
Cryptanalysis of WIDEA

Gaëtan Leurent(B)

UCL Crypto Group, Louvain-la-Neuve, Belgium
Gaetan.Leurent@uclouvain.be

Abstract. WIDEA is a family of block ciphers designed by Junod and
Macchetti in 2009 as an extension of IDEA to larger block sizes (256 and
512 bits for the main instances WIDEA-4 and WIDEA-8) and larger
key sizes (512 and 1024 bits, respectively). WIDEA-w is composed of w
parallel copies of the IDEA block cipher, with an MDS matrix to provide
diffusion between them. An important motivation was to use WIDEA to
design a hash function.

In this paper we present low complexity attacks on WIDEA based on
truncated differentials. We show a distinguisher for the full WIDEA with
complexity only 265, and we use the distinguisher in a key-recovery attack
with complexity w · 268. We also show a collision attack on WIDEA-8 if
it is used to build a hash function using the Merkle-Damg̊ard mode of
operation.

The attacks exploit the parallel structure of WIDEA and the limited
diffusion between the IDEA instances, using differential trails where the
MDS diffusion layer is never active. In addition, we use structures of
plaintext to reduce the data complexity.

Keywords: Cryptanalysis · Block cipher · Hash function · Truncated
differential · IDEA · WIDEA · HIDEA

1 Introduction

Block ciphers are one of the most useful and versatile primitive in symmetric
cryptography. Their basic use is to encrypt data and provide confidentiality,
but they can also be used to build MAC algorithms (e.g. CBC-MAC), stream
ciphers (e.g. in counter mode) and hash functions (e.g. using the Davies-Meyer
or Matyas-Meyer-Oseas mode). Block ciphers are relatively well understood and
we have well-established ciphers suitable for most uses such as DES, AES, IDEA,
RC5, or Blowfish. However, there are still some new proposals to accommodate
specific needs such as large block size, low resources, reduced leakage, or high
speed on a particular platform. All these designs must be studied in depth before
they can be trusted and used in actual products. In this paper we study the recent
proposal WIDEA, which is based on IDEA.

S. Moriai (Ed.): FSE 2013, LNCS 8424, pp. 39–51, 2014.
DOI: 10.1007/978-3-662-43933-3 3, c© Springer-Verlag Berlin Heidelberg 2014



40 G. Leurent

IDEA. The “International Data Encryption Standard” (IDEA) is a block cipher
designed by Lai and Massey in 1991 [12]. IDEA is a modification of their earlier
“Proposed Encryption Standard” (PES) [11] and was initially called Improved
PES (IPES). IDEA uses 8.5 rounds of the so-called Lai-Massey scheme [16],
and mixes operations from incompatible structures (⊕, �, and �). It is well-
considered in the cryptographic community, and used in some products (e.g. in
PGP), but its adoption has been limited by IP restrictions.

After years of cryptanalysis, most of the known cryptanalytic techniques
have been used against IDEA: differential, linear, differential-linear, boomerang,
impossible differentials, bicliques, weak-keys, related-keys, . . . Still, the best
attacks in a block cipher scenario do not really affect the security of IDEA:
attack with a significant margin only reach 6 rounds [1,3,10,14] and only mar-
ginal attacks have been shown on the full version [3,10]. On the other hand, the
key schedule has been shown to be weak, and this gives classes of weak keys [4–6],
related-key attacks [2], and attacks in various hashing modes [17].

WIDEA. At FSE 2009 Junod and Macchetti proposed to revisit the IDEA
philosophy [9] in the light of modern CPU architectures. They gave a wordslice
implementation of IDEA using the vector instructions available in many current
CPU (SSE on x86, Altivec on PowerPC, NEON on ARM . . . ) and design a new
wide block cipher based on IDEA: WIDEA.

WIDEA-w is built from w parallel IDEA instances, using MDS matrices for
the diffusion across the parallel instances. WIDEA is quite fast on CPU with
vector instructions because the IDEA instances can be computed simultaneously.
WIDEA was expected to retain the good security properties of IDEA because it
follows the same design criteria: it mixes operations from incompatible structures
(⊕, �, �, and ⊗) and full diffusion is achieved after one round.

WIDEA-w has a blocksize of 64 · w bits and a key size of 128 · w bits. The
main versions considered by the designers are WIDEA-4 and WIDEA-8; the
large block size and key size are justified with the idea of using them to design
a hash function.

Previous Analysis of WIDEA. Recently, Nakahara [7] and Mendel et al. [13]
found weak keys for WIDEA, similar to the weak keys of IDEA [5]. Mendel et al.
used the weak key property to create a free-start collision attack when WIDEA
is used in hash function mode.

1.1 Our Results

In this paper, we study the security of WIDEA as a block cipher, and when used
in a hashing mode. Our main result is a key recovery attack with complexity
270 or 271 which shows that WIDEA is very far from the expected strength of
a 512-bit or 1024-bit cipher. The large gap between the security of IDEA and
WIDEA is due to the insufficient diffusion across the parallel IDEA instances.



Cryptanalysis of WIDEA 41

Table 1. Comparision of attacks on WIDEA

Attack Version Data Time Mem. Ref, notes

CF collisions HIDEA-512 (w = 8) 214 [13], free-start

Distinguisher WIDEA-w 265 CP 265 264 3
Success: 63% w ≥ 4 265 CP 271 264 5.1, Seq. M

5 · 265+t/2 ACP 5 · 265+t/2 264−t 5.2
Key recovery WIDEA-w w · 268 CP w · 268 264 4

w ≥ 4 w · 268 CP w · 274 264 5.1, Seq. M

5w · 268+t/2 ACP 5w · 268+t/2 264−t 5.2
Hash collisions HIDEA-512 (w = 8) 2224 6

We describe a simple truncated differential trail in Sect. 2, where the MDS
diffusion layer is never active. This allows to keep a single IDEA instance active
and to have a relatively high probability for the trail. We show how to build
a distinguisher for WIDEA using structures of plaintext in Sect. 3. We give a
full key recovery attack in Sect. 4, and we discuss some techniques to reduce the
memory cost in Sect. 5. Finally, we study WIDEA used as a hash function, and
give a collision attack based on the same differential trail in Sect. 6.

Attack Settings. A block cipher is expected to behave like a family of pseudo-
random permutations: for an unknown key K, EK should be indistinguishable
from a truly random permutation. In this paper, we consider two different set-
tings, and our results are listed in Table 1:

Chosen Plaintext Attack: The adversary builds a list of plaintext Pi, and
receives the corresponding ciphertexts Ci = EK(Pi) under an unknown key K.

Adaptively Chosen Plaintext Attack: The adversary is given black-box
access to a block cipher EK with an unknown key K. He can ask for the encryp-
tion of any plaintext, and the choice of the plaintext can depend on previous
answers.

1.2 Description of WIDEA

We give a brief description of WIDEA, but our attack is independent of most low-
level details of the design. WIDEA, like IDEA, is a 16-bit oriented cipher, and
combines operations from several algebraic structures of size 216. The elements
of these structures are all mapped to 16-bit words, and the cipher uses the
operations alternatively. We use the following notations:



42 G. Leurent

X0 X1 X2 X3

Z0 Z1 Z2 Z3

Z4

Z5

Y0 Y1 Y2 Y3

A B

D

Γ Δ

A ← (X0 Z0) ⊕ (X2 Z2)
B ← (X1 Z1) ⊕ (X3 Z3)
D ← (A Z4) B

Δ ← D Z5

Γ ← Δ (A Z4)
Y0 ← (X0 Z0) ⊕ Δ
Y1 ← (X2 Z2) ⊕ Δ
Y2 ← (X1 Z1) ⊕ Γ
Y3 ← (X3 Z3) ⊕ Γ

Fig. 1. IDEA round function

0 ≤ i < w
Ai ← (X0,i Z0,i) ⊕ (X2,i Z2,i)
Bi ← (X1,i Z1,i) ⊕ (X3,i Z3,i)
Di ← (Ai Z4,i) Bi

D ← M · M
0 ≤ i < w
Δi ← Di Z5,i

Γi ← Δi (Ai Z4,i)
Y0,i ← (X0,i Z0,i) ⊕ Δi

Y1,i ← (X2,i Z2,i) ⊕ Δi

Y2,i ← (X1,i Z1,i) ⊕ Γi

Y3,i ← (X3,i Z3,i) ⊕ Γi

Fig. 2. WIDEA round function

The round functions of IDEA and WIDEA are given in Figs. 1 and 2. The
important difference between the two is the multiplication by an MDS matrix M
over the field (GF(216),⊕,⊗). This operation is similar to the AES MixColumn
operation; it is used for diffusion between the parallel IDEA instances of WIDEA.
WIDEA iterates 8 rounds (for all values of w) plus a final half-round for key-
whitening:

C0,i = X0,i � K48,i C1,i = X2,i � K49,i C2,i = X1,i � K50,i C3,i = X3,i � K51,i

The key schedule is described over 64 · w words. The first 8 words are loaded
with the master key K, and the expanded words are computed as:

Ki =
(((

(Ki−1 ⊕ Ki−8)
16

� Ki−5

) 16
≪ 5

)
≪ 24

)
⊕ Ri,

where Ri are round constants. The round keys used for round r are
Zi,j = K6r+i,j .



Cryptanalysis of WIDEA 43

2 Truncated Differential Trail

Our attacks are based on a differential trail. We consider a pair of messages
P, P ′ with a small difference encrypted through IDEA under the same key K,
and we study the difference in the state X,X ′ after each round. However, we
don’t specify exactly the difference: we only specify for each word whether the
difference is zero or non-zero, giving a truncated differential trail.

We start with a pair of states with only one IDEA instance active, such as
(with instance 0 active):

X0,0 �= X ′
0,0 X1,0 �= X ′

1,0 X2,0 �= X ′
2,0 X3,0 �= X ′

3,0

X0,i = X ′
0,i X1,i = X ′

1,i X2,i = X ′
2,i X3,i = X ′

3,i for 1 ≤ i < w

When we compute the round function, we have Di = D′
i for i �= 0, and with

probability 2−16, we also have D0 = D′
0. In this case, the input of the MDS

matrix will be inactive, and the difference does not propagate to the other IDEA
instances. This leads to:

Y0,0 �= Y ′
0,0 Y1,0 �= Y ′

1,0 Y2,0 �= Y ′
2,0 Y3,0 �= Y ′

3,0

Y0,i = Y ′
0,i Y1,i = Y ′

1,i Y2,i = Y ′
2,i Y3,i = Y ′

3,i for 1 ≤ i < w

Graphically, we can represent the state X as a matrix of 16-words, with active
words in black and inactive words in white:

p=2−16

The trail inside the Multiply/Add/Diffuse box is:

p=2−16

The MDS matrix is applied to the right column, and all inputs are inactive.
We iterate this trail for 8 rounds of WIDEA, and the final half round does

not affect which words are active. This gives a truncated differential trail with
probability 2−128 for the full 8.5 rounds of WIDEA:

p=2−128



44 G. Leurent

For a random permutation over 64 · w bits, a pair would follow this trail
with probability 2−64·(w−1). Therefore, we have an efficient distinguisher for
WIDEA-w as soon as w ≥ 3. If w ≥ 4, the distinguisher is very strong, and we
do not expect to have any false positives.

3 Distinguisher

To exploit this property, we use structures of 264 plaintext, where one slice
takes all possible values, and the other slices are fixed to a constant value. This
structure gives 264 × (264 −1)/2 ≈ 2127 pairs of plaintext; each pair has only one
active slice and is a potential candidate for the differential trail. If we take two
such structures, this gives about 2128 plaintext pairs, and with a probability of
1 − 1/e ≈ 63%, at least one pair will follow the truncated trail.

We can efficiently test if such pairs are present by inserting all the ciphertexts
in a hash table indexed by the slices that are expected to be inactive. This gives
a chosen-plaintext distinguisher for WIDEA with complexity 265 as shown in
Algorithm 1.

Algorithm 1. Distinguish WIDEA from a random permutation
Input: E

for 0 ≤ t < 2 do
T ← ∅

X ← Rand()
for all X0,0, X0,1, X0,2, X0,3 do

Y ← E(X)
Y ′ ← Y1,0...3‖Y2,0...3‖ . . . ‖Yw−1,0...3

if Y ′ ∈ T then
return WIDEA � (T{Y ′}, X) is a right pair.

end if
T{Y ′} ← X

end for
end for
return Random

4 Key Recovery

We can turn this simple distinguisher into a full key recovery with some more
effort.

4.1 First-Round Key

We consider a right pair (X,X ′), and we study the internal state; we can express
D0,D

′
0:

D0 =
((

(X0,0 � Z0,0) ⊕ (X2,0 � Z2,0)
)� Z4,0

)
�
(
(X1,0 � Z1,0) ⊕ (X3,0 � Z3,0)

)

D′
0 =
((

(X ′
0,0 � Z0,0) ⊕ (X ′

2,0 � Z2,0)
)� Z4,0

)
�
(
(X ′

1,0 � Z1,0) ⊕ (X ′
3,0 � Z3,0)

)



Cryptanalysis of WIDEA 45

Since the pair follows the trail, we have D0 = D′
0, or equivalently:

((
(X0,0 � Z0,0) ⊕ (X2,0 � Z2,0)

)� Z4,0

)
�
((

(X ′
0,0 � Z0,0) ⊕ (X ′

2,0 � Z2,0)
)� Z4,0

)

=
(
(X ′

1,0 � Z1,0) ⊕ (X ′
3,0 � Z3,0)

)
�
(
(X1,0 � Z1,0) ⊕ (X3,0 � Z3,0)

)
(1)

In this equation, the left hand side is a function of Z0,0, Z2,0, Z4,0 only, while the
right hand size is a function of Z1,0, Z3,0 only. We denote them as:

Fi(X,X ′, Z0,i, Z2,i, Z4,i) =
((

(X0,i � Z0,i) ⊕ (X2,i � Z2,i)
) � Z4,i

)

�
((

(X ′
0,i � Z0,i) ⊕ (X ′

2,i � Z2,i)
) � Z4,i

)
(2)

Gi(X,X ′, Z1,i, Z3,i) =
(
(X ′

1,i � Z1,i) ⊕ (X ′
3,i � Z3,i)

)

�
(
(X1,i � Z1,i) ⊕ (X3,i � Z3,i)

)
. (3)

We can recover the key efficiently using a meet-in-the-middle technique.
On the one hand, we compute F0(X,X ′, k0, k2, k4) for all k0, k2, k4, and on
the other hand, we compute G0(X,X ′, k1, k3) for all k1, k3. Then we look for
matches in the list because the correct key satisfies F0(X,X ′, Z0,0, Z2,0, Z4,0) =
G0(X,X ′, Z1,0, Z3,0) for a right pair X,X ′.

In order to achieve a strong filtering, we use several right pairs X(j),X ′(j) and
we look for simultaneous matches between all the F ’s and G’s, i.e. matches in the
concatenations

∣∣∣∣k
j=0

F0(X(j),X ′(j), k0, k2, k4) and
∣∣∣∣k
j=0

G0(X(j),X ′(j), k1, k3).
Unfortunately, this filtering cannot distinguish the real key K, and the key K ′

where the most significant bit of Z1,0 is flipped, because the effect of this bit on
D is linear.

Each pair gives a 16-bit filtering and we are recovering 79 key bits, so we
expect that 5 pairs would be sufficient. However, when implementing the attack,
we found out that the filtering given by each pair is not independent, and we
need more than 5 pairs; our experiments show that using k = 8 pairs is enough
to isolate a single key pair most of time.

Therefore we can recover the correct value of Z0...4,0 (up to one bit) with
complexity 23·16 = 251 (we consider that the computation of 8 F and G functions
costs about the same as one evaluation of WIDEA). We can also recover the keys
Z0...4,i used in the other IDEA instances in the same way: we just need different
pairs following a path with another active slice.

4.2 Second-Round Key

We can now compute all the inputs to the MDS matrix in the first round, since
we know the keys used in each IDEA instance. Then we compute the output
of the MDS matrix, and we can again consider the parallel IDEA instances
independently. First, we guess Z5,i in order to compute the state after the end of
the first round. Then we apply the same meet-in-the-middle strategy as for the
first round, in order to recover the second round key Z6...10,i. Finally, we know



46 G. Leurent

that the master key is Z0...7 according to the key expansion algorithm. If several
key candidates remain, we test them with one of the plaintext/ciphertext pairs.
This would give a key-recovery with complexity w · 216 · 248 = w · 264.

Missing Key Bits. In fact, we have 2w key candidates for the first round,
because the most significant bits of the Z1,i’s can not be recovered by testing
collisions in D. Instead of running the analysis for the second round with all these
candidates, we use the fact that the unknown bits have a linear effect on the MDS
operation. Moreover, the coefficients of the MDS matrix given in [9] for WIDEA-8
are all between 1 and 9; therefore any linear combination is between 0 and 15.
For WIDEA-4, the coefficients are between 1 and 3; any linear combination is
between 0 and 3. Instead of guessing the w missing bits of the key, we can guess
the effect on the MDS output, which is of the form t ⊗ 0x8000, with 0 ≤ t < 4
for WIDEA-4 and 0 ≤ t < 16 for WIDEA-8 (i.e. a 2-bit guess and a 4-bit guess,
respectively). Therefore the actual complexity of the key-recovery attack will be
4 · 22 · 264 = 268 for WIDEA-4, and 8 · 24 · 264 = 271 for WIDEA-8. The attack
is described in Algorithms 2 and 3.

4.3 Complexity

We can slightly reduce the complexity using properties of the key schedule. More
precisely, when K6...10,0 has been recovered in the first IDEA instance, we can
use the key scheduling algorithm to compute some bits of K8, so that recovering
the key of the next instance become negligible compared to the first key recovery.
This reduces the complexity by a factor w.

Therefore, the analysis step has a complexity of only 266 memory accesses to
a table of size 232 for WIDEA-4 (268 accesses to a similar table for WIDEA8).
The computation of the F ’s and G’s will likely be negligible before the cost of
memory accesses. As a rough estimation we can assume that a memory access
to a table of size 232 takes about the same time as the computation of the block
cipher.

Data Complexity. The data complexity of the attack is w · 268: we need 8 · w
right pairs, and each pair is found after 265 chosen plaintexts. The data filtering
step to isolate right pairs is actually the most expensive step of the attack: it
requires w · 268 memory accesses to a table of size 264.

5 Reducing the Memory Cost

Since the complexity of the key-recovery attacks on WIDEA is rather low, we
briefly discuss practical aspects of the attack, in addition to the complexity
figures which don’t account for the cost of the memory. The bottleneck of the
attack is the filtering of right pairs. If we use a hash table to find collisions in
each structures as explained in Sect. 3, we need a random access memory of size
264, which is probably less practical than the time complexity of 266 or 268 for
the analysis step.



Cryptanalysis of WIDEA 47

Algorithm 2. Recover the Key from WIDEA
Input: (X(i,j), X ′(i,j)) right pairs with slice i active 0 ≤ i < w, 0 ≤ j < k = 8

� First step: recover K0...4

for 0 ≤ i < w do
T ← ∅

for all k1, k3 do

G ← ∣∣∣∣k
j=0

Gi(X
(i,j), X ′(i,j), k1, k3)

T{G} ← (k1, k3)
end for
for all k0, k2, k4 do

F ← ∣∣∣∣k
j=0

Fi(X
(i,j), X ′(i,j), k0, k2, k4)

if F ∈ T then
k1, k3 ← T{F}
K0...4,i ← k0, k1, k2, k3, k4

end if
end for

end for
� Second step: recover K5...10

for 0 ≤ i < w do
for all k5, 0 ≤ t < 16 do

K5,i ← k5

for all i, k do
Y i,k ← RoundTweak(X (i,k), K, i, t ⊗ 0x8000)
Y ′i,k ← RoundTweak(X ′(i,k), K, i, t ⊗ 0x8000)

end for
T ← ∅

for all k1, k3 do

G ← ∣∣∣∣k
j=0

Gi(Y
(i,j), Y ′(i,j), k1, k3)

T{G} ← (k1, k3)
end for
for all k0, k2, k4 do

F ← ∣∣∣∣k
j=0

Fi(Y
(i,j), Y ′(i,j), k0, k2, k4)

if F ∈ T then
k1, k3 ← T{F}
K6...10,i ← k0, k1, k2, k3, k4

end if
end for

end for
end for



48 G. Leurent

Algorithm 3. WIDEA round with a tweak (ι, t) after the MDS step
� t is the effect of the missing bits of Z1 on Dι

function RoundTweak(X, Z, ι, t)
for 0 ≤ i < w do

Ai ← (X0,i � Z0,i) ⊕ (X2,i � Z2,i)
Bi ← (X1,i � Z1,i) ⊕ (X3,i � Z3,i)
Di ← (Ai � Z4,i) � Bi

end for
D ← M · D
Dι ← Dι ⊕ t
for 0 ≤ i < w do

Δi ← Di � Z5,i

Γi ← Δi � (Ai � Z4,i)
Y0,i ← (X0,i � Z0,i) ⊕ Δi

Y1,i ← (X2,i � Z2,i) ⊕ Δi

Y2,i ← (X1,i � Z1,i) ⊕ Γi

Y3,i ← (X3,i � Z3,i) ⊕ Γi

end for
return Y

end function

5.1 Sorting

A first way to avoid this problem is to store all the ciphertexts from a structure
sequentially, and to run a sorting algorithm to find collisions. This still requires
a memory of size 264, but we only make sequential accesses to this huge memory,
and we can use disk or tape storage. The sorting algorithm increases the cost of
the attack by a logarithmic factor, but the resulting attack will be much easier
to carry out in practice.

The storage needed for the attack will be about 264 elements of 16 bytes each
(4 16-bit words for the active input slice, and the output can be restricted to 4
16-bit words if we use an extra pass to check that the rest of the state collides).
This amounts to 268 bytes, or 256 exabytes.

5.2 Time-Memory Trade-Offs

We can also use a time-memory trade-off to reduce the memory requirement of
the attack. The filtering step of the attack is essentially a collision search for the
function

φr : {0, 1}64 → {0, 1}64·(w−1)

x 
→ Trunc64·(w−1)(EK(x‖r))

with a random r ∈ {0, 1}64·(w−1). If we truncate the output of φr to 64 bits, we
can find collisions with a memory-less algorithm for a complexity of 232, using
adaptively chosen inputs. However, we expect on average that 263 collisions



Cryptanalysis of WIDEA 49

exists for this function, but only 0.5 collisions correspond to a right pair for
the differential trail. Therefore the total complexity to find a right pair without
memory will be 296.

More generally, we can store distinguished points so that finding N collisions
costs less than N · 232. Using the analysis of [15], we know that we can find a
“golden collision” with a complexity of 2 · 2.5 · 264+t/2 if we have a memory of
size 264−t (with 0 < t < 64).

6 Hash Function Collisions

One important use case of WIDEA as envisioned by the designers is to build a
hash function. Hash function benchmarks are given in [9], and a more complete
description of a hash function (named HIDEA) was presented in the ESC semi-
nar [8]. HIDEA uses WIDEA to build a compression function with the Davies-
Meyer mode, and iterates it with the Merkle-Damg̊ard and HAIFA modes of
operation. We note that the presentation of HIDEA in [8] suggests to use a
10.5-round WIDEA, instead of the 8.5-round version of [9].

To find collisions for HIDEA, we first look for a pair of messages M,M ′ so that
the internal state X,X ′ reached after processing them satisfies X0...3,i = X ′

0...3,i

for i �= 0. This is equivalent to finding a collision in a truncated function with
an output of 64 · (w − 1) bits. For this step we can store the hash of 232·(w−1)

random messages, or use a memory-less collision finding algorithm. This step has
a complexity of 232·(w−1), i.e. 2224 for WIDEA-8. We note that we can just as
easily have two pre-specified prefixes P and P ′ and look for M,M ′ such that the
state X,X ′ reached after processing P‖M and P ′‖M ′ satisfies X0...3,i = X ′

0...3,i

for i �= 0.
We assume that P‖M and P ′‖M ′ both have the same length, and this length

is an integral number of blocks. When we append a random block N to P‖M
and P ′‖M ′, the compression function is computed as:

h(X,N) = Y ⊕ X, Y = EN (X)
h(X ′, N) = Y ′ ⊕ X ′, Y ′ = EN (X ′).

We have X0...3,i = X ′
0...3,i for i �= 0, and we know that with probability 2−128

(2−160 for a 10.5-round WIDEA), this gives Y0...3,i = Y ′
0...3,i for i �= 0. Addition-

ally, we have Y0...3,0 ⊕ X0...3,0 = Y ′
0...3,0 ⊕ X ′

0...3,0 with probability 2−64. There-
fore we have h(X,N) = h(X ′, N) with probability 2−192 (2−224 for a 10.5-round
WIDEA).

When combining both steps, we have a collision attack with complexity 2224

for WIDEA-8 with up to 10.5 rounds. The attack is described by Algorithm 4.
Surprisingly, this attack doesn’t use any property of the key schedule, and

can use arbitrary messages. This allows to build meaningful collisions easily. On
the other hand, a few more rounds can be attacked using message modification
techniques, if needed.



50 G. Leurent

Algorithm 4. Find collisions for HIDEA-512
Input: P, P ′ chosen prefix

Find M, M ′ with Trunc64(w−1)(H(P‖M)) = Trunc64(w−1)(H(P ′‖M ′))
� Complexity 2224

repeat
N ← Rand()

until H(P‖M‖N) = H(P ′‖M ′‖N)
� Complexity 2224

7 Conclusion

In this paper we show devastating attacks on the WIDEA block cipher. Our
main result is a key-recovery attack with complexity w · 268 for the WIDEA
family with w ≥ 4. In particular this affects the main instances considered in
the WIDEA paper: WIDEA-4 (256-bit block and 512-bit key) and WIDEA-8
(512-bit block and 1024-bit key). We also show a collision attack when WIDEA
is used to build a hash function, as was proposed by the designers. The collision
attack affects instances with w ≥ 8: we can build collisions for HIDEA-512 (based
on WIDEA-8) with a complexity of 2224.

The attacks exploit the limited diffusion between the IDEA instances by
building trails where the MDS diffusion layer is never active. Since the input of
the MDS layer is only 16-bit for one IDEA instance, such trails have a probability
of 2−16·r for an r-round WIDEA. In addition, we use structures of plaintext to
reduce the data complexity of the block-cipher attacks. The attacks don’t depend
on low-level details of the design (such as the key schedule, the MDS matrix, or
the exact computational graph of IDEA). The complexity is almost independent
of the width w, and can even break extended version of WIDEA with more than
8.5 rounds.

We have implemented the key-recovery attack with a reduced WIDEA using
8-bit words, and all the steps of the attack worked as expected.

Acknowledgment. We would like to thanks the anonymous reviewers for very detailed
comments. In particular, they noticed a mistake in our description of IDEA and WIDEA
(our implementation of the attack used the correct algorithm, though).

The author is supported by the ERC project CRASH. Part of this work was done
while the author was at the university of Luxembourg, supported by the AFR grant PDR-
10-022 of the FNR.

References

1. Biham, E., Dunkelman, O., Keller, N.: A new attack on 6-round IDEA. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 211–224. Springer, Heidelberg
(2007)

2. Biham, E., Dunkelman, O., Keller, N.: A unified approach to related-key attacks.
In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 73–96. Springer, Heidelberg
(2008)



Cryptanalysis of WIDEA 51

3. Biham, E., Dunkelman, O., Keller, N., Shamir, A.: New data-efficient attacks on
6-round IDEA. Cryptology ePrint Archive, Report 2011/417 (2011). http://eprint.
iacr.org/

4. Biryukov, A., Nakahara Jr, J., Preneel, B., Vandewalle, J.: New weak-key classes
of IDEA. In: Deng, R.H., Qing, S., Bao, F., Zhou, J. (eds.) ICICS 2002. LNCS,
vol. 2513, pp. 315–326. Springer, Heidelberg (2002)

5. Daemen, J., Govaerts, R., Vandewalle, J.: Weak keys for IDEA. In: Stinson, D.R.
(ed.) CRYPTO 1993. LNCS, vol. 773, pp. 224–231. Springer, Heidelberg (1994)

6. Hawkes, P.: Differential-linear weak key classes of IDEA. In: Nyberg, K. (ed.)
EUROCRYPT 1998. LNCS, vol. 1403, pp. 112–126. Springer, Heidelberg (1998)

7. Nakahara Jr, J.: Differential and linear attacks on the full WIDEA-n block ciphers
(under Weak Keys). In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS
2012. LNCS, vol. 7712, pp. 56–71. Springer, Heidelberg (2012)

8. Junod, P.: IDEA: past, present, and future. Early Symmetric Crypto (2010).
https://www.cryptolux.org/esc2010/Pascal Junod

9. Junod, P., Macchetti, M.: Revisiting the IDEA Philosophy. In: Dunkelman, O.
(ed.) FSE 2009. LNCS, vol. 5665, pp. 277–295. Springer, Heidelberg (2009)

10. Khovratovich, D., Leurent, G., Rechberger, C.: Narrow-Bicliques: cryptanalysis of
full IDEA. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 392–410. Springer, Heidelberg (2012)

11. Lai, X., Massey, J.L.: A proposal for a new block encryption standard. In: Damg̊ard,
I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 389–404. Springer, Heidelberg
(1991)

12. Lai, X., Massey, J.L.: Markov ciphers and differential cryptanalysis. In: Davies,
D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg
(1991)

13. Mendel, F., Rijmen, V., Toz, D., Varıcı, K.: Collisions for the WIDEA-8 compres-
sion function. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 162–173.
Springer, Heidelberg (2013)

14. Sun, X., Lai, X.: The key-dependent attack on block ciphers. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 19–36. Springer, Heidelberg (2009)

15. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with application to
hash functions and discrete logarithms. In: Denning, D.E., Pyle, R., Ganesan, R.,
Sandhu, R.S. (eds.) ACM Conference on Computer and Communications Security,
pp. 210–218. ACM (1994)

16. Vaudenay, S.: On the Lai-Massey scheme. In: Lam, K.-Y., Okamoto, E., Xing, Ch.
(eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 8–19. Springer, Heidelberg (1999)

17. Wei, L., Peyrin, T., Soko�lowski, P., Ling, S., Pieprzyk, J., Wang, H.: On the
(In)security of IDEA in various hashing modes. In: Canteaut, A. (ed.) FSE 2012.
LNCS, vol. 7549, pp. 163–179. Springer, Heidelberg (2012)

http://eprint.iacr.org/
http://eprint.iacr.org/
https://www.cryptolux.org/esc2010/Pascal_Junod

	Cryptanalysis of WIDEA
	1 Introduction
	1.1 Our Results
	1.2 Description of WIDEA

	2 Truncated Differential Trail
	3 Distinguisher
	4 Key Recovery
	4.1 First-Round Key
	4.2 Second-Round Key
	4.3 Complexity

	5 Reducing the Memory Cost
	5.1 Sorting
	5.2 Time-Memory Trade-Offs

	6 Hash Function Collisions
	7 Conclusion
	References


