain, B.: Sublinear Models for Graphs. arXiv preprint arXiv:1204.4294 (2014)
13. Jain, B.: Flip-Flop Sublinear Models for Graphs: Proof of Theorem 1. arXiv

preprint arXiv:cs.LG (2014)
14. Livi, L., Rizzi, A., Sadeghian, A.: Optimized Dissimilarity Space Embedding for

Labeled Graphs. Information Sciences (2014)
15. Riesen, K., Neuhaus, M., Bunke, H.: Graph embedding in vector spaces by means

of prototype selection. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538,
pp. 383–393. Springer, Heidelberg (2007)

16. Riesen, K., Bunke, H.: IAM graph database repository for graph based pat-
tern recognition and machine learning. In: da Vitoria Lobo, N., Kasparis, T.,
Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.)
SSPR&SPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)

17. Umeyama, S.: An eigendecomposition approach to weighted graph matching prob-
lems. IEEE Transactions on PAMI 10(5), 695–703 (1988)

	Flip-Flop Sublinear Models for Graphs
	1 Introduction

	2 Sublinear Models on Attributed Graphs

	2.1 The Space of Attributed Graphs

	2.2 Sublinear Dot Product

	2.3 Sublinear Models for Graphs

	3 Flip-Flop Sublinear Models

	4 Experiments

	4.1 Data

	4.2 Experiments – Label Dependency

	4.3 Experiments – Flip-Flop Sublinear Models

	5 Conclusion

	References

