
Multiparty Key Exchange, Efficient Traitor
Tracing, and More from Indistinguishability

Obfuscation

Dan Boneh and Mark Zhandry

Stanford University, CA, USA
{dabo,zhandry}@cs.stanford.edu

Abstract. In this work, we show how to use indistinguishability obfus-
cation (iO) to build multiparty key exchange, efficient broadcast encryp-
tion, and efficient traitor tracing. Our schemes enjoy several interesting
properties that have not been achievable before:
– Our multiparty non-interactive key exchange protocol does not re-

quire a trusted setup. Moreover, the size of the published value from
each user is independent of the total number of users.

– Our broadcast encryption schemes support distributed setup, where
users choose their own secret keys rather than be given secret keys
by a trusted entity. The broadcast ciphertext size is independent of
the number of users.

– Our traitor tracing system is fully collusion resistant with short ci-
phertexts, secret keys, and public key. Ciphertext size is logarithmic
in the number of users and secret key size is independent of the num-
ber of users. Our public key size is polylogarithmic in the number
of users. The recent functional encryption system of Garg, Gentry,
Halevi, Raykova, Sahai, and Waters also leads to a traitor tracing
scheme with similar ciphertext and secret key size, but the construc-
tion in this paper is simpler and more direct. These constructions
resolve an open problem relating to differential privacy.

– Generalizing our traitor tracing system gives a private broadcast
encryption scheme (where broadcast ciphertexts reveal minimal in-
formation about the recipient set) with optimal size ciphertext.

Several of our proofs of security introduce new tools for proving security
using indistinguishability obfuscation.

1 Introduction

An obfuscator is a machine that takes as input a program, and produces a second
program with identical functionality that in some sense hides how the original
program works. An important notion of obfuscation called indistinguishability
obfuscation (iO) was proposed by Barak et al. [BGI+01] and further studied
by Goldwasser and Rothblum [GR07]. Indistinguishability obfuscation asks that
obfuscations of any two (equal-size) programs that compute the same function
are computationally indistinguishable. The reason iO has become so important

J.A. Garay and R. Gennaro (Eds.): CRYPTO 2014, Part I, LNCS 8616, pp. 480–499, 2014.
c© International Association for Cryptologic Research 2014

Multiparty Key Exchange, Efficient Traitor Tracing, and More from IO 481

is a recent breakthrough result of Garg, Gentry, Halevi, Raykova, Sahai, and
Waters [GGH+13b] that put forward the first candidate construction for an effi-
cient iO obfuscator for general boolean circuits. The construction builds upon the
multilinear map candidates of Garg, Gentry, and Halevi [GGH13a] and Coron,
Lepoint, and Tibouchi [CLT13].

In subsequent work, Sahai and Waters [SW13] showed that indistinguisha-
bility obfuscation is a powerful cryptographic primitive: it can be used to build
public-key encryption from pseudorandom functions, selectively-secure short sig-
natures, deniable encryption, and much more. Hohenberger, Sahai, and Wa-
ters [HSW13] showed that iO can be used to securely instantiate the random
oracle in several random-oracle cryptographic systems.

Our results. In this paper, we show further powerful applications for indistin-
guishability obfuscation. While the recent iO constructions make use of multi-
linear maps, the converse does not seem to hold: we do not yet know how to
build multilinear maps from iO. Nevertheless, we show that iO can be used to
construct many of the powerful applications that follow from multilinear maps.
The resulting iO-based constructions have surprising features that could not be
previously achieved, not even using the current candidate multilinear maps. All
of our constructions employ the punctured PRF technique introduced by Sahai
and Waters [SW13].

1.1 Multiparty Non-Interactive Key Exchange

Our first construction uses iO to construct a multiparty non-interactive key
exchange protocol (NIKE) from a pseudorandom generator. Recall that in a
NIKE protocol, N parties each post a single message to a public bulletin board.
All parties then read the board and agree on a shared key k that is secret from
any eavesdropper who only sees the bulletin board. The classic Diffie-Hellman
protocol solves the two-party case N = 2. The first three-party protocol was
proposed by Joux [Jou04] using bilinear maps. Boneh and Silverberg [BS03]
gave a protocol for general N using multilinear maps. The candidate multilinear
map constructions by Garg, Gentry, and Halevi [GGH13a] using ideal lattices,
and by Coron, Lepoint, and Tibouchi [CLT13] over the integers, provide the first
implementations for N parties, but require a trusted setup phase. Prior to this
work, these were the only known constructions for NIKE.

We construct new NIKE protocols from a general indistinguishability obfus-
cator. Our basic protocol is easy to describe: each user generates a random seed
s for a pseudorandom generator G whose output is at least twice the size of the
seed. The user posts G(s) to the bulletin board. When N users wish to generate
a shared group key, they each collect all the public values from the bulletin board
and run a certain public obfuscated program PKE (shown in Figure 1) on the
public values along with their secret seed. The program outputs the group key.

482 D. Boneh and M. Zhandry

Inputs: public values x1, . . . xN ∈ XN , an index i ∈ [N], and a secret seed s ∈ S
Embedded constant: pseudorandom function PRF with an embedded random key

1. If xi �= G(s), output ⊥
2. Otherwise, output PRF(x1, x2, . . . , xN)

Fig. 1. The program PKE

We show that this protocol is secure in a semi-static model [FHKP13]: an
adversary that is allowed to (non-adaptively) corrupt participants of its choice
cannot learn the shared group key of a group of uncorrupt users of its choice. The
proof uses the punctured PRF technique of Sahai and Waters, but interestingly
requires the full power of the constrained PRFs of Boneh and Waters [BW13] for
arbitrary circuit constraints. In addition, we show that the point-wise punctured
PRFs used by Sahai and Waters are sufficient to prove security, but only in a
weaker static security model where the adversary cannot corrupt users. We leave
the construction of a fully adaptively secure NIKE (in the sense of [FHKP13])
from iO as a fascinating open problem.

In the full version [BZ14], we observe that our iO-based NIKE can be eas-
ily extended to an identity-based multiparty key exchange. Existing ID-NIKE
protocols are based on multilinear maps [FHPS13].

Comparison to existing constructions. While NIKE can be built directly from
multilinear maps, our iO-based protocol has a number of advantages:

– No trusted setup. Existing constructions [GGH13a, CLT13] require a trusted
setup to publish public parameters: whoever generates the parameters can
expose the secret keys for all groups just from the public values posted by
members of the group. A variant of our iO-based construction requires no
trusted setup, and in fact requires no setup at all. We simply have user
number 1 generate the obfuscated program PKE and publish it along with
her public values. The resulting scheme is the first statically secure NIKE
protocol with no setup requirements. In the full version [BZ14] we enhance
the construction and present a NIKE protocol with no setup that is secure in
the stronger semi-static model. This requires changing the scheme to defend
against a potentially malicious program PKE published by a corrupt user.
To do so we replace the secret seed s by a digital signature generated by
each user. Proving security from iO requires the signature scheme to have a
special property we call constrained public-keys, which may be of indpendent
interest. We construct such signatures from iO.

– Short public values. In current multilinear-based NIKE protocols, the size
of the values published to the bulletin board is at least linear in the number
of users N . In our basic iO-based construction, the size of published values
is independent of N .

Multiparty Key Exchange, Efficient Traitor Tracing, and More from IO 483

– Since the published values are independent of any public parameters, the
same published values can be used in multiple NIKE environments setup by
different organizations.

It is also worth noting that since our NIKE is built from a generic iO mechanism,
it may eventually depend on a weaker complexity assumption than those needed
for secure multilinear maps.

1.2 Broadcast Encryption
Broadcast encryption [FN94] lets an encryptor broadcast a message to a subset of
recipients. The system is said to be collusion resistant if no set of non-recipients
can learn information about the plaintext. The efficiency of a broadcast system
is measured in the ciphertext overhead: the number of bits in the ciphertext
beyond what is needed to describe the recipient set and encrypt the payload
message using a symmetric cipher. The shorter the overhead, the better (an
overhead of zero is optimal). We survey some existing constructions in related
work below.

Using a generic conversion from NIKE to broadcast encryption described in
the full version [BZ14], we obtain two collusion-resistant broadcast systems. The
first is a secret-key broadcast system with optimal broadcast size. The second
is a public-key broadcast system with constant overhead, namely independent
of the number of recipients. In both systems, decryption keys are constant size
(i.e. independent of the number of users). The encryption key, however, is linear
in the number of users as in several other broadcast systems [BGW05, GW09,
DPP07, BW13].

By starting from our semi-static secure NIKE, we obtain a semi-static secure
broadcast encryption (as defined by Gentry and Waters [GW09]). Then applying
a generic conversion due to Gentry and Waters [GW09], we obtain a fully adap-
tively secure public-key broadcast encryption system with the shortest known
ciphertext overhead.

Our public-key broadcast encryption has a remarkable property that has so
far not been possible, not even using the candidate multilinear maps. The system
is a public-key distributed broadcast system: users generate secret keys on their
own and simply append their corresponding public values to the broadcast public
key. In contrast, in existing low-overhead public-key broadcast systems surveyed
below, users are assigned their secret key by a trusted authority who has the
power to decrypt all broadcasts. In our iO-based public-key system, there is no
trusted authority.

Another interesting aspect of the construction is that the PRG used in the
scheme (as in the program PKE) can be replaced by the RSA public key en-
cryption system where the RSA secret key plays the role of the PRG seed and
the corresponding RSA public key plays the role of the PRG output. Then, our
broadcast system shows that iO makes it possible to use existing certified RSA
keys in a short-ciphertext broadcast encryption system and in a NIKE protocol.
To prove security using iO we need the following property of RSA: there is a dis-
tribution of invalid RSA public-keys (e.g. products of three random large primes)

484 D. Boneh and M. Zhandry

that is computationally indistinguishable from a distribution of real RSA public
keys (i.e. products of two random large primes). This property also holds for
other public-key systems such as Regev’s lattice encryption scheme, but does
not hold for systems like basic ElGamal encryption.

1.3 Recipient-Private Broadcast Encryption

A broadcast encryption system is said to be recipient-private if broadcast cipher-
texts reveal nothing about the intended set of recipients [BBW06, LPQ12, FP12].
Valid recipients will learn that they are members of the recipient set (by suc-
cessfully decrypting the ciphertext), but should learn nothing else about the set.
Until very recently, the best recipient-private broadcast systems had a broadcast
size of O(λ ·N), proportional to the product of the security parameter λ and the
number of users N .

Using iO, we construct a recipient-private broadcast system with a broadcast
size of O(λ + N), proportional to the sum of the security parameter and the
number of users. This is the best possible broadcast size. If one is allowed to
leak the size k of the recipient set (and nothing else) then we construct a system
where the broadcast size is proportional to O(λ + k log N), which is again the
best possible. Building such systems has been open for some time [BBW06] and
is now resolved using iO.

Our approach to building a recipient-private broadcast system is to embed an
encryption of the intended recipient set in the broadcast header. We publish an
obfuscated program in the public key that begins by decrypting the encrypted
recipient set in the broadcast header. It then decrypts the message body only
if the recipient can provide a proof that it is one of the intended recipients.
Interestingly, encrypting the recipient set in a way that lets us prove security
using iO is non-trivial. The problem is that using a generic CPA-secure scheme
is insecure due to potential malleability attacks on the encrypted recipient set
that can break recipient privacy. Using an authenticated encryption scheme to
prevent the malleability attack is problematic because forged valid ciphertexts
exist (even though they may be difficult to construct), and this prevents us from
proving security using iO. The difficulty arises because iO can only be applied
to two programs that agree on all inputs, including hard-to-compute ones.

Instead of using authenticated encryption, we encrypt the recipient set using
a certain malleable encryption scheme that lets us translate an encryption of a
recipient set S to an encryption of some other recipient set S′. We use indistin-
guishability of obfuscations to argue that an attacker cannot detect this change,
thereby proving recipient privacy.

The recent succinct functional encryption scheme of Garg et al. [GGH+13b]
can also be used to build recipient-private broadcast encryption from iO. How-
ever, our construction is quite different and is simpler and more direct. For
example, it does not use non-interactive zero-knowledge proofs. Moreover, our
scheme has shorter secret keys: O(1) as a function of N compared to NO(1). The
main drawback of our scheme is the larger public key: NO(1) compared to O(1).

Multiparty Key Exchange, Efficient Traitor Tracing, and More from IO 485

1.4 Traitor Tracing with Short Ciphertexts, Secret Keys, and
Public Keys

Private broadcast-encryption is further motivated by its application to traitor
tracing systems [CFN94]. Recall that traitor tracing systems, introduced by
Chor, Fiat, and Naor, help content distributors identify the origin of pirate
decryption boxes, such as pirate cable-TV set top decoders. Boneh, Sahai, and
Waters [BSW06] showed that a private broadcast encryption system that can
broadcast privately to any of the N + 1 sets ∅, {1}, {1, 2}, . . . , {1, . . . , N} is suf-
ficient for building an N -user traitor tracing system. The ciphertext used in
the traitor tracing system under normal operation is simply a broadcast to the
full set {1, . . . , N}, allowing all decoders to decrypt. Therefore, the goal is, as
before, to build a private broadcast system for this specific set system where ci-
phertext overhead is minimized. Such systems are called private linear broadcast
encryption (PLBE).

Adapting our iO-based private broadcast system to the linear set system
above, we obtain a collusion resistant traitor tracing system where ciphertext
size is O(λ + log N) where λ is the security parameter and N is the total num-
ber of users in the system. Moreover, secret keys are short: their length is λ,
independent of N . However, this scheme has large public keys, polynomial in N
and λ. The main reason public keys are large is that the malleable encryption
scheme we need requires polynomial size circuits for encryption and decryption.

Fortunately we can reduce the public-key size to only poly(log N, λ) without
affecting secret-key or ciphertext size. We do so by adapting the authenticated
encryption approach discussed in the previous section: when embedding the en-
crypted recipient set in the broadcast ciphertext we also embed a MAC of the
encrypted set. The decryption program will reject a broadcast ciphertext with
an invalid MAC. To prove security we need to puncture the MAC algorithm at
all possible recipient sets. Naively, since in a PLBE there are N +1 recipient sets,
the resulting program size would be linear in N thereby resulting in large secret
keys. Instead, we step through a sequence of hybrids where at each hybrid we
puncture the MAC at exactly one point. This sequence of hybrids ensures that
the obfuscated decryption program remains small. Once this sequential punc-
turing process completes, security follows from security of an embedded PRF.
We emphasize that this proof technique works for proving security of a PLBE
because of the small number of possible recipient sets.

The functional encryption scheme of Garg et al. [GGH+13b] can also be used
to obtain collusion resistant traitor tracing, however as for private broadcast
encryption, our construction is conceptually simpler and has shorter secret keys.

Connection to Differential Privacy Dwork et al. [DNR+09] show that efficient
traitor tracing schemes imply the impossibility of any differentially private data
release mechanism. A data release mechanism is a procedure that outputs a data
structure that supports approximations to queries of the form “what fraction of
records have property P ?” Informally, a data release mechanism is differentially
private if it does not reveal whether any individual record is in the database.

486 D. Boneh and M. Zhandry

Applying the counter-example of [DNR+09] to our traitor tracing scheme,
we obtain a database of N records of size λ and N2O(λ) queries. Moreover,
the records are just independent uniform bit strings. Even with these small and
simple records and relatively few queries, no polynomial time (in λ and N) differ-
entially private data release mechanism is possible, so long as our construction is
secure. The first scheme this counter example was applied to is the traitor trac-
ing scheme of Boneh, Sahai, and Waters [BSW06], giving records of size O(λ),
but with a query set of size 2Õ(

√
N), exponential in N .

Ullman [Ull13] shows that, assuming one-way functions exist, there is no al-
gorithm that takes a database of N records of size λ and an arbitrary set of
approximately O(N2) queries, and approximately answers each query in time
poly(N, λ) while preserving differential privacy. This result also uses the connec-
tion between traitor tracing and differential privacy, but is qualitatively differ-
ent from ours. Their result applies to algorithms answering any arbitrary set of
O(N2) queries while maintaining differential privacy, whereas we demonstrate a
fixed set of O(N2λ) queries that are impossible to answer efficiently.

Constrained PRFs. Recall that constrained PRFs, needed in iO proofs of secu-
rity, are PRFs for which there are constrained keys than enable the evaluation
of the PRF at a subset of the PRF domain and nowhere else [BW13, KPTZ13,
BGI13]. The next section gives a precise definition. Our last construction shows
that iO, together with a one-way function, are sufficient to build a constrained
PRF for arbitrary circuit constraints. Consequently, all our constructions that
utilize circuit constrained PRFs can be directly built from iO and a one-way func-
tion without additional assumptions. In fact, Moran and Rosen [MR13] show,
under the assumption that NP is not solvable in probabilistic polynomial time in
the worst case, that indistinguishability obfuscation implies one-way functions.
Previously, constrained PRFs for arbitrary circuit constraints were built using
multilinear maps [BW13].

1.5 Related Work

While some works have shown how to obfuscate simple functionalities such as
point functions [Can97, CMR98, LPS04, Wee05], inner products [CRV10], and
d-CNFs [BR13a], it is only recently that obfuscation for poly-size circuits became
possible [GGH+13b, BR13b, BGK+13] and was applied to building higher level
cryptographic primitives [SW13, HSW13].

Broadcast encryption. Fully collusion resistant broadcast encryption has been
widely studied. Revocation systems [NNL01, HS02, GST04, DF02, LSW10] can
encrypt to N − r users with ciphertext size of O(r). Further combinatorial solu-
tions [NP00, DF03] achieve similar parameters. Algebraic constructions
[BGW05, GW09, DPP07] using bilinear maps achieve constant (but non-zero)
ciphertext overhead and some are even identity-based [GW09, Del07, SF07]. Mul-
tilinear maps give secret-key broadcast systems with optimal ciphertext size and
short private keys [BS03, FHPS13, BW13]. They also give public-key broadcast

Multiparty Key Exchange, Efficient Traitor Tracing, and More from IO 487

systems with short ciphertexts and short public keys (using an O(log N)-linear
map) [BWZ14], but using the existing multilinear candidates, those systems are
not distributed: users must be given their private keys by a central authority. The
difficulty with using existing N -linear maps for distributed public-key broadcast
encryption is that the encoding of a single element requires Ω(N) bits, and
therefore a short ciphertext cannot include even a single element.

Recipient-private broadcast encryption. The first constructions for private broad-
cast encryption [BBW06, LPQ12] required a ciphertext header whose size is pro-
portional to the product of the security parameter and the number of recipients.
More recently, Fazio and Perera [FP12] presented a system with a weaker privacy
guarantee called outsider anonymity, but where the header size is proportional
to the number of revoked users. Kiayias and Samari [KS13] even provide lower
bounds showing that certain types of natural constructions cannot improve on
these bounds.

The functional encryption scheme of Garg et al. [GGH+13b] can also be used to
build recipient-private broadcast encryption from iO. Our scheme is conceptually
simpler, and avoids the need for non-interactive zero-knowledge proofs. Moreover,
our scheme has shorter secret keys: O(1) in N compared to NO(1) — though for
private linear broadcast, their secret keys are polylog(N). The main drawback of
our scheme is the large public key size: NO(1) compared to O(log N).

Traitor tracing. The literature on traitor tracing is vast and here we only dis-
cuss results on fully collusion resistant systems. Since the trivial fully-collusion
resistant system has ciphertext size that is linear in the number of users, we are
only interested in fully collusion resistant systems that achieve sub-linear size
ciphertext. The first such system [BSW06, BW06], using bilinear maps, achieved√

n size ciphertexts with constant size keys. Other schemes based on different
assumptions achieve similar parameters [GKSW10, Fre10]. Combinatorial con-
structions can achieve constant size ciphertexts [BN08, Sir07], but require secret
keys whose size is quadratic (or worse) in the number of users. In most traitor
tracing systems, the tracing key must be kept secret. Some systems, including
ours, allow anyone to run the tracing algorithm [Pfi96, PW97, WHI01, KY02,
CPP05, BW06].

Recently, Koppula, Ramchen, and Waters [KRW13] provide counter-examples
to the conjecture that all bit encryption schemes are circularly secure. Concur-
rently and independent of our work, they use a valid/invalid key strategy that is
similar to our strategy of replacing correctly generated public parameters with
incorrect parameters, but in a very different context.

2 Preliminaries: Definitions and Notation

In this section, we briefly discuss notation and the building blocks for our
constructions: indistinguishability obfuscation and constrained pseudorandom
functions. A more complete description of these primitives appears in the full
version [BZ14].

488 D. Boneh and M. Zhandry

Notation We let [N] = {1, · · · , N} denote the positive integers from 1 to N . For
a set S we denote by x ← S the uniform random variable on S. For a randomized
algorithm A, we denote by x ← A(y) the random variable defined by the output
of A on input y.
Indistinguishability Obfuscation. An indistinguishability obfuscatior iO is a prob-
abilistic polynomial time algorithm that takes a circuit C and produces an ob-
fuscated circuit C′ = iO(C). We require that C′(x) = C(x) for all inputs x.
For security, we require that, for any two circuits C1 and C2 that agree on all
inputs, no probabilistic polynomial time adversary can distinguish the obfusca-
tion C′

1 = iO(C1) from C′
2 = iO(C2). The first candidate construction of such

obfuscators is due to Garg et al. [GGH+13b].
Constrained Pseudorandom Functions. A constrained pseudorandom function
(PRF) [BW13, KPTZ13, BGI13] PRF for a class of subsets S is a pseudorandom
function for which there is an efficient algorithm that takes the secret key k for
PRF and a set S ∈ S, and outputs a circuit PRFS

k which satisfies

PRFS
k (x) =

{
PRFk(x) if x ∈ S

⊥ if x /∈ S .

For security, we require that the circuit PRFS
k reveals no information about

PRFk(x) for points x /∈ S. From this point forward, we will omit reference to
the secret key k. We are interested in several classes of subsets S. A punctured
PRF is a constrained PRF for all sets whose complements are polynomial in size.
The PRF construction of Goldreich, Goldwasser, and Micali [GGM86] satisfies
this notion. An inverval constrained PRF allows sets of the form {1, . . . , �} and
{�′, . . . , D} where the domain is {1, . . . , D}. The construction of [GGM86] also
satisfies this stronger notion. We also consider constrained PRFs for circuit pred-
icates, where S consists of all sets accepted by polynomial-sized circuits. Boneh
and Waters [BW13] show how to build a constrained PRF for circuit predicates
using multilinear maps. In the full version [BZ14], we show that such PRFs can
also be built from indistinguishability obfuscation and any punctured PRF.

3 Key Exchange from Indistinguishability Obfuscation

In this section, we show how to realize multiparty non-interactive key exchange
(NIKE) from general indistinguishability obfuscation. Intuitively, a NIKE proto-
col allows a group of users to simultaneously publish a single message, and all will
derive the same shared group key. The first such protocols [BS03, GGH13a, CLT13]
are based on multilinear maps. Our construction, based on a generic iO obfuscator,
has the following properties:

– Using a punctured pseudorandom function, our protocol achieves a static
notion of security, similar to existing protocols.

– Using a constrained pseudorandom function for circuit predicates, our pro-
tocol achieves a stronger notion of security called semi-static security. We
show in the full version [BZ14] how to use iO to construct constrained pseu-
dorandom functions for circuit predicates from any secure puncturable PRF.

Multiparty Key Exchange, Efficient Traitor Tracing, and More from IO 489

– While our base protocol requires a trusted setup phase, our setup phase can
be run independently of the messages sent by users. In the full version [BZ14]
we use this property to remove the setup phase altogether, arriving at the
first NIKE protocol without trusted setup. We provide protocols for both
static and semi-static security.

We begin by first defining NIKE protocols and their security. To setup the NIKE
protocol for N users, run a procedure Setup(λ, N), which outputs public parame-
ters params. Then each party i ∈ [N] runs a publish algorithm Publish(params, i),
which generates two values: a user secret key ski and a user public value pvi. User
i keeps ski as his secret, and publishes pvi to the other users. Finally, each user
runs a key generation algorithm KeyGen(params, i, ski, {pvj}j∈[N]) using their
secret and all other user’s public values, which outputs a shared key k.

For correctness, we require that each user derives the same secret key. That
is, for all i, i′ ∈ [N],

KeyGen(params, i, ski, {pvj}j∈[N]) = KeyGen(params, i′, ski′ , {pvj}j∈[N])

For security, here we only consider a static notion of security. In the full
version [BZ14], we also consider a stronger semi-static security notion. Fix a
bit b, and consider the following experiment. The challenger runs params ←
Setup(λ, N). For i ∈ [N], the challenger also runs (ski, pvi) ← Publish(params, i).
Set k0 = KeyGen(params, 1, ski, {pvj}j∈[N]) and k1 ← K. Give the adversary
{pvj}j∈[N], kb. For b = 0, 1 let Wb be the event that b′ = 1 and define AdvKE(λ) =
| Pr[W0] − Pr[W1]|.
Definition 1. A multiparty key exchange protocol (Setup,Publish,KeyGen) is
statically secure if, for any polynomials N , and any PPT adversary A, the func-
tion AdvKE(λ) is negligible.

3.1 Our Construction

We now build a multiparty non-interactive key exchange (NIKE) from indistin-
guishability obfuscation and pseudorandom generators. The idea is the following:
each party generates a seed si as their secret key, and publishes xi = PRG(si) as
their public value, where PRG is a pseudorandom generator. In the setup-phase,
a key k is chosen for a punctured pseudorandom function PRF. The shared secret
key will be the function PRF evaluated at the concatenation of the samples xi.
To allow the parties to compute the key, the setup will publish an obfuscated
program for PRF which requires knowledge of a seed to operate. In this way,
each of the parties can compute the key, but anyone else will not know any of
the seeds, and will therefore be unable to compute the key.

The construction is as follows:

Construction 1. LetPRF be a constrained pseudorandom function, and let PRG :
{0, 1}λ → {0, 1}2λ be a pseudorandom generator. Let iO be a program indistin-
guishability obfuscator.

490 D. Boneh and M. Zhandry

– Setup(λ, G, N): Sets up the key exchange protocol supporting at most N users
and allowing any group of at most G users to compute a shared secret key.
Choose a random key to obtain an instance of a pseudorandom function PRF.
Build the program PKE in Figure 2, padded to the appropriate length1. Also
choose a random x0 ∈ {0, 1}2λ. Output PiO = iO(PKE) and x0 as the public
parameters.

– Publish(λ): Party i chooses a random seed si ∈ {0, 1}λ as a secret key, and
publish xi = PRG(si)

– KeyGen(PiO, x0, i, si, S, {xi}i∈S): Abort if |S| > G or i /∈ S. Let S(j) denote
the jth index in S, and S−1(k) for k ∈ S be the inverse. Let

x̂j =

{
xS(j) if j ≤ |S|
x0 if j > |S|

Run PiO on (x̂1, ..., x̂G, S−1(i), si) to obtain k = PRF(x̂1, ..., x̂G) or ⊥.

Inputs: x̂1, . . . x̂G ∈ XG, i ∈ [G], s ∈ S
Constants: PRF

1. If x̂i �= PRG(s), output ⊥
2. Otherwise, output PRF(x̂1, x̂2, . . . , x̂G)

Fig. 2. The program PKE (same as Figure 1)

Correctness is trivial by inspection. For security, we consider two cases. If PRF
is a punctured PRF, then we get static security. If PRF is a constrained PRF for
circuit predicates, then our construction actually achieves a semi-static notion
of security (as defined in the full version [BZ14]). Security is summarized by the
following theorem:

Theorem 2. If PRG is a secure pseudorandom generator, PRF a secure punc-
tured PRF, and iO a secure indistinguishability obfuscator, then Construction 1
is a statically secure NIKE. If, in addition, PRF is a secure constrained PRF for
circuit predicates, then Construction 1 is semi-statically secure.

Removing trusted setup. Before proving Theorem 2, notice that if the adver-
sary is able to learn the random coins used by Setup, he will be able to break
the scheme. All prior key exchange protocols [GGH13a, CLT13] also suffer from
this weakness. However, note that, unlike previous protocols, Publish does not
depend on params. This allows us to remove trusted setup as follows: each user

1 To prove security, we will replace PKE with the obfuscation of another program P ′
KE ,

which may be larger than PKE . In order for the obfuscations to be indistinguishable,
both programs must have the same size.

Multiparty Key Exchange, Efficient Traitor Tracing, and More from IO 491

runs both Setup and Publish, and publishes their own public parameters paramsi

along with xi. Then in KeyGen, choose some paramsi in a canonical way (say,
corresponding smallest xi when treated as an integer), and run the original key
exchange protocol using params = paramsi. Now there is no setup, and static
security follows from the static security of the original scheme. However, in the
full version [BZ14] we show that semi-static does not follow. Instead, in the full
version we give a modified construction that achieves semi-static security.

The proof of Theorem 2 is given in the full version [BZ14]. Here we sketch the
main idea:

Proof sketch. For simplicity, assume G = N , though it is easy to generalize
to N > G. In the static security game, the challenger draws N random seeds s∗

i ,
and lets x∗

i = PRG(s∗
i). It also constructs an obfuscation of the program PKE in

Figure 2. Then it gives this obfuscation, all of the x∗
i , and a challenge key k∗ to

the adversary A. A then outputs its guess for whether k∗ = PRF(x∗
1, . . . , x∗

N) or
not. We first slightly change the game by choosing the x∗

i uniformly at random
in {0, 1}2λ. The security of PRG shows that this modification at most negligibly
changes A’s advantage. Because the image of PRG is so much bigger than its
domain, with high probability, none of the x∗

i are in the image of PRG. Thus, we
can modify PKE to obtain a new program P ′

KE that aborts whenever an input xi

equals x∗
i for some i and this does not change the functionality of PKE . Now P ′

KE

never evaluates PRF on the point (x∗
1, . . . , x∗

N), so we can puncture PRF at that
point, and include only the punctured program in P ′

KE . The indistinguishability
of obfuscations shows that these modifications are undetectable by A. We can
simulate the view of A using only the punctured PRF, and A still succeeds with
non-negligible probability. However, A now distinguishes the correct value of PRF
at the puncture point from a truly random value, violating the security of PRF.
For semi-static security, we need to puncture PRF at all points corresponding to
the various subsets the adversary may challenge on, which we do using a PRF
for circuit predicates. 	

4 Traitor Tracing with Small Parameters

In this section, we present a private linear broadcast encryption (PLBE) scheme,
which has short ciphertexts, secret keys, and public keys. Boneh, Sahai, and
Waters [BSW06] show that this implies a fully collusion resistant traitor tracing
system with the same parameters.

Our approach gives a more general primitive called a recipient private broad-
cast system. Informally, a recipient private broadcast system allows the broad-
caster to broadcast a message to a subset of N users. For security, we require
that any user outside of the recipient set cannot learn the message, and each user
only learns one bit of information about the recipient set: whether or not they
are in it. We give a formal definition in the full version [BZ14]. Private linear
broadcast encryption is recipient broadcast encryption where the only recipient
sets allowed are ∅ = [0], [1], . . . , [N].

492 D. Boneh and M. Zhandry

To setup a PLBE scheme for N users, run a setup procedure Setup(λ, N),
which outputs public parameters params and user secret keys {ski}i∈[N] for each
user. Distribute ski to user i. To encrypt to a set [j], run an encryption algorithm
Enc(params, j) to obtain a header Hdr and message encryption key k. Use k to
encrypt the message, and broadcast Hdr along with the resulting ciphertext. A
user i ≤ j decrypts by running Dec(params, ski,Hdr), which outputs the message
encryption key that can be used to actually decrypt the ciphertext.

For correctness, we require that any encryption to a set [i] can be decrypted by
any user in [j]. In other words, if (Hdr, k) ← Enc(params, j), then Dec(params, ski,
Hdr) = k for i ≤ j.

For security, we have two experiments: semantic security and recipient privacy.
For semantic security, fix a bit b and consider the following experiment. The
adversary commits to a set [j]. The challenger then runs params, {ski}i∈[N] ←
G(λ, N), and then gives params as well as the secret keys {ski}i>j for users not
in [j] to the adversary. The challenger also runs (Hdr, k0) ← Enc(params, j), and
generates k1 ← K, and gives Hdr, kb. The adversary outputs a guess b′ for b. For
b = 0, 1 let Wb be the event that b′ = 1 and PLBE(adv)

SS (λ) = | Pr[W0] − Pr[W1]|.
For recipient privacy, also fix a bit b. The adversary commits to a user i∗.

The challenger runs params, {ski}i∈[N] ← G(λ, N), and gives params as well as
the secret keys {ski}i�=i∗ for all users except i∗ to the adversary. The challenger
also runs (Hdr, k) ← Enc(params, i∗ − b) and gives Hdr to the adversary. The
adversary outputs a guess b′ for b. For b = 0, 1 let Wb be the event that b′ = 1
and PLBE(adv)

RP (λ) = | Pr[W0] − Pr[W1]|.
Definition 2. A private linear broadcast (PLBE) scheme (Setup,Publish,
KeyGen) is secure if, for any polynomials N , and any PPT adversary A, the
functions PLBE(adv)SS (λ) and PLBE(adv)RP (λ) are negligible.

4.1 Private Broadcast Encryption: First Construction
Construction overview. Since a broadcast ciphertext should reveal as little as
possible about the recipient set S our plan is to embed an encryption of the
set S in the broadcast ciphertext. The public-key will contain an obfuscated
program that decrypts the encrypted recipient set S and then outputs a message
decryption key only if the recipient can prove it is a member of S. However,
encrypting the set S so that we can prove security using iO is non-trivial, and
requires a certain type of encryption system.

In more detail, each user’s private key will be a random seed si, and we let
xi = PRG(si) as in the previous section. We need to allow user i to learn the
message decryption key for all sets S containing i. To that end, we include in
the public key an obfuscated program that takes three inputs: an encrypted
recipient set, an index i, and a seed si. The program decrypts the encrypted
set, checks that the index i is in the set, and that the seed si is correct for that
index (i.e. xi = PRG(si)). If all the checks pass, the program evaluates some
pseudorandom function on the ciphertext to obtain the message decryption key
and outputs that key.

Multiparty Key Exchange, Efficient Traitor Tracing, and More from IO 493

We immediately see a problem with the description above: the obfuscated
program must, at a minimum, have each of the xi embedded in it, making
the program and hence the public key linear in size. To keep the public key
short, we instead generate the seeds si using a pseudorandom function PRFsk:
si = PRFsk(i). We then have the program compute the xi on the fly as xi =
PRG(PRFsk(i)).

Another problem with the above description is that encrypting the recipient
set S using a generic CPA-secure encryption scheme is insufficient for providing
recipient privacy. The problem is that ciphertexts may be malleable: an attacker
may be able to transform an encryption of a set S containing user i into an
encryption of a set S′ containing user j instead (that is, j is in S′ if and only if
i is in S). Now the attacker can use user j’s secret key to decrypt the broadcast
ciphertext. If decryption succeeds the attacker learns that user i is in the original
ciphertext’s recipient set, despite not having user i’s secret key. This violates
recipient privacy.

To solve this problem, we authenticate the encrypted recipient set using a
message authentication code (MAC). However, proving security is a bit chal-
lenging because the decryption program must include the secret MAC key, and
we need to ensure that this key does not leak to the attacker. We do so by imple-
menting the MAC using a constrained PRF that supports interval constraints.
We then prove that this is sufficient to thwart the aforementioned malleability
attacks and allows us to prove security of the scheme.

We now present our private linear broadcast construction (i.e. the case where
S = LinN). We first present a private-key variant, where a secret broadcast
key is required to encrypt. In the full version [BZ14], we show how to make the
system public-key. We discuss extending this construction to other set systems
at the end of the section.

Construction 3. Our traitor tracing scheme consists of three algorithms
(Setup,Enc,Dec) defined as follows:

– Setup(λ, N): Let PRFenc : {0, 1}2λ → [N] and PRFkey : {0, 1}2λ ×{0, . . . , N}
→ {0, 1}λ be punctured PRFs and PRFmac : {0, 1}2λ × {0, . . . , N} → {0, 1}λ

and PRFsk : [N] → {0, 1}λ be interval constrained PRFs. Let si ← PRFsk(i)
for each i ∈ [N]. Let PT T −Dec be the program in Figure 3, padded to the
appropriate length. User i’s secret key is si, and the public parameters are
params = PDec = iO(PT T −Dec).

– Enc((PRFenc,PRFmac,PRFkey), [j]): Pick a random r ∈ {0, 1}2λ, and let
c1 ← PRFenc(r) + j mod (N + 1). Let c2 ← PRFmac(r, c1). Finally, let
k ← PRFkey(r, c1). Output (Hdr = (r, c1, c2), k).

– Dec(params, si, i, r, c): Run k ← PDec(r, c, si, i).

A public-key system. As described, our scheme requires a secret broadcast key in
order to encrypt. However, using the trick of Sahai and Waters [SW13], we show
in the full version [BZ14] how to include in the public parameters an obfuscated
program that allows anyone to encrypt.

494 D. Boneh and M. Zhandry

Inputs: r, c1, c2, s, i
Constants: PRFenc,PRFmac,PRFkey ,PRFsk

1. Let j ← c1 − PRF1(r) mod (N + 1)
2. Let x ← PRG(PRFsk(i))
3. Let y ← PRG(PRFmac(r, c1))
4. Check that PRG(s) = x, PRG(c2) = y, and i ≤ j. If check fails, output ⊥ and

stop
5. Otherwise, output PRFkey(r, c1)

Fig. 3. The program PTT−Dec

In our public key scheme, secret keys have length λ, and ciphertexts have
size 3λ + log(N + 1). The public key consists of two obfuscated programs. The
size of these programs is only dependent polylogarithmically on the number of
users, so the obfuscated programs will have size poly(log N, λ). Therefore, we
simultaneously achieve small ciphertexts, secret keys, and public keys. Security
is given by the following theorem:

Theorem 4. If PRFenc and PRFkey are secure punctured PRFs, PRFmac and
PRFsk are secure interval constrained PRFs, and PRG is a secure pseudoran-
dom generator, then (Setup,Enc,Dec) in Construction 3 is an adaptively secure
private linear broadcast encryption scheme.

The proof is given in the full version [BZ14]. Here we sketch the main ideas:

Proof sketch. We must prove that our scheme is both semantically secure and
has recipient privacy. For semantic security, the adversary A commits to a set
[j∗], and receives the secret keys si for all i > j∗. A also receives the obfuscation
of PT T −Dec, as well as a challenge (r∗, c∗

1, c∗
2) that is an encryption to the set

[j∗], and a key k∗. A must distinguish the correct k∗ from random. Our first
step is to modify PT T −Dec by puncturing PRFsk at each key that A does not
receive, and hard-code the values xi = PRG(PRFsk(i)) into PT T −Dec so that is
correctly decrypts all valid ciphertexts. This does not change the functionality
of PT T −Dec. We then replace these xi with random values in {0, 1}2λ, and the
security of PRFsk and PRG shows that this change is undetectable by A. Now,
with overwhelming probability, none of the xi for i ≤ j∗ are in the image of
PRG, so we can modify PT T −Dec to abort if i ≤ j∗. On the challenge ciphertext,
j = j∗, the PT T −Dec will also abort if i > j∗, meaning PT T −Dec will always
abort. Therefore, we can puncture PRFkey at (r∗, c∗

1) without modifying the
functionality of PT T −Dec. The indistinguishability of obfuscations shows that
these changes are undetectable. However, A now distinguishes the correct value
of PRFkey ad (r∗, c∗

1) from random, violating the security of PRFkey . One problem
with the above proof is that hard-coding all xi into PT T −Dec expands its size
considerably. We show in the full version [BZ14] how to puncture PRFsk, one
user at a time, using a sequence of hybrids while keeping PT T −Dec small.

Multiparty Key Exchange, Efficient Traitor Tracing, and More from IO 495

For recipient privacy, the proof is more complicated but similar. Here, A
commits to a j∗, and receives all secret keys except those for user j∗ and
and encryption to the set [j∗ − b] for some b ∈ {0, 1}. A must determine
b. Similar to the semantic security case, we puncture PRFsk at j∗ and re-
place xj∗ = PRG(PRFsk(j∗)) with a truly random value in {0, 1}2λ, and then
modify PT T −Dec so that it aborts if i = j∗. Now we puncture PRFmac at all
points (r∗, c1), and hard-code yc1 = PRG(PRFmac(r∗, c1)) into PT T −Dec. For
each c1 �= c∗

1, we replace yc1 with a truly random value in {0, 1}2λ. Similar to
the semantic security proof, we have to puncture iteratively in order to keep
the program size small. At this point, the only (r∗, c1, c2) that authenticates is
the challenge ciphertext itself. This means we can puncture PRFenc at r∗, and
hard-code the necessary values to decrypt the challenge ciphertext, including
z∗ = PRFenc(r∗). The security of PRFenc shows that we can replace z∗ with
a truly random value. At this point, c∗

1 = j∗ − b + z∗. As we show in the full
version [BZ14], in the b = 0 case, we can replace z∗ with z∗ −1 without changing
the functionality of PT T −Dec. However, moving to z∗ − 1 also moves us to the
b = 1 case, meaning that A actually breaks the indistinguishability of obfusca-
tions. 	

4.2 Extension to Other Set Systems

Construction 3 easily extends the other classes of recipient sets — for exam-
ple, the set of all subsets of [N], or the subsets of size exactly r. Ciphertexts
will simply be an encryption of (the description of) the recipient set, and the
obfuscated program will output the PRF applied to the ciphertext only if the
user can supply a valid seed for one of the users in the set. However, now the
number of possible recipient sets is exponential, and consequently our security
reduction becomes non-polynomial. In the full version [BZ14], we give a different
construction that has a polynomial security proof for these classes of recipient
sets. However, the public key size becomes NO(1).

Acknowledgments. This work is supported by NSF, DARPA, IARPA, and
others, as listed in the full version.

References

[BBW06] Barth, A., Boneh, D., Waters, B.: Privacy in encrypted content distribu-
tion using private broadcast encryption. In: Di Crescenzo, G., Rubin, A.
(eds.) FC 2006. LNCS, vol. 4107, pp. 52–64. Springer, Heidelberg (2006)

[BGI+01] Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan,
S.P., Yang, K.: On the (Im)possibility of obfuscating programs. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg
(2001)

[BGI13] Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudoran-
dom functions. Cryptology ePrint Archive, Report 2013/401 (2013)

496 D. Boneh and M. Zhandry

[BGK+13] Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting ob-
fuscation against algebraic attacks. Cryptology ePrint Archive, Report
2013/631 (2013), http://eprint.iacr.org/

[BGW05] Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast en-
cryption with short ciphertexts and private keys. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg
(2005)

[BN08] Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext.
In: ACM Conference on Computer and Communications Security,
pp. 501–510 (2008)

[BR13a] Brakerski, Z., Rothblum, G.N.: Black-box obfuscation for d-cnfs. Cryptol-
ogy ePrint Archive, Report 2013/557 (2013), http://eprint.iacr.org/

[BR13b] Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all cir-
cuits via generic graded encoding. Cryptology ePrint Archive, Report
2013/563 (2013), http://eprint.iacr.org/

[BS03] Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptog-
raphy. Contemporary Mathematics 324, 71–90 (2003)

[BSW06] Boneh, D., Sahai, A., Waters, B.: Fully Collusion Resistant Traitor Trac-
ing with Short Ciphertexts and Private Keys. In: Vaudenay, S. (ed.)
EUROCRYPT 2006. LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg
(2006)

[BW06] Boneh, D., Waters, B.: A fully collusion resistant broadcast trace and
revoke system with public traceability. In: ACM Conference on Computer
and Communication Security, CCS (2006)

[BW13] Boneh, D., Waters, B.: Constrained Pseudorandom Functions and Their
Applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II.
LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013)

[BWZ14] Boneh, D., Waters, B., Zhandry, M.: Low overhead broadcast encryption
from multilinear maps. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014, Part I. LNCS, vol. 8616, pp. 206–223. Springer, Heidelberg (2014)

[BZ14] Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor trac-
ing, and more from indistinguishability obfuscation. Full version available
at the Cryptology ePrint Archives http://eprint.iacr.org/2013/642.

[Can97] Canetti, R.: Towards realizing random oracles: Hash functions that hide
all partial information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS,
vol. 1294, pp. 455–469. Springer, Heidelberg (1997)

[CFN94] Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)

[CLT13] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical Multilinear Maps over
the Integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013)

[CMR98] Canetti, R., Micciancio, D., Reingold, O.: Perfectly One-Way Probabilis-
tic Hash Functions. In: Proc. of STOC 1998, pp. 131–140 (1998)

[CPP05] Chabanne, H., Phan, D.H., Pointcheval, D.: Public traceability in traitor
tracing schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 542–558. Springer, Heidelberg (2005)

[CRV10] Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of hyperplane mem-
bership. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 72–89.
Springer, Heidelberg (2010)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2013/642

Multiparty Key Exchange, Efficient Traitor Tracing, and More from IO 497

[Del07] Delerablée, C.: Identity-Based Broadcast Encryption with Constant Size
Ciphertexts and Private Keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 200–215. Springer, Heidelberg (2007)

[DF02] Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless re-
ceivers. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80.
Springer, Heidelberg (2003)

[DF03] Dodis, Y., Fazio, N.: Public key broadcast encryption secure against
adaptive chosen ciphertext attack. In: Desmedt, Y.G. (ed.) PKC 2003.
LNCS, vol. 2567, pp. 100–115. Springer, Heidelberg (2002)

[DNR+09] Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., Vadhan, S.: On the
complexity of differentially private data release: efficient algorithms and
hardness results. In: Proceedings of STOC 2009 (2009)

[DPP07] Delerablée, C., Paillier, P., Pointcheval, D.: Fully collusion secure dy-
namic broadcast encryption with constant-size ciphertexts or decryption
keys. In: Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.)
Pairing 2007. LNCS, vol. 4575, pp. 39–59. Springer, Heidelberg (2007)

[FHKP13] Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive
key exchange. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS,
vol. 7778, pp. 254–271. Springer, Heidelberg (2013)

[FHPS13] Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable
Hash Functions in the Multilinear Setting. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 513–530. Springer,
Heidelberg (2013)

[FN94] Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.)
CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

[FP12] Fazio, N., Perera, I.M.: Outsider-anonymous broadcast encryption with
sublinear ciphertexts. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.)
PKC 2012. LNCS, vol. 7293, pp. 225–242. Springer, Heidelberg (2012)

[Fre10] Freeman, D.M.: Converting pairing-based cryptosystems from composite-
order groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 44–61. Springer, Heidelberg (2010)

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: Proc. of FOCS 2013 (2013)

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to Construct Random
Functions. Journal of the ACM (JACM) 33(4), 792–807 (1986)

[GKSW10] Garg, S., Kumarasubramanian, A., Sahai, A., Waters, B.: Building ef-
ficient fully collusion-resilient traitor tracing and revocation schemes.
In: ACM Conference on Computer and Communications Security,
pp. 121–130 (2010)

[GR07] Goldwasser, S., Rothblum, G.N.: On best-possible obfuscation. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 194–213. Springer, Hei-
delberg (2007)

[GST04] Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient tree-based revocation
in groups of low-state devices. In: Franklin, M. (ed.) CRYPTO 2004.
LNCS, vol. 3152, pp. 511–527. Springer, Heidelberg (2004)

498 D. Boneh and M. Zhandry

[GW09] Gentry, C., Waters, B.: Adaptive security in broadcast encryption sys-
tems (with short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 171–188. Springer, Heidelberg (2009)

[HS02] Halevy, D., Shamir, A.: The LSD broadcast encryption scheme. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidel-
berg (2002)

[HSW13] Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: Full
domain hash from indistinguishability obfuscation. Cryptology ePrint
Archive, Report 2013/509 (2013)

[Jou04] Joux, A.: A One Round Protocol for Tripartite Diffie-Hellman. Journal
of Cryptology 17(4), 263–276 (2004)

[KPTZ13] Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Dele-
gatable pseudorandom functions and applications. In: Proceedings ACM
CCS (2013)

[KRW13] Koppula, V., Ramchen, K., Waters, B.: Separations in circular secu-
rity for arbitrary length key cycles. Cryptology ePrint Archive, Report
2013/683 (2013), http://eprint.iacr.org/

[KS13] Kiayias, A., Samari, K.: Lower bounds for private broadcast encryp-
tion. In: Kirchner, M., Ghosal, D. (eds.) IH 2012. LNCS, vol. 7692,
pp. 176–190. Springer, Heidelberg (2013)

[KY02] Kiayias, A., Yung, M.: Breaking and repairing asymmetric public-key
traitor tracing. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696,
pp. 32–50. Springer, Heidelberg (2003)

[LPQ12] Libert, B., Paterson, K.G., Quaglia, E.A.: Anonymous broadcast encryp-
tion: Adaptive security and efficient constructions in the standard model.
In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 206–224. Springer, Heidelberg (2012)

[LPS04] Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for
obfuscation. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 20–39. Springer, Heidelberg (2004)

[LSW10] Lewko, A.B., Sahai, A., Waters, B.: Revocation systems with very small
private keys. In: IEEE Symposium on Security and Privacy, pp. 273–285
(2010)

[MR13] Moran, T., Rosen, A.: There is no indistinguishability obfuscation in
pessiland. Cryptology ePrint Archive, Report 2013/643 (2013),
http://eprint.iacr.org/

[NNL01] Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for
stateless receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 41–62. Springer, Heidelberg (2001)

[NP00] Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Frankel, Y.
(ed.) FC 2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)

[Pfi96] Pfitzmann, B.: Trials of traced traitors. In: Anderson, R. (ed.) IH 1996.
LNCS, vol. 1174, pp. 49–64. Springer, Heidelberg (1996)

[PW97] Pfitzmann, B., Waidner, M.: Asymmetric fingerprinting for larger collu-
sions. In: Proceedings of the ACM Conference on Computer and Com-
munication Security, pp. 151–160 (1997)

[SF07] Sakai, R., Furukawa, J.: Identity-Based Broadcast Encryption. IACR
Cryptology ePrint Archive (2007)

[Sir07] Sirvent, T.: Traitor tracing scheme with constant ciphertext rate against
powerful pirates. In: Workshop on Coding and Cryptography (2007)

http://eprint.iacr.org/
http://eprint.iacr.org/

Multiparty Key Exchange, Efficient Traitor Tracing, and More from IO 499

[SW13] Sahai, A., Waters, B.: How to Use Indistinguishability Obfuscation: Deni-
able Encryption, and More. Cryptology ePrint Archive, Report 2013/454
(2013), http://eprint.iacr.org/

[Ull13] Ullman, J.: Answering n{2+o(1)} counting queries with differential privacy
is hard. In: STOC, pp. 361–370 (2013)

[Wee05] Wee, H.: On obfuscating point functions. In: Proc. of STOC 2005, p. 523
(2005)

[WHI01] Watanabe, Y., Hanaoka, G., Imai, H.: Efficient asymmetric public-key
traitor tracing without trusted agents. In: Naccache, D. (ed.) CT-RSA
2001. LNCS, vol. 2020, pp. 392–407. Springer, Heidelberg (2001)

http://eprint.iacr.org/

	Multiparty Key Exchange, Efficient Traitor Tracing, and More from Indistinguishability Obfuscation
	1 Introduction
	1.1 Multiparty Non-Interactive Key Exchange
	1.2 Broadcast Encryption
	1.3 Recipient-Private Broadcast Encryption
	1.4 Traitor Tracing with Short Ciphertexts, Secret Keys, and Public Keys
	1.5 Related Work

	2 Preliminaries: Definitions and Notation
	3 Key Exchange from Indistinguishability Obfuscation
	3.1 Our Construction

	4 Traitor Tracing with Small Parameters
	4.1 Private Broadcast Encryption: First Construction
	4.2 Extension to Other Set Systems

	References

