
Dijkstra Monads in Monadic Computation

Bart Jacobs(B)

Institute for Computing and Information Sciences (iCIS),
Radboud University Nijmegen, Nijmegen, The Netherlands

bart@cs.ru.nl

http://www.cs.ru.nl/B.Jacobs

Abstract. The Dijkstra monad has been introduced recently for cap-
turing weakest precondition computations within the context of program
verification, supported by a theorem prover. Here we give a more general
description of such Dijkstra monads in a categorical setting. We first
elaborate the recently developed view on program semantics in terms
of a triangle of computations, state transformers, and predicate trans-
formers. Instantiations of this triangle for different monads T show how
to define the Dijkstra monad associated with T , via the logic involved.
Technically, we provide a morphism of monads from the state monad
transformation applied to T , to the Dijkstra monad associated with T .
This monad map is precisely the weakest precondition map in the trian-
gle, given in categorical terms by substitution.

1 Introduction

A monad is a categorical concept that is surprisingly useful in the theory of com-
putation. On the one hand it describes a form of computation (such as partial,
non-deterministic, or probabilistic), and on the other hand it captures various
algebraic structures. Technically, the computations are maps in the Kleisli cat-
egory of the monad, whereas the algebraic structures are described via the cat-
egory of so-called Eilenberg-Moore algebras. The Kleisli approach has become
common in program semantics and functional programming (notably in the lan-
guage Haskell), starting with the seminal paper [23]. The algebraic structure
captured by the monad exists on these programs (as Kleisli maps), technically
because the Kleisli category is enriched over the category of algebras.

Interestingly, the range of examples of monads has been extended recently
from computation to program logic. So-called Hoare monads [24,29] and Dijkstra
monads [28] have been defined in a systematic approach to program verification.
Via these monads one describes not only a program but also the associated
correctness assertions. These monads have been introduced in the language of
a theorem prover, but have not been investigated systematically from a cate-
gorical perspective. Here we do so for the Dijkstra monad. We generalise the
original definition from [28] and show that a “Dijkstra” monad can be associ-
ated with various well-known monads that are used for modelling computations.
(The Hoare monad will be mentioned briefly towards the end.)
c© IFIP International Federation for Information Processing 2014
M.M. Bonsangue (Ed.): CMCS 2014, LNCS 8446, pp. 135–150, 2014.
DOI: 10.1007/978-3-662-44124-4 8

136 B. Jacobs

Since the Dijkstra (and Hoare) monads combine both semantics and logic of
programs, we need to look at these two areas in a unified manner. From previous
work [13] (see also [12]) a view on program semantics and logic emerged involving
a triangle of the form:

Logop =
(

predicate
transformers

) ��
�

(
state

transformers

)
��

(
computations

)Pred

������������ Stat

������������
(1)

The three nodes in this diagram represent categories of which only the mor-
phisms are described. The arrows between these nodes are functors, where the
two arrows � at the top form an adjunction. The two triangles involved should
commute. In the case where two up-going “predicate” and “state” functors Pred
and Stat in (1) are full and faithful, we have three equivalent ways of describ-
ing computations. On morphisms, the predicate functor yields what is called
substitution in categorical logic, but what amounts to a weakest precondition
operation in program semantics.

The upper category on the left is of the form Logop, where Log is some
category of logical structures. The opposite category (−)op is needed because
predicate transformers operate in the reverse direction, taking a post-condition
to a precondition. In this paper we do not expand on the precise logical structure
involved (which connectives, which quantifiers, etc. in Log) and simply claim
that this ‘indexed category’ on the left is a model of some predicate logic. The
reason is that at this stage we don’t need more structure than ‘substitution’,
which is provided by the functoriality of Pred.

In a setting of quantum computation this translation back-and-forth � in (1)
is associated with the different approaches of Heisenberg (logic-based, working
backwards) and Schrödinger (state-based, working forwards), see e.g. [9]. In cer-
tain cases the adjunction � forms — or may be restricted to — an equivalence
of categories, yielding a duality situation. It shows the importance of duality
theory in program semantics and logic; this topic has a long history, going back
to [1].

Almost all of our examples of computations are given by maps in a Kleisli
category of a monad. In this monadic setting, the right-hand-side of the dia-
gram (1) is the full and faithful “comparison” functor K�(T) → EM(T), for the
monad T at hand. This functor embeds the Kleisli category in the category of
(Eilenberg-Moore) algebras. The left-hand-side takes the form K�(T) → Logop,
and forms an indexed category (or, if you like, a fibration), and thus a cate-
gorical model of predicate logic. The monad T captures computations as maps
in its Kleisli category. And via the predicate logic in (1) an associated monad
is defined (in Sect. 5) that captures predicate transformers. Therefore, this new
monad is called a “Dijkstra” monad, following [28].

Dijkstra Monads in Monadic Computation 137

We list the main points of this paper.

1. The paper explains the unified view on program semantics and logic as
given by the above triangle (1) by presenting many examples, involving non-
deterministic, partial, linear, probabilistic, and also quantum computation.
This involves some new results, like the adjunction for partial computation
in (5) in the next section.

2. Additionally, in many of these examples the enriched nature of these cate-
gories and functors is shown, capturing some essential compositional aspects
of the weakest precondition operation. The role of these enrichments resem-
bles the algebraic effects, see e.g. [25]; it goes beyond the topic of the current
paper, but definitely deserves further investigation.

3. A necessary step towards understanding the Dijkstra monad is made, by
simplifying previous accounts [28] and casting them in proper categorical
language.

4. Using this combined view on computations and logic, for the different monad
examples T in this paper, an associated “Dijkstra monad” DT is defined. This
definition depends on the logic Log that is used to reason about T , since
the monad is defined via a homset in this category Log. This logic-based
approach goes well beyond the particular logic that is used in the original
article [28], where the Dijkstra monad is introduced, since it now also applies
to for instance probabilistic computation, in various forms.

5. Once we have the Dijkstra monad DT associated with T we define a “map
of monads” ST ⇒ DT , where ST is the T -state monad, obtained by apply-
ing the state monad transformer to T . This map of monads is precisely the
weakest precondition operation (categorically: substitution). This operation
that is fundamental in the work of Dijkstra is thus captured neatly in cate-
gorical/monadic terms.

6. Finally, a general construction is presented that defines the Dijkstra monad
DT for an arbitrary monad T on Sets. A deeper understanding of the con-
struction requires a systematic account of how the categories “Log” in (1)
arise in general. This is still beyond current levels of understanding.

We assume that the reader is familiar with the basic concepts of category
theory, especially with the theory of monads. The organisation of the paper is as
follows: the first three Sects. 2–4 elaborate instances of the triangle (1) for non-
deterministic, linear & probabilistic, and quantum computation. Subsequently,
Sect. 5 shows how to obtain the Dijkstra monads for the different (concrete)
monad examples, and proves that weakest precondition computation forms a
map of monads. These examples are generalised in Sect. 6. Finally, Sect. 7 wraps
up with some concluding remarks.

2 Non-deterministic and Partial Computation

The powerset operation P(X) = {U | U ⊆ X} yields a monad P : Sets →
Sets with unit η = {−} given by singletons and multiplication μ =

⋃
by

138 B. Jacobs

union. The associated Kleisli category K�(P) is the category of sets and non-
deterministic functions X → P(Y), which may be identified with relations
R ⊆ X × Y . The category EM(P) of (Eilenberg-Moore) algebras is the cate-
gory CL∨ of complete lattices and join-preserving functions. In this situation
diagram (1) takes the form:

(
CL∧

)op ��∼= CL∨ = EM(P)��

K�(P)

Pred

���������� Stat

����������
(2)

where CL∧ is the category of complete lattices and meet-preserving maps. The
isomorphism ∼= arises because each join-preserving map between complete lat-
tices corresponds to a meet-preserving map in the other direction. The upgoing
“state” functor Stat on the right is the standard full and faithful functor from
the Kleisli category of a monad to its category of algebras. The predicate func-
tor Pred : K�(P) → (CL∧)op on the left sends a set X to the powerset P(X) of
predicates/subsets, as complete lattices; a Kleisli map f : X → P(Y) yields a
map:

P(Y)
f∗=Pred(f) 		 P(X) given by (Q ⊆ Y) �−→ {x | f(x) ⊆ Q}. (3)

In categorical logic, this Pred(f) is often written as f∗, and called a substitution
functor. In modal logic one may write it as �f . In the current context we also
write it as wp(f), since it forms the weakest precondition operation for f , see [4].
Clearly, it preserves arbitrary meets (intersections). It is not hard to see that
the triangle (2) commutes.

Interestingly, the diagram (2) involves additional structure on homsets. If we
have a collection of parallel maps fi in K�(P), we can take their (pointwise) join∨

i∈I fi. Pre- and post-composition preserves such joins. This means that the
Kleisli category K�(P) is enriched over the category CL∨. The category CL∨

is monoidal closed, and thus enriched over itself. Also the category (CL∧)op

is enriched over CL∨, with joins given by pointwise intersections. Further, the
functors in (2) are enriched over CL∨, which means that they preserve these joins
on posets. In short, the triangle is a diagram in the category of categories enriched
over CL∨. In particular, the predicate functor is enriched, which amounts to
the familiar law for non-deterministic choice in weakest precondition reasoning:
wp(

∨
i fi) =

∧
i wp(fi).

A less standard monad for non-determinism is the ultrafilter monad U : Sets →
Sets. A convenient way to describe it, at least in the current setting, is:

U(X) = BA
(P(X), 2

)
= {f : P(X) → 2 | f is a map of Boolean algebras}.

For a finite set X one has X
∼=→ U(X).

Dijkstra Monads in Monadic Computation 139

A famous result of [19] says that the category of algebras of U is the cate-
gory CH of compact Hausdorff spaces (and continuous functions). It yields the
following triangle.

BAop

Spec=Hom(−,2)

� CH = EM(U)

Clopen

��

K�(U)
Pred

���������� Stat

���������

(4)

The predicate functor Pred sends a set X to the Boolean algebra P(X) of
subsets of X. For a map f : X → U(Y) we get f∗ : P(Y) → P(X) by f∗(Q) =
{x | f(x)(Q) = 1}. This functor Pred is full and faithful, almost by construction.

The precise enrichment in this case is unclear. Enrichment over (compact
Hausdorff) spaces, if present, is not so interesting because it does not provide
algebraic structure on computations.

We briefly look at the lift (or “maybe”) monad L : Sets → Sets, given by
L(X) = 1 + X. Its Kleisli category K�(L) is the category of sets and partial
functions. And its (equivalent) category of algebra EM(L) is the category Sets•
of pointed sets, (X, •X), where •X ∈ X is a distinguished element; morphisms
in Sets• are “strict”, in the sense that they preserve such points. There is then
a situation:

(ACL∨•,∧)op
��� Sets• = EM(L)��

K�(L)
Pred

��������� Stat

��								
(5)

We call a complete lattice atomic if (1) each element is the join of atoms below
it, and (2) binary meets ∧ distribute over arbitrary joins

∨
. Recall that an atom

a is a non-bottom element satisfying x < a ⇒ x = ⊥. We write At(L) ⊆ L
for the subset of atoms. In such an atomic lattice atoms a are completely join-
irreducible: for a non-empty index set I, if a ≤ ∨

i∈I xi then a ≤ xi for some
i ∈ I.

The category ACL∨•,∧ contains atomic complete lattices, with maps pre-
serving non-empty joins (written as

∨
•) and binary meets ∧. Each Kleisli map

f : X → L(Y) = {⊥} ∪ Y yields a substitution map f∗ : P(Y) → P(X) by
f∗(Q) = {x | ∀y. f(x) = y ⇒ Q(y)}. This f∗ preserves ∧ and non-empty joins∨

•. Notice that f∗(∅) = {x | f(x) = ⊥}, which need not be empty.
The adjunction (ACL∨•,∧)op � Sets• amounts to a bijective correspon-

dence:

L
f 		 P(X − •) in (ACL∨•,∧)op

==================
X g

		 {⊥} ∪ At(L) in Sets•

140 B. Jacobs

This correspondence works as follows. Given f : L → P(X − •) notice that
X = f(�) = f(

∨
At(L)) =

⋃
a∈At(L) f(a). Hence for each x ∈ X there is an

atom a with x ∈ f(a). We define f : X → {⊥} ∪ At(L) as:

f(x) =
{

a if x ∈ f(a) − f(⊥)
⊥ otherwise.

This is well-defined: if x is both in f(a) − f(⊥) and in f(a′) − f(⊥), for a �= a′,
then x ∈ (f(a) ∩ f(a′)) − f(⊥) = f(a ∧ a′) − f(⊥) = f(⊥) − f(⊥) = ∅.

In the other direction, given g : X → {⊥} ∪ At(L), define for y ∈ L,

g(y) = {x ∈ X | ∃a ∈ At(L). a ≤ y and g(x) = a} ∪ {x ∈ X − • | g(x) = ⊥}.

It is not hard to see that this yields a commuting triangle (5), and that the
(upgoing) functors are full and faithful.

3 Linear and (sub)Convex Computation

We sketch two important sources for linear and (sub)convex structures.

1. If A is a matrix, say over the real numbers R, then the set of solution vectors
v of the associated homogeneous equation Av = 0 forms a linear space: it
is closed under finite additions and scalar multiplication. For a fixed vector
b �= 0, the solutions v of the non-homogeneous equation Ax = b form a
convex set: it is closed under convex combinations

∑
i rivi of solutions vi and

“probability” scalars ri ∈ [0, 1] with
∑

i ri = 1. Finally, for b ≥ 0, the solutions
v to the inequality Av ≤ b are closed under subconvex combinations

∑
i rivi

with
∑

i ri ≤ 1. These examples typically occur in linear programming.
2. If V is a vector space of some sort, we can consider the space of linear functions

f : V → R to the real (or complex) numbers. This space is linear again, via
pointwise definitions. Now if V contains a unit 1, we can impose an additional
requirement that such functions f : V → R are ‘unital’, i.e. satisfy f(1) = 1.
This yields a convex set of functions, where

∑
i rifi again preserves the unit,

if
∑

i ri = 1. If we require only 0 ≤ f(1) ≤ 1, making f ‘subunital’, we get a
subconvex set. These requirements typically occur in a setting of probability
measures.

Taking (formal) linear and (sub)convex combinations over a set yields the
structure of a monad. We start by recalling the definitions of these (three) mon-
ads, namely the multiset monad MR, the distribution monad D, and the sub-
distribution monad D≤1, see [12] for more details. A semiring is given by a set R
which carries a commutative monoid structure (+, 0), and also another monoid
structure (·, 1) which distributes over (+, 0). As is well-known [11], each such
semiring R gives rise to a multiset monad MR : Sets → Sets, where:

MR(X) = {ϕ : X → R | supp(ϕ) is finite},

Dijkstra Monads in Monadic Computation 141

where supp(ϕ) = {x ∈ X | ϕ(x) �= 0} is the support of ϕ. Such ϕ ∈ MR(X) may
also be written as finite formal sum ϕ =

∑
i si|xi 〉 where supp(ϕ) = {x1, . . . , xn}

and si = ϕ(xi) ∈ R is the multiplicity of xi ∈ X. The “ket” notation |x〉 for
x ∈ X is just syntactic sugar. The unit of the monad is given by η(x) = 1|x〉
and its multiplication by μ(

∑
i si|ϕi 〉) =

∑
x(

∑
i si · ϕi(x))|x〉.

The distribution monad D : Sets → Sets is defined similarly. It maps a set
X to the set of finite formal convex combinations over X, as in:

D(X) = {ϕ : X → [0, 1] | supp(ϕ) is finite, and
∑

x ϕ(x) = 1}
= {r1|x1 〉 + · · · + rn|xn 〉 | xi ∈ X, ri ∈ [0, 1] with

∑
i ri = 1}.

The unit η and multiplication μ for D are as for MR. We consider another
variation, namely the subdistribution monad D≤1, where D≤1(X) contains the
formal subconvex combinations

∑
i ri|xi 〉 where

∑
i ri ≤ 1. It has the same unit

and multiplication as D.
These three monads MR,D and D≤1 are used to capture different kinds of

computation, in the style of [23]. Maps (coalgebras) of the form c : X → MR(X)
capture “multi-computations”, which can be written in transition notation as
x

r−→ x′ if c(x)(x′) = r. This label r ∈ R can represent the time or cost of a
transition. Similarly, the monads D and D≤1 capture probabilistic computa-
tion: for coalgebras c : X → D(X) or c : X → D≤1(X) we can write x

r−→ x′ if
c(x)(x′) = r ∈ [0, 1] describes the probability of the transition x → x′.

The category EM(MR) of (Eilenberg-Moore) algebras of the multiset monad
MR contains the modules over the semiring R. Such a module is given by a
commutative monoid M = (M,+, 0) together with a scalar multiplication S ×
M → M which preserves (+, 0) in both arguments. More abstractly, if we write
CMon for the category of commutative monoids, then the semiring R is a
monoid in CMon, and the category ModR = EM(MR) of modules over R
is the category ActR(CMon) of R-actions R ⊗ M → M in CMon, see also [21,
VII§4]. For instance, for the semiring R = N of natural numbers we obtain
CMon = EM(MN) as associated category of algebras; for R = R or R = C

we obtain the categories VectR or VectC of vector spaces over real or complex
numbers; and for the Boolean semiring R = 2 = {0, 1} we get the category JSL
of join semi-lattices, since M2 is the finite powerset monad.

We shall write Conv = EM(D) for the category of convex sets. These are
sets X in which for each formal convex sum

∑
i ri|xi 〉 there is an actual convex

sum
∑

i rixi ∈ X. Morphisms in Conv preserve such convex sums, and are often
called affine functions. A convex set can be defined alternatively as a barycentric
algebra [27], see [10] for the connection. Similarly, we write Conv≤1 = EM(D≤1)
for the category of subconvex sets, in which subconvex sums exist.

For linear “multi” computation and computation the general diagram (1)
takes the following form, where ModR = EM(MR) and Conv = EM(D).

(ModR)op
Hom(−,R)

��� ModR = EM(MR)
Hom(−,R)

��

K�(MR)
R(−)

���������

��

(6)

142 B. Jacobs

The adjunction (ModR)op � ModR is given by the correspondence between
homomorphisms M → (N � R) and N → (M � R), where � is used for linear
function space. The predicate functor R(−) : K�(MR) → (ModR)op sends a set X
to the module RX of functions X → R, with pointwise operations. A Kleisli map
f : X → MR(Y) yields a map of modules f∗ = Rf : RY → RX by f∗(q)(x) =∑

y q(y) · f(x)(y). Like before, this f∗(q) may be understood as the weakest
precondition of the post-condition q. In one direction the triangle commutes:
Hom(MR(X), R) ∼= Sets(X,R) = RX since MR(X) is the free module on X.
Commutation in the other direction, that is Hom(RX , R) ∼= MR(X) holds for
finite sets X. Hence in order to get a commuting triangle we should restrict to
the full subcategory K�N(MR) ↪→ K�(MR) with objects n ∈ N, considered as
n-element set.

NowletRbeacommutative semiring.Thetriangle(6) is thenadiagramenriched
over ModR: the categories, functors, and natural transformations involved are all
enriched. Indeed, if the semiring R is commutative, then so is the monad MR, see
e.g. [12]; this implies thatModR ismonoidal closed, and in particular enriched over
itself. Similarly, the Kleisli category K�(MR) is then enriched over ModR.

In the probabilistic case one can choose to use a logic with classical predicates
(subsets, or characteristic functions) {0, 1}X or ‘fuzzy predicates’ [0, 1]X . These
options are captured in the following two triangles.

PreFrmop

Hom(−,{0,1})
��� Conv

Hom(−,{0,1})

�� EModop

Hom(−,[0,1])
��� Conv

Hom(−,[0,1])

��

K�(D)
{0,1}(−)

���������

����������
K�(D)

[0,1](−)

��

����������

(7)

The adjunctions both come from [12]. The one on the left is investigated further
in [20]. It uses the category PreFrm of preframes: posets with directed joins
and finite meets, distributing over these joins, see [16]. Indeed, for a Kleisli map
f : X → D(Y) we have a substitution functor f∗ : P(Y) → P(X) in PreFrm
given by f∗(Q) = wp(f)(Q) = {x ∈ X | supp(f(x)) ⊆ Q}. This f∗ preserves
directed joins because the support of f(x) ∈ D(Y) is finite.

The homsets PreFrm(X,Y) of preframe maps X → Y have finite meets
∧,�, which can be defined pointwise. As a result, these homsets are convex sets,
in a trivial manner: a sum

∑
i rihi is interpreted as

∧
i hi, where we implicitly

assume that ri > 0 for each i. With this in mind one can check that the triangle
on the left in (7) is enriched over Conv. It yields the rule wp(

∑
i rifi)(Q) =⋂

i wp(fi)(Q).
The situation on the right in (7) requires more explanation. We sketch the

essentials. A partial commutative monoid (PCM) is a given by a set M with a
partial binary operation � : M ×M → M which is commutative and associative,
in a suitable sense, and has a zero element 0 ∈ M . One writes x ⊥ y if x � y is
defined. A morphism f : M → N of PCMs satisfies: x ⊥ x′ implies f(x) ⊥ f(x′),
and then f(x � x′) = f(x) � f(x′). This yields a category which we shall write
as PCMon.

Dijkstra Monads in Monadic Computation 143

The unit interval [0, 1] is clearly a PCM, with r � r′ defined and equal to
r + r′ if r + r′ ≤ 1. With its multiplication operation this [0, 1] is a monoid
in the category PCMon, see [14] for details. We define a category PCMod =
Act[0,1](PCMon) of partial commutative modules; its objects are PCMs M with
an action [0, 1] × M → M , forming a homomorphism of PCMs in both coordi-
nates. These partial commutative modules are thus like vector spaces, except
that their addition is partial and their scalars are probabilities in [0, 1].

Example 1. Consider the set of partial functions from a set X to the unit interval
[0, 1]. Thus, for such a f : X ⇀ [0, 1] there is an output value f(x) ∈ [0, 1] only
for x ∈ X which are in the domain dom(f) ⊆ X. Obviously, one can define scalar
multiplication r • f , pointwise, without change of domain. We take the empty
function — nowhere defined, with empty domain — as zero element. Consider
the following two partial sums that turn these partial functions into a partial
commutative module.

One way to define a partial sum � is to define f ⊥ g as dom(f)∩dom(g) = ∅;
the sum f � g is defined on the union of the domains, via case distinction.

A second partial sum f �
′ g is defined if for each x ∈ dom(f) ∩ dom(g)

one has f(x) + g(x) ≤ 1. For those x in the overlap of domains, we define
(f �

′ g)(x) = f(x)+ g(x), and elsewhere f �
′ g is f on dom(f) and g on dom(g).

An effect algebra (see [5,7]) is a PCM with for each element x a unique
complement x⊥ satisfying x � x⊥ = 1 = 0⊥, together with the requirement
1 ⊥ x ⇒ x = 0. In the unit interval [0, 1] we have r⊥ = 1 − r. In Example 1 for
both the partial sums � and �

′ one does not get an effect algebra: in the first
case there is not always an f⊥ with f � f⊥ = 1, where 1 is the function that
is everywhere defined and equal to 1. For �

′ there is f⊥ with f �
′ f⊥, but f⊥

need not be unique. E.g. the function 1 has both the empty function and the
everywhere 0 function as complement. We can adapt this example to an effect
algebra by considering only partial functions X ⇀ (0, 1], excluding 0 as outcome.

A map of effect algebras f is a map of PCMs satisfying f(1) = 1. This yields
a subcategory EA ↪→ PCMon. An effect module is at the same time an effect
algebra and a partial commutative module. We get a subcategory EMod ↪→
PCMod. By “homming into [0, 1]” one obtains an adjunction EModop �
Conv, see [12] for details. The resulting triangle on the right in (7) commutes
in one direction, since Conv(D(X), [0, 1]) ∼= [0, 1]X . In the other direction one
has EMod([0, 1]X , [0, 1]) ∼= D(X) for finite sets X.

In [26] it is shown that each effect module is a convex set. The proof is simple,
but makes essential use of the existence of orthocomplements (−)⊥. In fact, the
category EMod is enriched over Conv. Even stronger, the triangle on the right
in (7) is enriched over Conv. This yields wp(

∑
i rifi) =

∑
i riwp(fi).

There are two variations on the distribution monad D that are worth point-
ing out. The first one is the expectation monad E(X) = EMod([0, 1]X , [0, 1])
introduced in [15] (and used for instance in [2] for probabilistic program seman-
tics). It can be seen as a probabilistic version of the ultrafilter monad from the
previous section. For a finite set one has E(X) ∼= D(X). The category of algebras

144 B. Jacobs

EM(E) contains the convex compact Hausdorff spaces, see [15]. This monad E
gives rise to a triangle as on the left below, see [15] for details.

EModop

Hom(−,[0,1])
��� EM(E)

Hom(−,[0,1])

�� σEModop

Hom(−,[0,1])
��� EM(G)

Hom(−,[0,1])

��

K�(E)
[0,1](−)

�����������

����������
K�(G)

Meas(−,[0,1])

��

����������

(8)

The triangle on the right captures continuous probabilistic computation, via
the Giry monad G on the category Meas of measurable spaces. This is elabo-
rated in [13]. The category σEMod contains effect modules in which countable
ascending chains have a join. Both these triangles commute, and are enriched
over convex sets.

We continue with the category Conv≤1 = EM(D≤1) of subconvex sets. We
now get a triangle of the form:

GEModop

Hom(−,[0,1])
��� Conv≤1 = EM(D≤1)

Hom(−,[0,1])

��

K�(D≤1)
[0,1](−)

����������

�����������

(9)

We need to describe the category GEMod of generalised effect modules. First,
a generalised effect algebra, according to [5], is a partial commutative monoid
(PCM) in which x � y = 0 ⇒ x = y = 0 and x � z = y � z ⇒ x = y hold.
In that case one can define a partial order ≤ in the usual way. We obtain a full
subcategory GEA ↪→ PCMon. In fact we have EA ↪→ GEA ↪→ PCMon,
since a generalised effect algebra is not an effect algebra, but a more general
‘topless’ structure: a generalized effect algebra with a top element 1 is an effect
algebra.

One can now add multiplication with scalars from [0, 1] to generalised effect
algebras, like for partial commutative modules. But we require more, namely the
existence of subconvex sums r1x1 � · · · � rnxn, for ri ∈ [0, 1] with

∑
i ri ≤ 1.

As noted before, such sums exist automatically in effect algebras, but this is
not the case in generalised effect algebra with scalar multiplication, as the first
structure in Example 1 illustrates. Thus we define a full subcategory GEMod ↪→
PCMod, where objects of GEMod are at the same time partial commutative
modules and generalised effect algebras, with the additional requirement that
all subconvex sums exist. Summarising, we have the following diagram of ‘effect’
structures, where the bottom row involves scalar multiplication.

EA � � 		 GEA � � 		 PCMon

EMod
��

��

� � 		 GEMod
��

��

� � 		 PCMod
��

��

Dijkstra Monads in Monadic Computation 145

Once we know what generalized effect modules are, it is easy to see that ‘hom-
ming into [0, 1]’ yields the adjunction in (9). Moreover, this diagram (9) is
enriched over Conv≤1, so that weakest precondition wp preserves subconvex
sums of Kleisli maps (programs).

4 Quantum Computation, Briefly

In this section we wish to point out that the triangle (1) applies beyond the
monadic setting. For instance, quantum computation, modelled via the category
CstarPU of C∗-algebras (with unit) and positive, unital maps, one obtains a
triangle:

EModop

Hom(−,[0,1])
��� Conv

Hom(−,[0,1])

��

(CstarPU)op
Pred

������������ Stat

�����������

(10)

The predicate functor sends a C∗-algebra A to the unit interval [0, 1]A ⊆ A of
“effects” in A, where [0, 1]A = {a ∈ A | 0 ≤ a ≤ 1}. This functor is full and
faithful, see [8]. On the other side, the state functor sends a C∗-algebra A to the
(convex) set of its states, given by the homomorphisms A → C. This diagram
is enriched over convex sets. A similar setting of states and effects, for Hilbert
spaces instead of C∗-algebras, is used in [3] for a quantum precondition calculus.

In [8] it was shown that commutative C∗-algebras, capturing the probabilistic,
non-quantum case, can be described as a Kleisli category. It is unclear if the non-
commutative, proper quantum, case can also be described via a monad.

5 Dijkstra Monad Examples

In [28] the “Dijkstra” monad is introduced, as a variant of the “Hoare” monad
from [24]. It captures weakest precondition computations for the state monad
X �→ (S×X)S , where S is a fixed collection of states (the heap). Here we wish to
give a precise description of the Dijkstra monad, for various concrete monads T .

For the powerset monad P, a first version of the Dijkstra monad, following
the description in [28], yields DP : Sets → Sets defined as:

DP(X) = P(S)P(S×X), (11)

where S is again a fixed set of states. Thus, an element w ∈ DP(X) is a function
w : P(S × X) → P(S) that transforms a postcondition Q ∈ P(X × S) into a
precondition w(Q) ∈ P(S). The post-condition is a binary predicate, on both an
output value from X and a state from S; the precondition is a unary predicate,
only on states.

146 B. Jacobs

In this first version (11) we simply take all functions P(S × X) → P(S).
But in the triangle (2) we see that predicate transformers are maps in CL∧,
i.e. are meet-preserving maps between complete lattices. Hence we now properly
(re)define DP as the set of meet-preserving functions:

DP(X) def= CL∧
(
P(S × X),P(S)

)
=

(
CL∧

)op
(
Pred(S),Pred(S × X)

)
(12)

This is indeed a monad, following [28], with unit and multiplication:

η(x) = λQ. {s | (s, x) ∈ Q} μ(H) = λQ.H
({(s, h) | s ∈ h(Q)})

.

We introduce some notation (S, i.e. fraktur S) for the result of applying the
state transformer monad to an arbitrary monad (see e.g. [18]).

Definition 1. For a monad T : Sets → Sets and for a fixed set (of “states”)
S, the T -state monad ST is defined as:

ST (X) = T (S × X)S = K�(T)
(
S, S × X

)
.

For the record, its unit and multiplication are given by:

x �−→ λs ∈ S. η(s, x) and H �−→ μ ◦ T (λ(s, h). h(s)) ◦ H,

where η, μ are the unit and multiplication of T .

Proposition 1. There is a map of monads SP ⇒ DP from the P-state monad
to the P-Dijkstra monad (12), with components:

SP(X) = K�(P)
(
S, S × X

) σX 		 (CL∧
)op(

Pred(S),Pred(S × X)
)

= DP(X)

given by substitution/weakest precondition:

σX(f) = Pred(f) = f∗ = wp(f) = λQ ∈ P(S × X). {s | f(s) ⊆ Q},

following the description from (3).

Proof. We have to check that substitution is natural in X and commutes with
the units and multiplications. This is easy; for instance:

(
σ ◦ ηS

)
(x)(Q) =

(
ηS(x)

)∗(Q) = {s | ηS(x)(s) ⊆ Q}
= {s | ηP(s, x) ⊆ Q}
= {s | {(s, x)} ⊆ Q}
= {s | (s, x) ∈ Q} = ηD(x)(Q). �

At this stage the generalisation of the Dijkstra monad for other monads —
with an associated logic as in (1) — should be clear. For instance, for the multiset

Dijkstra Monads in Monadic Computation 147

MR and (sub)distribution monad D,D≤1 we use the triangles in (6), (7) and (9)
to define associated Dijkstra monads:

DMR
(X) = ModR

(
Pred(S × X),Pred(S)

)
= ModR

(
RS×X , RS

)
DD(X) = EMod

(
Pred(S × X),Pred(S)

)
= EMod

(
[0, 1]S×X , [0, 1]S

)
DD≤1(X) = GEMod

(
Pred(S × X),Pred(S)

)
= GEMod

(
[0, 1]S×X , [0, 1]S

)(13)

Then there is the following result, analogously to Proposition 1. The proofs
involve extensive calculations but are essentially straightforward.

Proposition 2. Forthemultiset,distribution,andsubdistributionmonadsMR,D,
and D≤1 there are maps of monads given by substitution:

SMR

(−)∗

� DMR SD

(−)∗

� DD SD≤1

(−)∗

� DD≤1

from the associated state monads to the associated Dijkstra monads (13). �

The Dijkstra monad associated with the expectation monad E is the same
as for the distribution monad D. Hence one gets a map of monads SE ⇒ DD,
with substitution components:

SE(X) = E(S × X)S = EMod
(
[0, 1]S×X , [0, 1]

)S

(−)∗
��

EMod
(
[0, 1]S×X , [0, 1]S

)
= DD(X)

where f∗(q)(s) = f(s)(q). Details are left to the reader.

6 Dijkstra’s Monad, Beyond Examples

In the end it remains a bit unsatisfactory to see only particular instances of
what we called a Dijkstra monad DT . Below we offer a more general description,
even though it is not the definitive story. For convenience we restrict ourselves
to monads on Sets.

So let T : Sets → Sets be an arbitrary monad. As observed in (an exer-
cise in) [11], each (fixed) Eilenberg-Moore algebra ω : T (Ω) → Ω determines
an adjunction Setsop � EM(T), via functors Ω(−) : Setsop → EM(T) and
Hom(−, ω) : EM(T) → Setsop. It makes sense to require that the algebra ω is a
cogenerator in EM(T), making the unit of the adjunction injective, but this is
not needed in general. The adjunction can be generalised to strong monads on
monoidal categories with equalisers, but that is not so relevant at this stage.

148 B. Jacobs

With this adjunction we can form a triangle of the form:

Setsop

Hom(−,Ω)
��� EM(T)

Hom(−,ω)

��

K�(T)
K

�����������Pred=Hom(K−,ω)∼=Ω(−)

���������
(14)

The induced predicate functor Pred is defined on a Kleisli map f : X → T (Y)
as:

ΩY � q �−→
(
X

f−→ T (Y)
T (q)−→ T (Ω) ω−→ Ω

)
.

Appropriate restrictions of this adjunction may give rise to more suitable
triangles, like in (2) and (4)–(9). How to do this restriction in a systematic
manner is unclear at this stage.

But what we can do is define for a fixed set of states S, a Dijkstra monad,
namely:

DT (X) = Setsop
(
Pred(S),Pred(S × X)

)
= Sets

(
ΩS×X , ΩS

)
. (15)

There is a unit ηX : X → DT (X), namely ηX(x)(q)(s) = q(s, x), and a multipli-
cation μX : (DT)2(X) → DT (X) given by μ(H)(q) = H

(
λ(t, k). k(q)(t)

)
.

In this general situation we can define a map of monads σ : ST ⇒ DT ,
where ST is the T -state monad X �→ T (S × X)S from Definition 1. This σ has
components σX : T (S ×X)S → Sets(ΩS×X , ΩS) given by weakest precondition:
σX(f) = Pred(f) = f∗ = wp(f) : ΩS×X → ΩS .

Thus, in this purely set-theoretic setting we can define for an arbitrary monad
T an associated Dijkstra monad DT as in (15), together with a ‘weakest pre-
condition’ map of monads ST ⇒ DT . However, the general formulation (15)
does not take into account that predicate transformers preserve certain logical
structure, as in the concrete examples in Sect. 5.

We conclude with two more observations.

1. In the triangle (14) there are two functors K�(T) → EM(T), namely the
comparison functor K and L = Hom(−, Ω) ◦ Pred = Sets(Ω(−), Ω). There
is a natural transformation τ : K ⇒ L with components:

τX(u)(p) =
(
ω ◦ T (p)

)
(u) where u ∈ K(X) = T (X) and p ∈ ΩX .

The triangle (14) commutes in both directions if this τ is an isomorphism.
2. By composing the two adjunctions Sets � EM(T) � Setsop in (14) one

obtains a composite adjunction, which yields another monad Tω on Sets,
namely:

Tω(X) =
(
U ◦ Ω(−) ◦ Hom(−, ω) ◦ F

)
(X) ∼= Sets(ΩX , Ω).

This is what Lawvere [17] calls the dual monad; a similar construction occurs
for instance in [6, Sect. 5]. There is in this case a map of monads T ⇒ Tω.

Dijkstra Monads in Monadic Computation 149

7 Concluding Remarks

The triangle-based semantics and logic that was presented via many examples
forms the basis for (a) several versions of the Dijkstra monad, associated with
different monads T , and (b) a description of the weakest precondition operation
as a map of monads. There are many issues that remain to be investigated.

– We have concentrated on Dijkstra monads D, but there is also the Hoare
monad H, see [24,29]. It may be described explicitly as:

H(X) =
∐

P⊆S

∐
Q⊆S×X×S

{f : P → X × S | ∀s ∈ S.Q(s, f(s))},

where S is the set of states. It would be nice to extend this Hoare construction
also to other monads than powerset.

– As already mentioned in the beginning, we only scratch the surface when it
comes to the enrichment involved in the examples. This also requires further
investigation, especially in connection with the algebraic effects approach, see
e.g. [25], or the (enriched) monad models of [22].

Acknowledgements. Thanks to Sam Staton, Mathys Rennela, and Bas Westerbaan
for their input & feedback.

References

1. Abramsky, S.: Domain theory in logical form. Ann. Pure Appl. Logic 51(1/2), 1–77
(1991)

2. Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-based
cryptographic proofs. In: Principles of Programming Languages, pp. 90–101. ACM
Press (2009)

3. D’Hondt, E., Panangaden, P.: Quantum weakest preconditions. Math. Struct.
Comput. Sci. 16(3), 429–451 (2006)

4. Dijkstra, E., Scholten, C.: Predicate Calculus and Program Semantics. Springer,
Berlin (1990)

5. Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer
Academic Publishers, Dordrecht (2000)

6. Egger, J., Møgelberg, R.E., Simpson, A.: Linearly-used continuations in the
enriched effect calculus. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp.
18–32. Springer, Heidelberg (2010)

7. Foulis, D.J., Bennett, M.K.: Effect algebras and unsharp quantum logics. Found.
Phys. 24(10), 1331–1352 (1994)

8. Furber, R., Jacobs, B.: From Kleisli categories to commutative C∗-algebras: prob-
abilistic Gelfand duality. In: Heckel, R., Milius, S. (eds.) CALCO 2013. LNCS, vol.
8089, pp. 141–157. Springer, Heidelberg (2013)

9. Heinosaari, T., Ziman, M.: The Mathematical Language of Quantum Theory. From
Uncertainty to Entanglement. Cambridge University Press, Cambridge (2012)

10. Jacobs, B.: Convexity, duality and effects. In: Calude, C.S., Sassone, V. (eds.) TCS
2010. IFIP AICT, vol. 323, pp. 1–19. Springer, Heidelberg (2010)

150 B. Jacobs

11. Jacobs, B.: Introduction to coalgebra. Towards mathematics of states and obser-
vations. Book, version 2 (2012, in preparation)

12. Jacobs, B.: New directions in categorical logic, for classical, probabilistic and quan-
tum logic. See arxiv.org/abs/1205.3940 (2014)

13. Jacobs, B.: Measurable spaces and their effect logic. In: Logic in Computer Science.
IEEE, Computer Science Press (2013)

14. Jacobs, B., Mandemaker, J.: Coreflections in algebraic quantum logic. Found. Phys.
42(7), 932–958 (2012)

15. Jacobs, B., Mandemaker, J.: The expectation monad in quantum foundations. In:
Jacobs, B., Selinger, P., Spitters, B. (eds.) Quantum Physics and Logic (QPL)
2011. Electronic Proceedings in Theoretical Computer Science, vol. 95, pp. 143–
182 (2012)

16. Johnstone, P., Vickers, S.: Preframe presentations present. In: Carboni, A., Pedic-
chio, M.C., Rosolini, G. (eds.) Como Conference on Category Theory. Lecture
Notes in Mathematics, vol. 1488, pp. 193–212. Springer, Berlin (1991)

17. Lawvere, F.: Ordinal sums and equational doctrines. In: Eckman, B. (ed.) Seminar
on Triples and Categorical Homology Theory. Lecture Notes in Mathematics, vol.
80, pp. 141–155. Springer, Berlin (1969)

18. Liang, S., Hudak, P., Jones, M.: Monad transformers and modular interpreters. In:
Principles of Programming Languages, pp. 333–343. ACM Press (1995)

19. Manes, E.: A triple-theoretic construction of compact algebras. In: Eckman, B.
(ed.) Seminar on Triples and Categorical Homology Theory. Lecture Notes in Math-
ematics, vol. 80, pp. 91–118. Springer, Berlin (1969)

20. Maruyama, Y.: Categorical duality theory: with applications to domains, convexity,
and the distribution monad. In: Ronchi Della Rocca, S. (ed.) Computer Science
Logic. Leibniz International Proceedings in Informatics, pp. 500–520 (2013)

21. Mac Lane, S.: Categories for the Working Mathematician. Springer, Berlin (1971)
22. Møgelberg, R.E., Staton, S.: Linearly-used state in models of call-by-value. In:

Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp.
298–313. Springer, Heidelberg (2011)

23. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)
24. Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., Birkedal, L.: Ynot: depen-

dent types for imperative programs. In: International Conference on Functional
Programming (ICFP). ACM SIGPLAN Notices, pp. 229–240 (2008)

25. Plotkin, G., Power, J.: Computational effects and operations: an overview. In:
Proceedings of the Workshop on Domains VI. Electronic Notes in Theoretical
Computer Science, vol. 73, pp. 149–163. Elsevier, Amsterdam (2004)

26. Pulmannová, S., Gudder, S.: Representation theorem for convex effect algebras.
Commentat. Math. Univ. Carol. 39(4), 645–659 (1998)

27. Stone, M.: Postulates for the barycentric calculus. Ann. Math. 29, 25–30 (1949)
28. Swamy, N., Weinberger, J., Schlesinger, C., Chen, J., Livshits, B.: Verifying higher-

order programs with the Dijkstra monad. In: Proceedings of the 34th ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI),
pp. 387–398. ACM (2013)

29. Swierstra, W.: A Hoare logic for the state monad. In: Berghofer, S., Nipkow,
T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 440–451.
Springer, Heidelberg (2009)

http://arxiv.org/abs/1205.3940

	Dijkstra Monads in Monadic Computation
	1 Introduction
	2 Non-deterministic and Partial Computation
	3 Linear and (sub)Convex Computation
	4 Quantum Computation, Briefly
	5 Dijkstra Monad Examples
	6 Dijkstra's Monad, Beyond Examples
	7 Concluding Remarks
	References

