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Abstract. Cloud computing security is often focused on data and users
security and protection against external intrusions. However, it exists an
area of cloud security that is often overlooked and that can have dis-
astrous consequences: the conversion of cloud computing into an attack
vector. Beyond a legitimate usage, the numerous advantages of cloud
computing are exploited by attackers. Botnets supporting Distributed
Denial of Service (DDoS) attacks are among the greatest beneficiaries
of this malicious use. In this paper, we propose a novel source-based de-
tection approach that aims at detecting the abnormal virtual machines
behavior. The originality of our approach resides in (1) relying only on
the system’s metrics of virtual machines and (2) considering a source-
based detection. Our approach is based on Principal Component Analysis
to detect anomalies that can be signs of botcloud’s behavior supporting
DDoS flooding attacks. We also present the results of the evaluation of
our detection algorithm.

1 Introduction

For the last few years, cloud computing has gained and is still gaining momen-
tum. The reason lies in the numerous benefits it offers to its users, such as a
fast deployment of services, a substantial reduction of both infrastructure and
operation costs, a fair pay-per-use system, and all of this, while ensuring large
scalability.

However, beyond the legitimate usage of these advantages, the latter are also
exploited by malicious users, in order to use the cloud as a support for their
attacks toward any third party connected to the Internet. Such a phenomenon
represents a major issue since it strongly increases the power of distributed mas-
sive attacks while involving the responsibility of cloud service providers. The
greatest beneficiaries of this cloud conversion into an attack support are bot-
nets, which are called in this case botclouds. Indeed, a botcloud can be setup on
demand and at very large scale without requiring a long dissemination phase nor
expensive deployment costs. Botnets are primarily used to launch Distributed
Denial of Service (DDoS) attacks which are considered among of the most dan-
gerous ones. For instance, an experimental study [1] has shown how the cloud
could be at the source of many attacks. To that aim, for five of the most famous
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cloud service providers (CSP), the authors rent some virtual machines (VM),
deployed and executed different attacks (e.g., DDoS, shellcode, malware traffic,
malformed traffic, etc.) during a 21-day period. However, they did not encounter
any reaction nor countermeasure from any of the cloud service providers. In the
same issue, a group of researchers [2] have investigated how the cloud could be
used to build a large botcloud, where they realized large DDoS flooding and click
fraud attacks.

In this context, our goal is to develop a source-based detection system to
protect the cloud infrastructure from being a support for DDoS attacks. Such a
goal is highly challenging since it induces the detection of distributed and weak
footprint malicious operations at their source in a highly heterogeneous and dy-
namic environment. The originality of our work resides in (1) the consideration
of system metrics in the detection of flooding denial of service attacks by con-
sidering (2) a source-based detection. Indeed, due to the impossibility to master
the infected personal computers that arrange botnets, current DDoS and bot-
nets detection solutions are solely based on a network approach and located at
the target side [3]. However, the complete control of the attack support by the
CSP, enables the consideration of system metrics that can facilitate botclouds
detection and the consideration of a source-based detection approach which, to
the best of our knowledge, have never been studied to date.

In this paper, we propose a novel method of using Principal Component Anal-
ysis (PCA) for Botclouds’ supporting DDoS detection. We present the results
of the validation of our approach through a simulation tool that relies on real
traces that we obtained through in situ experimentations.

This paper is organized as follows: Section 2 gives an overview of the related
works. Then, Section 3 describes the approach we propose for the detection of
botclouds leveraging DDoS flooding attacks. Section 4 discusses the evaluation
results. Conclusion and future work are given in Section 5.

2 Related Works

2.1 Host Based IDS

In [4], the authors presented an Unsupervised Behavior Learning (UBL) sys-
tem for predicting performance anomalies in virtualized cloud systems. UBL is a
host-based IDS, implemented at the hypervisor level which uses a set of continu-
ous VM behavior learning modules to capture the patterns of normal operations
of VMs relying on system metrics (CPU, MEM, TX, RX). To that aim, it lever-
ages Self Organizing Map (SOM), an unsupervised learning method, to predict
anomalies by looking at early deviations from the normal system behaviors. This
work is related to ours since, it considers the same metrics as our system. How-
ever, the limit of UBL relies in monitoring computer activities on a single host.
Thus, it does not enable the building of a global view of intrusions and is not
effective in detecting fast-spreading attacks such as DDoS ones. Unlike [4], our
approach relies on a signature-based approach implemented at the source hosts
which do not need a learning phases such as in UBL.
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2.2 Collaborative IDS

DDoS attacks represent large-scale coordinated attacks. Thus, in order to detect
them efficiently, we need to combine the evidences of suspicious network or host
activity from multiple distributed hosts and networks. To overcome the problem
of IDS isolation, Collaborative Intrusion Detection Systems (CIDS) have been
proposed to correlate suspicious evidence between different IDSs, thus improving
the efficiency of intrusion detection. Several CIDSs have been proposed in the last
few years. [5] represents a collaborative system that detects DDoS flooding at-
tacks as far as possible from the victim host. It relies on a distributed architecture
composed of multiple Intrusion Protection Systems forming overlay networks of
protection rings around subscribed customers. [6] is a proposed gossip-based
collaborative system of host based IDSs, which use distributed probabilistic in-
ference to detect network intrusions. The system relies on a fully distributed
architecture. [7] proposes a CIDS that uses the Chord DHT (Distributed Hash
Table) system to organize IDSs into a P2P network. Each IDS shares its black-
list with others through a fully distributed P2P overlay. If a suspicious IP is
reported more than a threshold N, then all the IDSs which reported it will be
notified. The system relies only on IP addresses in the identification of potential
intruders. Thus, it is not effective against worms having a low spreading degree
(less than N ). In [8], the authors proposed a hierarchical CIDS based on depen-
dency. Participating hosts are clustered into cooperating regions and a Markov
model is used to aggregate the alerts collected from the local hosts within the re-
gion. Then, sequential hypothesis testing is applied globally to correlate findings
across regions.

2.3 Source-Based IDS

Source-based detection approaches represent a very promising solution to detect
large scale attacks and to avoid their side-effect damages. To the best of our
knowledge, the sole attempt to design and implement a source-based DDoS de-
tection system is presented in D-WARD [9]. In the latter, the authors proposed
a DDoS defense mechanism that autonomously detects and stops attacks origi-
nating from the networks they monitor, thus avoiding them from being involved
in these attacks. Attacks are detected by the constant monitoring of two-way
traffic flows between the network and Internet and a periodic comparison with
normal flow models. However, the limitation of this solution is the large number
of independent network administrative domains that must deploy it in order to
be efficient.

2.4 Our Previous Work

In [10] and [11], we presented the results of an intensive measurement cam-
paign we conducted in the aim of featuring and understanding a botcloud in
its execution environment. We considered the case of a public CSP, providing
an Infrastructure as a Service (IaaS), such as Amazon EC2. We reproduced
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the case where a malicious user rents several virtual machines to host a bot-
cloud intended to support DDoS attacks. The botcloud was implemented over
Hybrid_V1.0 botnet1. We have realized transport layer DDoS flooding attacks
(TCP SYN and UDP flooding). Indeed, the popularity of these attacks is due
to their high effectiveness against any kind of service since there is no need to
identify and exploit any particular flaws of victims’ services. From a timeline
perspective, all the experiments we conducted are composed of three phases,
each lasting one hour. These are: (1) a first phase of normal state, where the
botcloud is deployed, active but does not attack; (2) a second phase of attack
toward a third party and finally (3) a third phase where the attack is stopped
and the system comes back to normal. We have performed our experimentation
over Planet-Lab [12] which relies on the LXC2 project for virtualization. We
used PlanetLab to face the need of an execution environment in which several
tenants execute legitimate services while we are able to deploy and control a
modified safe version of a botcloud. In order to maintain the privacy of the ten-
ant’s activity [13], we have limited the measurements to the sole metrics that
are commonly available at the hypervisor level, thus operating in a black box
way. As a result, the metrics we collect are: CPU (%), memory (MEM (KB/s)),
bandwidth sent (TX (Kb/s)) and bandwidth received (RX (Kb/s)). The mon-
itoring of tenants (slices) was performed every minute, through the Slicestat3
service. Over the all measurement campaign, and beyond the results we present
here, we have collected about 18 GBytes of log files.

In [10], we have highlighted, over a PCA [14], the correlations between the
different collected system metrics of a botcloud. Indeed, in the case of UDP
flood attack, CPU and TX metrics are positively and strongly correlated and
both are negatively and strongly correlated with RX metric. Concerning the case
of TCP SYN flood attack, there is a strong and positive correlation between the
TX and RX metrics and both are strongly and negatively correlated with the
CPU metric. In the second part of the work, we have detected and separated
the attack phase from the idle one, for the two study-cases, namely, botclouds
supporting UDP flood and TCP SYN flood attacks. We have also confirmed the
hypothesis of the strong similarity of bots’ behaviors.

In [11], we have shown, using PCA, that from a system perspective, whatever
the attack rate, the contribution of metrics in modeling the botcloud’s behavior
is almost constant. In addition, the factorial space defined by the eigenvectors’
matrix and which defines the botcloud’s activity is also, almost constant. These
results have led us to define the generic factorial space that represents the ac-
tivity of a botcloud supporting a DDoS flooding attack. In this paper, we use
this factorial space for the detection of botcloud’s activity against legitimate
workload.

1 http://security-sh3ll.blogspot.com/2010/01/hybrid-botnet-system-v10-
released.html

2 https://linuxcontainers.org
3 http://codeen.cs.princeton.edu/slicestat/

http://security-sh3ll.blogspot.com/2010/01/hybrid-botnet-system-v10-released.html
http://security-sh3ll.blogspot.com/2010/01/hybrid-botnet-system-v10-released.html
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3 A Source Approach Based on a PCA

In this section, we describe the approach we propose for a source-based detection
of botclouds leveraging DDoS flooding attacks. First, we give an overview on
PCA, the statistical method we used in our detection process. Then, we detail
the steps of our detection approach. Table 1 describes the different notations
used in the next sections.

Table 1. Notations table

Xk The kth [n× p] Data matrix xk
ij

The jth variable of the kth [n× p]
Data matrix at time i

ekit

The ith eigenvector of tenant k
calculated at time t w Size of time monitoring window

Mk
t

[p× p] Eigenvectors matrix of tenant
k calculated at time t W k

t

[w × p] Data matrix of last activity
belonging to tenant k at t time

λk
it

The ith eigenvalue of tenant k
calculated at time t W k

ij The jth variable of W k at time i

p Number of variables of a matrix Sk
t normalized matrix of W k

t

n Number of rows of a matrix Sk
ij The jth variable of Sk at time i

t Time index Ck
t

Covariance matrix of tenant k
calculated at time t

m
Number of chosen Principal
Components vmvk

ij

The jth variable of vth virtual
machine belonging to tenant k at
time i

k Tenant’s number V k
Number of VMs belonging to a
tenant k

dkt Decision made for tenant k at time t v VM’s number

Dk
t Dissimilarity value of Mk

t and R R
Reference factorial space for a DDoS
attack

H Threshold σ Standard deviation

3.1 Principal Component Analysis

PCA [14] is a descriptive statistical method belonging to the factorial category.
It is aimed at easing the exploration and analysis of high-dimensional vectors of
input data by reducing their dimensions and enabling the extraction of features.
Given a data matrix Xk of n observations, also called individuals, composed
of p variables, the PCA explains the variance-covariance structure of the set of
variables through a few new variables, called principal components or factors,
which are functions of the original variables. Principal components represent
linear combinations of the p variables with important properties: the computed
principal components, which are in general 2 or 3, respectively have the highest
variances so that they best represent the data in a reduced dimension space and
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highlight their linear relations. Also, components are uncorrelated and the total
variance of all the principal components equals the total variance of the origi-
nal variables. More precisely, the principal components are computed by firstly,
solving the eigenvalue problem of the variance-covariance matrix described by
Equation 1

Cei = λiei (1)

where C represents the variance-covariance matrix, λi (i = 1, 2, . . . , p) are the
corresponding eigenvalues and ei represents their corresponding eigenvectors.
Secondly, computing the first m eigenvectors (e1, e2, . . . , em) which correspond
to the m largest eigenvalues (λ1, λ2, . . . , λm) where (m < p).

Many works such as [15] and [16], rely on PCA in network intrusion detection.
The authors in [15], have showed how PCA can be used for real-time anomaly
detection. The authors in [16] have confirmed that a detection mechanism based
on PCA can be suitable for large amounts of real time data.

As we need to detect attacks in a highly heterogeneous and dynamic work-
load, using PCA fits perfectly our study context, since it does not require any
distribution model assumption on the data while many statistical based intrusion
detection methods assume a normal or at least known distribution model.

3.2 Problem Modeling and Detection Algorithm

The first step of the detection process, consists in data monitoring and collection,
which is done for all VMs, belonging to all tenants. Especially, the metrics we
consider are CPU (%), memory (MEM (KB/s)), bandwidth sent (TX (Kb/s))
and bandwidth received (RX (Kb/s)). Most data sets contain one or a few un-
usual observations [15]. When an observation is different from the majority of
the data or don’t assume the same statistical distribution model, it is considered
as an outlier. The authors in [17], demonstrated that PCA is very sensitive to
outlier data. Since we are interested in the global behavior of a tenant and not
a particular VM, as a first filter for outlier data, we use an arithmetic average.
That way, the detection algorithm uses, for each tenant, a data matrix Xk that
represents the arithmetic average of the global activity of tenant k as input.
An entry xk

ij represents the average calculated on all the ith rows corresponding
to the jth variable (column) of all the VMs vmvk

ij (v = 1, 2, . . . , Vk), belonging
to tenant k, as explained by Equation 2. Using the arithmetic average has no
influence on our study. In fact, we have demonstrated in [10] that the behavior
of a simple bot (VM) is very close to that of the global botcloud, due to the
strong correlation of the different bots.

xk
ij =

1

V k

V k∑

v=1

vmvk
ij (2)

Our detection algorithm always relies on the previous activity of the tenant,
and detects any new changes in its behavior. We represent this previous activity
by a sliding window of time which we name W k

t .
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W k
t =

⎡

⎢⎢⎣

xk
(t−w) 1 · · · xk

(t−w) p

...
. . .

...
xk
t 1 · · · xk

t p

⎤

⎥⎥⎦

The second step, consists in normalizing the data of W k
t by calculating it’s

standard score Sk
t as explained by Equation 3. The reason of using normalized

data resides in the difference of scales in which metrics and data are collected.
Furthermore, using normalized data allows a better control on the detection
threshold.

Sk
ij =

W k
ij −W

k

.j

σ(W k
.j)

(3)

Contrarily to the basic PCA presented in Section 3.1, our approach, relies
on the computation of the whole eigenvectors (ek1t, ek2t, . . . , ekpt) related to all the
eigenvalues (λk

1t, λ
k
2t, . . . , λ

k
pt) of Equation 1, which constitutes the third step in

the detection process. That way, our approach considers all the data set without
any information loss. The covariance matrix used in the eigenvectors computa-
tion are obtained through Equation 4.

Ck
t =

1

n
(Sk

t )
T × Sk

t (4)

The set of the p eigenvectors constitutes a factorial space, represented by
Mk

t the p× p eigenvector matrix, Mk
t = [ek1t, . . . , e

k
pt]. This factorial space entity

represents the heart of our approach. Indeed, in [11], we showed that the factorial
space composed by the eigenvectors, defines tenants’ activities in general and
the botcloud’s activity in particular. We also showed that, whatever the attack
rate, the factorial space of a botcloud is almost constant. In addition, it appears
always as an outlier of legitimate activities. All that has led us to define a generic
factorial space that represents a botcloud realizing a DDoS flooding attack. The
latter serves as a reference R for our detection algorithm. In other words, unlike
most of approaches that use PCA for outlier detection, our approach compares
the workload with a defined outlier pattern, which is the factorial space R. Any
similarity with this pattern is considered as a potential attack.

Consequently, the fourth step, is the comparison of the calculated Mk
t with

R. To that aim, we use the notion of dissimilarity between matrices. The dis-
similarity measure between the two matrices which we name Dk

t , is calculated
by the Frobenius norm ||Mk

t −R||F [18] as depicted in Equation 5

Dk
t = ||Mk

t −R||F =

√√√√
p∑

i=1

p∑

j=1

|(Mk
t −R)ij |2 (5)
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Fig. 1. Detection algorithm steps

Finally, we fix a threshold that we name H to decide whether or not the
dissimilarity Dk

t value stands for a DDoS attack. The decision rule dkt is given
by

dkt =

{
True if Dk

t ≤ H

False if Dk
t > H

(6)

The Figure 1 summarizes the described detection steps in detail.

4 Evaluation and Discussion

4.1 Evaluation Framework

In this section we present the results we obtained for the evaluation of our detec-
tion algorithm. We note that our algorithm treats simultaneously all monitored
tenants.

For the evaluation, we have used the real traces (logs) we obtained every
minute in [10] by injecting them into a simulator built on the R tool4. Table
2 summarizes the different elements we monitored and that characterize these
experimentations. We have realized five experimentations. For each experiment,
we have a botcloud realizing an UDP flood attack at different rates, from 8
MB/s up to 80 MB/s per source, reaching aggregated attack rates of 328 MB/s
to 3.125 GB/s. For each experiment, we present the results we obtained through
facing the botcloud’s activity to 25 other legitimate tenants picked randomly,
which represents a large workload of hundreds of VMs.
4 http://www.r-project.org
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In order to evaluate our detection algorithm, we have varied the decision
threshold H from 1.29 to 1.42. 1.29 constitutes the lower bound of H because it
represents the highest dissimilarity value between the reference factorial space
R and the botcloud while realizing the different attacks. Regarding the upper
bound, we have varied H by steps of 0.03 till having 5% of error rate, which
corresponds to the 1.42 value. For the current study, we initialized our algorithm
with w = 7. Thus, the detector relies on a sliding window W of 7 minutes. The
choice of w represents the subject of a study that is left for future work.

Table 2. Summary of the scenarios’ numerical parameters

UDP flood
attack rate

#Physical
servers

#Tenants
(incl. attack.)

#VMs (incl.
attackers)

#Attacking
VMs

8 MB/s 41 123 1,288 41
16 MB/s 41 118 1,261 41
40 MB/s 43 123 1,310 43
56 MB/s 41 114 1,241 41
80 MB/s 40 103 1,198 40

4.2 Evaluation Results

We have computed the confusion matrix of all the simulations we conducted. A
confusion matrix contains information about actual and predicted classifications
done by a classification system. From the latter, we have calculated different
statistical indicators such as Receiver Operating Characteristic (ROC) curves,
Accuracy, Error rate, Matthews Correlation Coefficient, Positive and Negative
Predictive Values.

Accuracy and Error Rate. The accuracy5 of a measurement system is the
degree of closeness of measurements of a quantity to that quantity’s true value. It
has a value between 0 and 1. Figure 2.a describes the accuracy values obtained
over the five experimentations. We note that the highest ACC we obtained
corresponds to H = 1.32, which are 0.9955, 0.9944, 0.9957, 0.9955 and 0.9939.
These Accuracy values reflect the efficiency of our algorithm. In similar way,
the error rate measurement which represents the opposite of the accuracy and
defined by the remoteness of measurements of a quantity to that quantity’s
true value. So, lower is the error rate, more reliable is the detection. Figure 2.b
describes the error rates obtained over the five experimentations. We note that
the lowest ERR rates we obtained are 0.0045, 0.0056, 0.0043, 0.0045 and 0.006,
which corresponds to H = 1.32.

5 http://www.bipm.org/en/publications/guides/
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Fig. 2. Accuracy and Error rate graphs ; (a) Accuracy (b) Error rate

Positive and Negative Predictive Values. The positive and negative pre-
dictive values (PPV and NPV respectively) are the proportions of positive and
negative results in statistics and detection tests that are true positive and true
negative results. The PPV and NPV describe the performance of the detec-
tion. Closer are PPV and NPV values from 1, better is the detection. Figure 3
describes the obtained values of PPV and NPV over the five experimentations.
For both measures the highest values we obtained over the experimentation be-
longs to H = 1.32. The PPV obtained values are: 0.9474, 0.9500, 0.9545, 0.9535
and 0,9444. Concerning the NPV measure we always got values over than 0.99.
These values are very close from 1, which again reflects the efficiency and good
prediction of our algorithm.

Fig. 3. Predictive values graphs; (a) Positive Predictive Values; (b) Negative Predictive
Values
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Fig. 4. ROC and Matthews correlation coefficient; (a) ROC curves; (b) Matthews
correlation coefficient

ROC Curves and Matthews Correlation Coefficient. Figure 4.a repre-
sents the different ROC curves we obtained. In the five cases, the drawn curve is
always widely on top of the bisector, which prove the efficiency of our algorithm.

The Matthews correlation coefficient (MCC) [19] is used as a measure of the
quality of binary (two-class) classifications. It represents a correlation coefficient
between the observed and predicted binary classifications; it returns a value be-
tween -1 and +1. A coefficient of +1 represents a perfect prediction, 0 no better
than random prediction and -1 indicates total disagreement between prediction
and observation. Figure 4.b describes MCC values we obtained over the exper-
imentation. The highest MCC values we obtained belongs also to H = 1.32,
which are 0.7927, 0.7669, 0.8224, 0.8120 and 0.7352. These results reflect the
good prediction of our algorithm.

The consistency of the results over the threshold variation confirms the ef-
ficiency of our algorithm. We also note that the best threshold we got is 1.32.
Over this threshold, we have got a very good performance: an Accuracy rate
always over 99%, an Error rate always less than 0.6%, a PPV value rate always
over than 94% and a NPV value always higher than 99%. These results are ob-
tained through the comparison with a generic factorial space obtained through
a botcloud realizing attacks at defined rates (between 8MB/s and 80MB/s per
source). The best detection results are obtained through the experimentation
at 40MB/s (median value of attack rates). Indeed, we got better performances
through 40MB/s experiment because the respective botcloud’s factorial space is
the closest from R.

The obtention of such very good results is due to the use of the arithmetic
average in a centralized approach. However, due to the complexity of the de-
tection algorithm, a distributed approach is mandatory. Consequently, we plan
to study such an implementation to see whether the detection performances
undergo degradations.
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5 Conclusion and Future Work

In this paper, we have addressed the problem of the conversion of the cloud
computing into an attack vector. To remediate the problem, we have presented a
novel approach based on PCA and system metrics, which enables a source-based
detection of DDoS flooding attacks in a cloud computing environment. We have
validated our approach by a simulation approach that relies on a real traces that
we obtained through in situ experimentations. We have proved the efficiency and
resiliency of our detection algorithm over the different statistics that took into
account dozens of tenants that involve hundreds of virtual machines activities
which represents a large workload amount.

These results only represent a step of our work. A short-term future work will
focus on proposing a fully distributed approach of our detection algorithm, able
to deal with scalability issues. Mid-term future work consists in extending this
study in order to characterize other attacks such as application level attacks and
even to detect infected legitimate VMs exhibiting an almost an almost normal
behavior. Finally, our long-term research direction will look at the development
of an autonomous self-protection system for CSPs against DDoS attacks lever-
aged by a cloud infrastructure.

Acknowledgment. This work is supported by the (Contrôle Autonome et Sécu-
rité dans le Cloud Computing (CASCC)) research project, which is founded by
the Champagne-Ardenne region.
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