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Abstract. We investigate structure-preserving signatures in asymmet-
ric bilinear groups with an efficiently computable homomorphism from
one source group to the other, i.e., the Type II setting. It has been shown
that in the Type I and Type III settings, structure-preserving signatures
need at least 2 verification equations and 3 group elements. It is therefore
natural to conjecture that this would also be required in the intermediate
Type II setting, but surprisingly this turns out not to be the case. We
construct structure-preserving signatures in the Type II setting that only
require a single verification equation and consist of only 2 group elements.
This shows that the Type II setting with partial asymmetry is different
from the other two settings in a way that permits the construction of
cryptographic schemes with unique properties.

Wealso investigate lower bounds on the size of the public verification key
in the Type II setting. Previous work on structure-preserving signatures
has explored lower bounds on the number of verification equations and the
number of group elements in a signature but the size of the verification key
has not been investigated before. We show that in the Type II setting it is
necessary to have at least 2 group elements in the public verification key in
a signature scheme with a single verification equation.

Our constructions match the lower bounds so they are optimal with re-
spect to verification complexity, signature sizes and verification key sizes.
In fact, in terms of verification complexity, they are the most efficient
structure preserving signature schemes to date.

We give two structure-preserving signature schemes with a single verifi-
cation equation where both the signatures and the public verification keys
consist of two group elements each. One signature scheme is strongly exis-
tentially unforgeable, the other is fully randomizable. Having such simple
and elegant structure-preserving signatures may make the Type II setting
the easiest to use when designing new structure-preserving cryptographic
schemes, and lead to schemes with the greatest conceptual simplicity.
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1 Introduction

Structure-preserving signatures [3] are pairing-based signatures that consist of
group elements and are verified by testing equality of products of pairings of group
elements. They are useful building blocks in modular design of cryptographic pro-
tocols, in particular in combination with non-interactive zero-knowledge (NIZK)
proofs of knowledge about group elements [22]. There are numerous applications
of structure-preserving signatures, such as blind signatures [3,17], group sig-
natures [3,17,26], homomorphic signatures [25,9], delegatable anonymous cre-
dentials [16], compact verifiable shuffles [14], network encoding [8], oblivious
transfer [20,12], tightly secure encryption [23,2], anonymous e-cash [28], etc.

Galbraith, Paterson and Smart [18] classify pairings e : G1 × G2 → GT into
three types depending on whether G1 = G2 (Type I), or there is an efficiently
computable homomorphism ψ : G2 → G1 (Type II), or there is no efficiently
computable homomorphism in either direction between G1 and G2 (Type III).
Structure-preserving signatures have been analyzed in the symmetric Type I set-
ting [4] and in the fully asymmetric Type III setting [7], and in both cases it has
been shown that a structure-preserving signatures requires at least 2 verification
equations and 3 group elements in the signatures.

It is thus natural to conjecture that 2 verification equations and 3 group ele-
ments would be needed in the intermediate Type II setting as well; and indeed
this is the case if the messages belong to G1. However, when the messages belong
to G2 we find the conjecture to be false, and give constructions of structure-
preserving signatures with only one verification equation and 2 group elements
in the signatures. This is significant from a high level pairing-based cryptography
perspective, as it provides a concrete example of a property that can be obtained
in the Type II setting but not in the other settings. Therefore, contrary to ex-
pectations, we settle Chatterjee and Menezes’ open question of whether schemes
based on Type II pairings can always be converted to Type III pairings at no
efficiency loss [15] in the negative.

Having a single verification equation make the structure-preserving signature
schemes quite efficient. As we discuss in Sect. 2.1 even though Type III pair-
ings are more efficient in some respects with current techniques (certain group
elements have a more compact representation), Type II pairings are compet-
itive, especially in terms of speed. Our proposed scheme is the most efficient
construction to date in terms of verification complexity. Furthermore, with only
one verification equation, structure-preserving signatures become conceptually
simpler and easier to use for the designer of cryptographic schemes. Groth-Sahai
proofs for the Type II setting [22,19] also incur a smaller overhead when there
is only one verification equation.

We give two constructions of structure-preserving signatures. One is random-
izable, which means that a signature on a message can be randomized to look
like a new fresh signature on the message. This randomization is useful because
it ensures that one of the group elements in the signature is uniformly ran-
dom, which is a convenient feature when building anonymization protocols: this
random group element can be revealed in the clear without showing what the
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Table 1. Most efficient structure-preserving signatures schemes for all three types of
pairings, in terms of signature size, verification key size and number of verification
equations. Boldface values are known to be optimal for their respective pairing types.
Verification key size is inclusive of group elements that can be shared in a common
reference string used by all signers.

Setting Signature Verification key Equations

Type III [4] 3 2 2
Type I [7] 3 3 2
Type II (this work) 2 2 1

original signature was. In other contexts, it is desirable that the signature can-
not be tampered with, and our second construction satisfies this property: it is
strongly unforgeable.

Prior work has explored lower bounds in the Type I and Type III settings, and
established that 2 verification equations are required, and that signatures must
consist of at least 3 group elements in both of those cases [4,7]. A third dimension
of efficiency is the size of the verification key of the signature scheme. In this
paper, we obtain the first lower bounds on verification key size in the literature
on structure-preserving signatures: in the Type II setting, a verification key for
a single verification equation signature scheme must have at least two group
elements. A summary of the best known constructions and efficiency bounds for
all three types of pairings is provided in Table 1.

Related Work. The term “structure-preserving signatures” was first intro-
duced by Abe et al. [3], but the notion appears in earlier works as well. Groth [21]
proposed the first structure-preserving signature scheme, but the construction
involves hundreds of group elements and is not practical. Green and Hohen-
berger [20] constructed a structure-preserving signature scheme secure against
random message attacks but which is not known to be secure against adaptive
chosen message attacks. Cathalo, Libert and Yung [13] constructed a signature
scheme that is structure-preserving in a relaxed sense that permits the verifica-
tion key to include target group elements. Hofheinz and Jager [23] and Abe et
al. [1,2] investigated the possibility of basing structure-preserving signatures on
standard assumptions. They proposed structure-preserving signatures based on
the decision linear (DLIN) assumption. The use of a nice security assumption,
however, comes at the price of reduced efficiency.

Abe et al. [4] showed that structure-preserving signatures in Type III bilinear
groups require at least 3 group elements and 2 verification equations. They also
gave structure-preserving signatures matching those bounds that are secure in
the generic bilinear group model.

Abe et al. [5] later showed that 3-element signatures cannot be proved secure
under a non-interactive assumption using black-box reductions, so strong assump-
tions are needed to get optimal efficiency in the Type III setting. It is an open
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question whether a similar impossibility of basing optimal structure-preserving
signatures on non-interactive assumptions also holds in the Type II setting (we
conjecture it does). However, to get a more conservative non-interactive assump-
tion wemodify our first structure-preserving signature scheme in the full version of
this paper [6] to base it on a standard non-interactive hardness assumption. The
modification requires adding an extra group element to the verification key and
the signature but the scheme still has only a single verification equation.

Recently Abe et al. [7] investigated the symmetric setting (Type I) and found
that the same lower bound of 3 group elements and 2 verification equations
applies. They also presented a unified structure-preserving signature scheme
working in all three types of settings and meeting this bound, which means a
structure-preserving signature scheme with 3 group elements and 2 verification
equations exists (and is the best construction published so far) in the Type II
setting we investigate. They also considered the question of verification key size
and their scheme requires 3 additional elements in addition to the description
of the bilinear group. However, two of these group elements can be fixed in a
common reference string together with the description of the bilinear group and
may therefore be reused by structure-preserving signature schemes leaving only
one variable group element in the verification key. It is an open question whether
such a technique applies in the Type II setting.

2 Preliminaries

2.1 Bilinear Groups

Let G be a bilinear group generator, which given the security parameter k returns
a bilinear group description (p,G1,G2,GT , e, ψ,G,H) ← G(1k) such that

– G1,G2,GT are cyclic groups of order p, which is a k-bit prime
– ψ : G2 → G1 is a homomorphism such that ψ(H) = G, hence ψ(Ha) = Ga

for all a ∈ Z

– G generates G1, H generates G2 and e(G,H) generates GT

– e : G1 × G2 → GT is a bilinear map, i.e., e(Ga, Hb) = e(G,H)ab for all
a, b ∈ Z

– There are efficient algorithms for computing group operations, evaluating
the homomorphism ψ and the bilinear map e, comparing group elements
and deciding membership of the groups

Generic Algorithms. In a bilinear group (p,G1,G2,GT , e, ψ,G,H) generated
by G we refer to deciding group membership, computing group operations in G1,
G2 or GT , comparing group elements and evaluating the homomorphism or the
bilinear map as the generic bilinear group operations. The signature schemes we
construct only use generic bilinear group operations.

As a matter of notation, we will use capital letters G,H,M,R, S, T, U, V,W
for group elements in G1 and G2. We will use small letters 1,m, r, s, t, u, v, w for
the corresponding discrete logarithms of group elements with respect to base G
or H .
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Type II Pairings. Galbraith, Paterson and Smart [18] classify bilinear groups
into three types according to the efficient morphisms that exist between the
source groups G1 and G2. Type I pairings have G1 = G2 and G = H , i.e., ψ
is the identity function (or equivalently, it is an efficiently computable and effi-
ciently invertible isomorphism). Type II pairings have an efficiently computable
isomorphism ψ from one source group to the other but none in the reverse direc-
tion. Type III pairings have no efficiently computable isomorphism from either
source group to the other, i.e., in the definition given above ψ would not be effi-
ciently computable. We will throughout this paper work in the Type II setting.

Type II pairings are usually constructed from the same type of pairing-friendly
ordinary elliptic curves as Type III pairings. In contrast with Type III pairings,
however, G2 is then chosen as some subgroup of order p in the p-torsion of the
curve other than the trace-zero subgroup (and the homomorphism ψ is then
the trace map). As a result, there is no efficient way to hash to G2 in the
Type II setting, but this is of course an irrelevant feature for structure-preserving
cryptographic schemes since they only rely on the structure-preserving generic
operations and avoid structure-destroying primitives such as cryptographic hash
functions.

In terms of efficiency, Type II pairings compare quite favorably to Type I
pairings (especially at higher security levels, and particularly now that low-
characteristic pairings are known to be broken [24,10]), and are close to Type III
pairings: in fact, a Type II pairing computation can be reduced to a Type III
one at the cost of one multiplication in G1 [18, Note 10]. The size of the repre-
sentation of elements in G1 is also the same in the Type II and Type III settings,
and usually much smaller than in Type I pairings. However, Type II pairings
do not support compression using twists for elements in G2, and hence their
representation tends to be larger than in the Type III setting (by a factor of 1
to 6 depending on the embedding degree), and arithmetic in G2 is accordingly
slower.

This has prompted suggestions, for example by Chatterjee and Menezes [15],
that Type II pairings were “merely less efficient implementations of Type III
pairings”, and that cryptographic schemes designed in the Type II setting should
adapt to the Type III setting at the cost of slightly different security proofs or
assumptions. The present paper shows that this belief is incorrect, in the sense
that certain Type II primitives (viz. structure-preserving signatures with a single
verification equation) have no secure counterpart in the Type III setting.

2.2 Secure Signature Schemes

A digital signature scheme (with setup algorithm P) is a quadruple of efficient
algorithms (P ,K,S,V). The setup algorithm P takes the security parameter and
outputs a public parameter PP . The key generation algorithm K takes PP as
input and returns a public verification key VK and a secret signing key SK. We
will always assume that V K includes PP and that SK includes V K. The signing
algorithm S takes a signing key SK and a message M in the message space M
defined by PP and V K as input and returns a signature Σ. The verification
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algorithm V takes the verification key V K, a message M and the signature Σ
and returns either 1 (accept) or 0 (reject).

Definition 1 (Correctness). We say the signature scheme (P ,K,S,V) is cor-
rect if for all probabilistic polynomial time adversaries A

Pr

⎡
⎢⎢⎣
PP ← P(1k)
(V K, SK) ← K(PP )
M ← A(SK)
Σ ← SSK(M)

: M ∈ M ∧ VVK(M,Σ) = 1

⎤
⎥⎥⎦ = 1− negl(k).

We say the signature scheme is perfectly correct if the probability is exactly 1.

All the signature schemes we construct will have perfect correctness. The lower
bounds on the other hand will hold even for signature schemes that are only
computationally correct as defined above.

A signature scheme is said to be existentially unforgeable if it is hard to
forge a signature on a new message that has not been signed before. The ad-
versary may see signatures on other messages before making the forgery. We
distinguish between a random message attack (RMA), where the adversary gets
pairs of random messages and corresponding signatures, and an adaptive chosen
message attack (CMA) where the adversary can choose arbitrary messages and
receive signatures on them. Our signature schemes will be existentially unforge-
able against the strong adaptive chosen message attack, but our lower bounds
on the complexity of signature schemes will hold even for the weaker random
message attacks.

Definition 2 (EUF-CMA). A signature scheme (P ,K,S,V) is existentially un-
forgeable under adaptive chosen message attack if for all non-uniform polynomial
time A

Pr

⎡
⎣
PP ← P(1k)
(V K, SK) ← K(PP )
(M,Σ) ← ASSK(·)(V K)

: M /∈ Q ∧ VV K(M,Σ) = 1

⎤
⎦ = negl(k),

where Q is the set of queries made by A to the signing oracle.

Sometimes it is also useful to prevent the adversary from issuing a new signa-
ture for a message that has already been signed. A signature scheme is strongly
existentially unforgeable if it is hard to find a signature on a message that has not
been signed before and also hard to find a new signature for a message that has
already been signed. This notion, denoted by sEUF-CMA, is formally captured
in the same way as the definition of EUF-CMA except for additionally requiring
(M,Σ) /∈ Q where Q is the set of message-signature pairs from A’s queries to
the signing oracle.

We get the definition for existential unforgeability against random message
attack (EUF-RMA) by modifying the signing oracle to picking M ← M at ran-
dom, computing Σ ← SSK(M) and returning (M,Σ) to the adversary whenever
the signing oracle is queried.
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Corresponding security notions for one-time signature schemes can be ob-
tained by restricting the adversary to only calling the signing oracle once in the
above definitions.

Randomizable Signatures. In some applications it is desirable to have ran-
domizable signatures, i.e., given a signature it is possible to randomize it such
that it looks like a fresh signature on the message. The randomization is carried
out by a randomization algorithm R that takes as input a verification key V K,
a message M and a signature Σ and returns a randomized signature Σ.

Definition 3 (Randomizability). A signature scheme (P ,K,S,V) is said to
be (perfectly) randomizable if there exists a randomization algorithm R such that
for all k ∈ N and all interactive adversaries A

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

PP ← P(1k)
(V K, SK) ← K(PP )
(M,Σ) ← A(SK)
Σ0 ← SSK(M)
Σ1 ← RVK(M,Σ)
b ← {0, 1}

: VVK(M,Σ) = 1 ∧ A(Σb) = b

⎤
⎥⎥⎥⎥⎥⎥⎦
≤ 1

2
.

2.3 Structure-Preserving Signature Schemes

We study structure-preserving signature schemes [3] on bilinear groups generated
by group generator G. In a structure preserving signature scheme the verification
key, the messages and the signatures consist only of group elements from G1

and G2 and the verification algorithm evaluates the signature by deciding group
membership of elements in the signature, using the homomorphism ψ and by
evaluating pairing product equations, which are equations of the form

∏
i

∏
j

e(Xi, Yj)
aij = 1,

where X1, X2, . . . ∈ G1, Y1, Y2, . . . ∈ G2 are group elements appearing in PP ,
V K, M and Σ and a11, a12, . . . ∈ Zp are constants stored in PP . Structure-
preserving signatures are extremely versatile because they mix well with other
pairing-based protocols. Groth-Sahai proofs [22] are for instance designed with
pairing product equations in mind and can therefore easily be applied to
structure-preserving signatures.

Definition 4 (Structure-preserving signatures). A signature scheme (P,
K, S, V) is said to be structure preserving over bilinear group generator G if

– PP includes a bilinear group (p,G1,G2,GT , e, ψ,G,H) generated by G, group
elements in G1 and G2, and constants in Zp,

– the verification key consists of PP and group elements in G1 and G2,
– the messages consist of group elements in G1 and G2,
– the signatures consist of group elements in G1 and G2, and
– the verification algorithm only needs to decide membership in G1 and G2,

use the homomorphism ψ, and evaluate pairing product equations.
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Generic signer. Abe et al. [3] did not explicitly require the signing algorithm
to only use generic group operations when they defined structure-preserving
signatures. However, all existing structure-preserving signatures in the literature
have generic signing algorithms and we believe it would be a surprising result
in itself to construct a structure-preserving signature with a non-generic signer.
Our constructions have generic signer algorithms and some of our lower bounds
will assume the signer is generic.

3 Randomizable Structure-Preserving Signatures

We will now show that in the Type II setting it is possible to construct an
EUF-CMA secure structure-preserving signature scheme with a single verification
equation. This is surprising since both in the symmetric Type I setting and the
fully asymmetric Type III setting structure-preserving signature schemes require
at least two verification equations [4,7].

The signature scheme is given in Fig. 1. It has a single verification equation
and both signatures and verification keys consist of two group elements. This is
optimal with respect to both verification complexity, signature size and verifica-
tion key size as we demonstrate in Sect. 5.

As an additional benefit, the signature scheme is perfectly randomizable. We
show a simple randomization algorithm that converts a signature into a new
randomized signature that looks exactly like a fresh signature on the message.
It is worth observing that while the natural formalization of randomizability
gives both the message and the signature to the randomization algorithm our
randomization algorithm does not need the message and simply ignores it and
randomizes the signature directly. There may be applications where this is a
feature.

The signature scheme is designed with Groth-Sahai proofs in mind. If we
randomize a signature, we may reveal the random group element R without
this leaking any information about the message or the original signature from
which the randomized signature was derived. When R is public the verification
equation become linear, which makes Groth-Sahai proofs very efficient.

It is easy to see that the signature scheme is perfectly correct. Randomized
signatures are perfectly indistinguishable from real signatures since both types of
signatures are uniquely determined by the uniformly random non-trivial group
element R. We will now prove that the signature scheme is existentially unforge-
able under adaptive chosen message attack.

Theorem 1. The signature scheme in Fig. 1 is EUF-CMA secure in the generic
bilinear group model.

Proof. A generic adversary only uses generic group operations. This means that
in G1 and G2 it can only compute linear combinations of group elements from
the verification key and the signatures it has seen and use the map ψ to map
elements from G2 to G1. Linear combinations on verification key elements and
signature elements correspond to formal polynomials (of degree ranging from
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Setup P(1k): Return PP = (p,G1,G2,GT , e, ψ,G,H) ← G(1k).
Key generation K(PP): Choose v, w ← Zp and compute the keys V K =

(PP , V,W ) and SK = (PP , v, w) as

V ← Gv W ← Gw.

Signing SSK(M): On M ∈ G2 choose r ← Zp and compute signature Σ = (R,S)
as

R ← Hr S ← MvHr2+w.

Randomization RV K(M, (R,S)): Pick α ← Z
∗
p and compute the randomized

signature Σ′ = (R′, S′) as

R′ ← RHα S′ ← SR2αHα2

.

Verification VV K(M, (R,S)): Accept if and only if M,R, S ∈ G2 and

e(G,S) = e(V,M)e(ψ(R),R)e(W,H).

Fig. 1. Randomizable structure-preserving signature scheme for messages in G2

0 to q + 1 after q signature queries) in the discrete logarithms of the group
elements. We will show that no linear combinations produce formal polynomials
corresponding to a forgery. By the master theorem in [11] this means that the
signature scheme is secure in the generic bilinear group model.

The group elements in V K are G, V,W ∈ G1 and H ∈ G2 with corresponding
discrete logarithms 1, v, w and 1. On a query Mi with discrete logarithm mi

from the adversary, the signature oracle responds with a signature (Ri, Si) with
discrete logarithms

ri ← Z
∗
p si = vmi + r2i + w.

Suppose the adversary after q queries constructs (M, (R,S)) in G2. Since the
adversary is generic it can only construct them in G2 such that the discrete
logarithms m, r, s are linear combinations of 1, r1, s1, . . . , rq, sq, i.e.,

m =μ+

q∑
i=1

μriri +

q∑
i=1

μsi(vmi + r2i + w),

r =ρ+

q∑
i=1

ρriri +

q∑
i=1

ρsi(vmi + r2i + w),

s =σ +

q∑
i=1

σriri +

q∑
i=1

σsi(vmi + r2i + w).

Similarly, the discrete logarithm mi of a signing query is a linear combination
of 1, r1, s1, . . . , ri−1, si−1.

We will show that the signature scheme is EUF-CMA secure, i.e., an adversary
cannot construct a valid signature (R,S) on M where the discrete logarithms
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m, r, s satisfy the verification equation

s = vm+ r2 + w

unless it reuses M = Mj from a previous query.
We can write s = vm+ r2 + w as

σ +

q∑
i=1

(
σriri + σsi(vmi + r2i + w)

)
− v

(
μ+

q∑
i=1

μriri + μsi(vmi + r2i + w)

)

=

(
ρ+

q∑
i=1

ρriri +

q∑
i=1

ρsi(vmi + r2i + w)

)2

+ w.

We first look at the terms r4i . Observe that all elements m, r, s,m1, . . . ,mq con-
structed using generic bilinear group operations in G2, i.e., linear combinations
of the discrete logarithms, can only have degree 0, 1 or 2 in ri. This shows that
each term r4i has coefficient 0 in s − vm. On the other side of the verification
equation each term r4i has coefficient ρ2si . Therefore ρsi = 0 for all i = 1, . . . , q.

In s−vm the coefficients of all combinations rirj are 0 for i �= j. On the other
side of the verification equation in the product r2 they have coefficients ρriρrj .
This means for all i �= j we have ρriρrj = 0 and therefore there can be at most
one ρrj �= 0. We now have r = ρ+ ρrjrj giving us that s = vm+ r2 + w can be
written as

σ +

q∑
i=1

σriri +

q∑
i=1

σsi(vmi + r2i + w)

= v

(
μ+

q∑
i=1

μriri +

q∑
i=1

μsi(vmi + r2i + w)

)
+
(
ρ+ ρrjrj

)2
+ w

for some j ∈ {1, . . . , q}.
Comparing the coefficients of r2i from the two sides of the verification equation

we get σsj = ρ2rj and σsi = 0 for i �= j. The coefficients of w on the two sides
of the verification equation gives us σsj = 1. Then the verification equation is
described as

vmj + r2j + σ +

q∑
i=1

σriri + w

= v

(
μ+

q∑
i=1

μriri +

q∑
i=1

μsi(vmi + r2i + w)

)
+
(
ρ+ ρrjrj

)2
+ w

for some j ∈ {1, . . . , q}.
Looking at coefficient of terms that involve v we then get vmj = vm, which

shows us m = mj and therefore M = Mj . �	
In some cases it is desirable to sign many group elements at once. The sig-

nature scheme we presented can easily be modified to sign n group elements at
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once by changing the verification equation to:

e(G,S) =
n∏

i=1

e(Vi,Mi)e(ψ(R), R)e(W,H)

and modifying the key generation and signing processes accordingly. The security
proof for the generalized scheme is virtually the same as the proof for Theorem 1.

4 Strongly Unforgeable Structure-Preserving Signatures

For some applications it is desirable to use a strongly existentially unforgeable
signature scheme. It is in general harder to get strong unforgeability because now
also the signatures have to be immutable, but we will present a construction that
preserves optimality with respect to verification complexity, signature size and
verification key size.

Fig. 2 gives a structure-preserving signature scheme with a single verification
equation, 2 element verification keys and 2 element signatures. It is easy to
see that it is perfectly correct. Signature verification requires only two pairing
evaluations (not counting the constant factor e(G,H)), which makes this scheme
the most efficient structure preserving signature so far in terms of verification
complexity (faster than all previous Type I and Type III constructions by a
significant margin). In the full version of this paper [6], we prove that it is
strongly existentially unforgeable under adaptive chosen message attack.

Theorem 2. The signature scheme in Fig. 2 is sEUF-CMA secure in the generic
bilinear group model.

5 Lower Bounds in the Type II Setting

We will now establish lower bounds for the complexity of structure-preserving
signature schemes in the Type II setting. Unlike the Type I and the Type III

Setup P(1k): Return PP = (p,G1,G2,GT , e, ψ,G,H) ← G(1k).
Key generation K(PP): Choose v, w ← Zp and compute V K = (PP , V,W ) and

SK = (PP , v, w) using

V ← Gv W ← Gw.

Signing SSK(M): On M ∈ G2 choose t ← Z
∗
p and compute signature Σ = (R,S)

as
R ← Ht−w S ← M

v
t H

1
t .

Verification VV K(M, (R,S)): Accept if and only if M,R, S ∈ G2 and

e(Wψ(R), S) = e(V,M)e(G,H).

Fig. 2. Strong structure-preserving signature scheme for messages in G2
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settings where two verification equation are needed we have already seen in
Sections 3 and 4 that it is possible to use only one verification equation in the
Type II setting. However, these signature schemes only work for messages in
G2. We start by showing this is necessarily so, a structure-preserving signature
scheme for messages in G1 cannot have a single verification equation.

Theorem 3. A structure-preserving signature scheme for messages in G1 must
have at least two verification equations. This holds even for one-time signatures
with security against random message attack.

Proof. Suppose we have a structure-preserving signature scheme with a single
verification equation for messages in G1. We will construct a one-time random
message attack on the scheme. The attacker queries the signing oracle and get
a signature on a random message M ∈ G1. Let S be a group element in the
signature that appears non-trivially in the verification equation.

If S ∈ G1 we can write the verification equation as e(M,X) = e(S, Y )Z
where X,Y, Z are expression that do not include any M or S terms. We now
have e(Mψ(Y ), X) = e(Sψ(X), Y )Z, which means replacing the group element
S with S∗ = Sψ(X) in the signature gives us a forgery on M∗ = Mψ(Y ).

If S ∈ G2 we can write the verification equation as e(M,SaX)·e(ψ(S)bY, S) =
Z for some a, b ∈ Zp and expressions X,Y, Z that do not have any M or S terms.

Pick r ← Z∗
p and defineΔ = (SaX)

1
r . Replace S with S∗ = SΔ to get a signature

on M∗ = M(Maψ(Δ)bY ψ(S)2b)−
1

a+r . For the signature to be non-trivial in M
we must have SaX �= 1 with overwhelming probability, giving us that Δ is
uniformly random in G∗

1 and, therefore, that M∗ �= M with high probability, so
we do obtain a forgery. �	

With Theorem 3 in mind, we will in the rest of this section only consider
structure-preserving signatures on M ∈ G2. We will now show our main result
in this section, which is that the verification key must have at least two group
elements. The following theorem follows as a corollary to Lemmata 1, 2 and 3.

Theorem 4. A structure-preserving signature scheme with a single verification
equation and a generic signer must have at least two group elements in the verifi-
cation key. This holds even for one-time signatures secure under random message
attack.

Lemma 1. A structure-preserving signature for M ∈ G2 with a single verifica-
tion equation cannot have a non-redundant signature element S ∈ G1. This holds
even for one-time signatures with security under random message attack.

Proof. We will construct an one-time random message attack similar to the one
for the proof of Theorem 3 with the roles of M and S reversed. The attacker
queries the signing oracle and gets a signature on a random message M ∈ G2.
Let S ∈ G1 be an element in the signature that appears non-trivially in the
verification equation, i.e., it does not have negligible probability of being paired
with 1.
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We can write the verification equation as e(S,MaX) · e(ψ(M)bY,M) = Z for
some a, b ∈ Zp and expressions X,Y, Z that do not have any M or S terms.

Pick r ← Z∗
p and define Δ = (MaX)

1
r . Replace S in the signature with S∗ =

S(Saψ(Δ)bY ψ(M)2b)−
1

a+r to get a signature on M∗ = MΔ. For the signature
scheme to be non-redundant in S the probability of MaX �= 1 has to be non-
negligible and in that case Δ is uniformly random in G∗

1, giving us M∗ �= M so
that we do obtain a forgery. �	
Lemma 2. There is no structure-preserving signature for M ∈ G2 with a single
verification equation and a key consisting of a single group element V ∈ G2. This
holds even for one-time signatures with security under random message attack.

Proof. From Lemma 1 we can without loss of generality consider only signature
schemes where all signature elements belong to G2. A group element S ∈ G2

from the signature appears as e(ψ(S), SaX) in the verification equation, where
X is an expression that does not contain an S-term. If a �= 0 we can substitute
S with S′ = SX

1
2a to get the simpler term e(ψ(S′), S′)a in the verification

equation. Moreover, if a = 0 but X involves another signature element T b for
b �= 0 we can by substituting T with T ′ = TS−1 get a term e(ψ(S), Sa′

) with
a′ = b �= 0. Using these two diagonalization techniques we can without loss
of generality write the single verification equation for the structure-preserving
signature (S1, . . . , Sn) ∈ Gn

2 on M ∈ G2 as

e(ψ(M),MaX)
∏
i∈I

e(ψ(Si),M
biYi) ·

∏
j∈J

e(ψ(Sj), Sj)
cj = Z,

where I, J are disjoint subsets of {1, . . . , n}, bi �= 0, Yi �= 1 or both for each i ∈ I,
cj �= 0 for each j ∈ J , and X,Yi and Z are expressions that only involve constant
terms and the verification key.

The adversary starts by getting a signature (S1, . . . , Sn) on a random message
M . If I �= ∅ we can use the method from the proof of Lemma 1 to modify Si

into S∗
i giving a forgery on M∗ �= M . If I = ∅ and a = 0 we can use the method

from the proof of Theorem 3 to obtain a forgery on a message M∗ �= M .
The remaining case is when I = ∅ and a �= 0, i.e., the verification equation is

e(ψ(M),MaX) ·
∏
j∈J

e(ψ(Sj), Sj)
cj = Z,

with a �= 0 and each cj �= 0. But in this case the equation can be seen as
a quadratic equation in M with two solutions. The signature on M is also a
signature on M∗ = M−1X− 1

a . This gives us an existential forgery unless M∗ =
M , which only happens in the unlikely event that X = M−2a. �	
Lemma 3. There is no structure-preserving signature for M ∈ G2 with a single
verification equation, a generic signer and a verification key consisting of a single
group element V ∈ G1. This holds even for one-time signatures with security
under random message attack.
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Proof. As in the proof of Theorem 2 we can rewrite the verification equation as

e(ψ(M),MaHx) ·
∏
i∈I

e(ψ(Si),M
biHyi)

·
∏
j∈J

e(ψ(Sj), Sj)
cj · e(V,Md

n∏
k=1

Sek
k Hf) = e(G,H)z ,

where I, J are disjoint subsets of {1, . . . , n}, x, yi, z ∈ Zp are constant terms,
bi �= 0, Yi �= 1 or ei �= 0 for each i ∈ I, and cj �= 0 for each j ∈ J . We will
consider three cases: all ek = 0 and d = 0 but f �= 0, all ek = 0 but d �= 0, and
without loss of generality e1 �= 0.

In the first case d = 0 and all ek = 0 but without loss of generality f =
1. The adversary makes a one-time random message attack to get a signature
(S1, . . . , Sn) on a random message M . We can now make an analysis similar to
the proof of Lemma 2 to create an existential forgery on a message M∗ �= M .

In the second case all ek = 0 but d �= 0. The adversary picks M = H− f
d

such that the e(V, ∗) part cancels out. If there is an i ∈ I such that M biHyi =

H−bi
f
d+yi �= 1, we can pick all other signature elements Sk = 1 for k �= i and since

we know all the discrete logarithm solve for the discrete logarithm si of Si to get

a signature on M = H
f
d . Else if there is no such i ∈ I, then we have an equation

in the discrete logarithms of the signature such that m(am+x)+
∑

j∈J cjs
2
j = z

with m = − d
f . By the completeness of the signature scheme, this equation is

solvable in the unknowns sj and can be efficiently solved [27], which gives us a
signature on M .

Finally, in the third case without loss of generality e1 �= 0. We can substitute

S1 with (Md
∏n

k=1 S
ek
k Hf )

− 1
e1 to get a structure-preserving signature scheme

with a verification equation of the form

e(ψ(M),MaHx) ·
∏

i∈I\{1}
e(ψ(Si),M

biHyi) ·
∏

j∈J\{1}
e(ψ(Sj), Sj)

cj

= e(V Gγψ(M)μ
∏

k∈I∪J

ψ(Sk)
σk , S1) · e(G,H)z,

for some μ, σk ∈ Zp and with suitable modifications of a, x, bi, yi and z.
Our strategy now is to pick S1 = 1 to eliminate the effect of the verification

key V . If there is a bi �= 0 or yi �= 0, we can pick m ← Zp at random and set

Sk = 1 for k �= i and Si = H
z−m(am+x)

bim+y to get a signature on M = Hm.
If all bi = yi = 0 but there is some j ∈ J\{1} where cj �= 0 we instead set Sk =

1 for k �= j and solve the bivariate quadratic m(am+ x) + cjs
2
j = z in Zp[m, sj ],

which can be done efficiently [27] unless a = x = 0 and cj and z �= 0 have different
quadratic residuosity. However, if a = x = 0 the adversary can use a one-time
random message to get a signature on M . The adversary picks r ← Z∗

p and

replaces Sj with S∗
j = SjS

r
k to get a signature on M∗ = MS

−2cjr
j S

−σj−cjr
2

k . For
the verification equation to be non-trivial in M , with overwhelming probability
Sk �= 1 and therefore M∗ �= M so we have an existential forgery.
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The remaining case is when both all bi = yi = 0 and all cj = 0, i.e., the
verification equation is

e(ψ(M),MaHx) = e(V Gγψ(M)μ
∏

k∈I∪J

ψ(Sk)
σk , S1) · e(G,H)z.

If z = 0 we immediately get a signature (1, . . . , 1) on the message M = 1, so let
us from now on consider the case where z �= 0.

If there is a σk �= 0 for k �= 1, we can substitute Sk with GγMμ
∏

�∈(I∪J) S
σ�

� to

get verification equation e(ψ(M),MaHx) = e(V Sk, S1)·e(G,H)z . The adversary
gets a signature on a randommessageM and replaces Sk with S∗

k = SkM
2aSa

1H
x

to get a signature on M∗ = MS1. With overwhelming probability S1 �= 1, since
otherwise the signature would not affect any part of the equation, giving us
M∗ �= M .

Finally, let us consider the case where we only have a single signature el-
ement S1 that is used in a non-trivial way, i.e., the verification equation is
e(ψ(M),MaHxS−μ

1 ) = e(V Gγψ(S1)
σ1 , S1) · e(G,H)z. If a �= 0 the attacker

can use a one-time random message attack to get a signature on a random
message M , which is also a signature on M∗ = M−1(HxS−μ

1 )−
1
a . We have

M∗ �= M unless Sμ
1 = M2aHx but since a and x are known to the adversary

this would mean the adversary could forge signatures on arbitrary messages. If
a = 0 and x �= 0 we can pick S1 = 1 to give us a signature on M = H

z
x .

Finally, if a = 0 and x = 0 we cannot sign the message using a generic signer.
A generic signer computes S1 = MαHβ using known α, β ∈ Zp and is unlikely
over the choice of the unknown discrete logarithm of M to solve the equality
−μ(αm+ β) = (v + γ + αm+ β)(αm+ β) + z unless it is possible to use α = 0,
in which case the signature is independent of M and therefore either invalid or
valid for every message. �	

We have now established a lower bound of 2 group elements in the verifica-
tion key for structure-preserving signatures with a single verification equation
and that this lower bound even holds for one-time random message attacks. In
the full version of this paper [6] we give a structure-preserving one-time signa-
ture where the signature is a single group element, so such a lower bound does
not hold for the signature size. However, if the adversary is allowed to obtain
multiple signatures on random messages we can establish a lower bound of 2
group elements for the signatures.

Theorem 5. A structure-preserving signature scheme with a generic signer that
is existentially unforgeable against random message attacks must have at least 2
group elements for messages in G2 and at least 3 group elements for messages
in G1.

Proof. Suppose that we have a structure-preserving signature scheme with just
one group element in the signature and a single verification equation. The ver-
ification equation can for any given message be seen as a quadratic or linear
equation in the discrete logarithm of the signature, so there are at most two
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potential signatures on the message. We conclude from Lemma 4 below that a
structure-preserving signature with a single verification equation must consist of
at least two group elements.

If there is more than one verification equation we now have two linear or
quadratic equations in the signature elements. For messages in G1 we know by
Theorem 3 that at least two verification equations are needed. Both equations
must place non-trivial constraints on the signature or else we could reduce to
a single verification equation. Again by Lemma 4, we therefore get that for
messages in G1 at least 3 signature elements are needed, since with one or two
group elements in the signature there would be at most 4 possible signatures
satisfying the verification equations. �	

Lemma 4. A structure-preserving signature scheme with a generic signer that is
existentially unforgeable against random message attacks must for each message
have a superpolynomial number of potential signatures.

Proof. Suppose that for a message M ∈ G2 there are only a polynomial num-
ber of signatures Σ = (R1, . . . , Rm, S1, . . . , Sn) ∈ Gm

1 × Gn
2 . Since the signer is

generic this means there is a set {(→α,
→
β ,

→
γ ,

→
δ )}poly(k)i=1 of vectors in (Zm

p )2×(Zn
p )

2

creating signature vectors Σ = (ψ(M)
→
αG

→
β ,M

→
γH

→
δ ) by entry-wise exponenti-

ation. Given signatures Σ0 and Σ1 on random messages M0 and M1 we have
1

poly(k)2 probability that they are constructed with the same (
→
α,

→
β ,

→
γ ,

→
δ ) pair.

In that case

Σ∗ = Σr
0Σ

1−r
1 =

(
ψ(M r

0M
1−r
1 )

→
αG

→
β , (M r

0M
1−r
1 )

→
γ
H

→
δ

)

is a signature on M∗ = M r
0M

1−r
1 for all r ∈ Zp. A similar proof applies to the

case where M ∈ G1. �	
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