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Abstract. Originally proposed for privacy protection in the context of statisti-
cal databases, differential privacy is now widely adopted in various models of
computation. In this paper we investigate techniques for proving differential pri-
vacy in the context of concurrent systems. Our motivation stems from the work
of Tschantz et al., who proposed a verification method based on proving the ex-
istence of a stratified family between states, that can track the privacy leakage,
ensuring that it does not exceed a given leakage budget. We improve this tech-
nique by investigating a state property which is more permissive and still implies
differential privacy. We consider two pseudometrics on probabilistic automata:
The first one is essentially a reformulation of the notion proposed by Tschantz et
al. The second one is a more liberal variant, relaxing the relation between them by
integrating the notion of amortisation, which results into a more parsimonious use
of the privacy budget. We show that the metrical closeness of automata guaran-
tees the preservation of differential privacy, which makes the two metrics suitable
for verification. Moreover we show that process combinators are non-expansive
in this pseudometric framework. We apply the pseudometric framework to reason
about the degree of differential privacy of protocols by the example of the Dining
Cryptographers Protocol with biased coins.

1 Introduction

Differential privacy [14] was originally proposed for privacy protection in the context
of statistical databases, but nowadays it is becoming increasingly popular in many other
fields, ranging from programming languages [24] to social networks [23] and geoloca-
tion [20]. One of the reasons of its success is its independence from side knowledge,
which makes it robust to attacks based on combining various sources of information.

In the original definition, a query mechanism A is ε-differentially private if for any
two databases u1 and u2 which differ only for one individual (one row), and any prop-
erty Z , the probability distributions of A(u1),A(u2) differ on Z at most by eε, namely,
Pr[A(u1) ∈ Z] ≤ eε · Pr[A(u2) ∈ Z]. This means that the presence (or the data)
of an individual cannot be revealed by querying the database. In [7], the principle of
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E. Ábrahám and C. Palamidessi (Eds.), FORTE 2014, LNCS 8461, pp. 199–215, 2014.
c© IFIP International Federation for Information Processing 2014



200 L. Xu, K. Chatzikokolakis, and H. Lin

differential privacy has been formally extended to measure the degree of protection of
secrets in more general settings.

In this paper we deal with the problem of verifying differential privacy properties for
concurrent systems, modeled as probabilistic automata admitting both nondeterministic
and probabilistic behavior. In such systems, reasoning about the probabilities requires
solving the nondeterminism first, and to such purpose the usual technique is to consider
functions, called schedulers, which select the next step based on the history of the com-
putation. However, in our context, as well as in security in general, we need to restrict
the power of the schedulers and make them unable to distinguish between secrets in the
histories, or otherwise they would plainly reveal them by their choice of the step. See
for instance [6,8,2] for a discussion on this issue. Thus we consider a restricted class of
schedulers, called admissible schedulers, following the definition of [2]. Admissibility
is introduced to deal with bisimulation-like notions in security contexts: Two bisimilar
processes are typically considered to be indistinguishable, yet an unrestricted scheduler
could trivially separate them.

The property of differential privacy requires that the observations generated by two
different secret values be probabilistically similar. In standard concurrent systems the
notion of similarity is usually formalized as an equivalence, preferably preserved un-
der composition, i.e., a congruence. We mention in particular trace equivalence and
bisimulation. The first is often used for its simplicity, but in general is not composi-
tional [17]. The second one is a congruence and it is appealing for its proof technique.
Process equivalences have been extensively used to formalize security properties like
secrecy [1] and noninterference [15,25,26].

In this paper we focus on metrics suitable for verifying differential privacy. Namely,
metrics for which the distance between two processes determines an upper bound on
the ratio of the probabilities of the respective observables. We start by considering the
framework proposed by Tschantz et al. [27], which was explicitly designed for the pur-
pose of verifying differential privacy. Their verification technique is based on proving
the existence of an indexed family of bijections between states. The parameter of the
starting states, representing the privacy budget, determines the level of differential pri-
vacy of the system, which decreases over time by subtracting the absolute difference
of probabilities in each step during mutual simulation. Once the balance reaches zero,
processes must behave exactly the same. We reformulate this notion in the form of a
pseudometric, showing some novel properties as a distance relation.

The above technique is sound, but has a rather rigid budget management. The main
goal of this paper is to make the technique more permissive by identifying a pseudo-
metric that is more relaxed and still implies an upper bound on the privacy leakage.

In particular, the pseudometric we propose is based on a thriftier use of the privacy
budget, which is inspired by the notion of amortisation used in some quantitative bisim-
ulations [18,10]. The idea is that, when constructing the bijections between states, the
differences among the probabilities of related states are kept with their sign, and added
with their sign through each step. In this way, successive differences can compensate
(amortise) each other, and rather than always being consumed, the privacy budget may
also be refurbished. In [18] the idea of amortisation is applied on a set of cost-based
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actions. The quantitative feature considered here is discrete probability distributions
over states, which is shown to benefit from the theory of amortisation as well.

Furthermore, there is a soundness criterion on the distance notion for probabilistic
concurrent systems defined in [13]. It says that 0-distance in a pseudometric is expected
to fully characterise bisimilarity. We show that 0-distance in the two pseudometrics im-
plies bisimilarity while the converse does not hold. Although the pseudometrics do not
thoroughly satisfy the criterion, we prove that several process combinators including
parallel composition are non-expansive in the pseudometrics. Non-expansiveness gives
a desirable property that when close processes are placed in the same context, the re-
sulting processes are still close in the distance. This can be viewed as an analogue of the
congruence properties of bisimulation. Finally, we illustrate the verification technique
of differential privacy using the example of the Dining Cryptographers Problem(DCP)
with biased coins.

More related Work. Verification of differential privacy has become an active area of
research. Among the approaches based on formal methods, we mention those based on
type-systems [24,16] and logical formulations [3].

In a previous paper [28], one of the authors has developed a compositional method
for proving differential privacy in a probabilistic process calculus. The technique there
is rather different from the ones presented in paper: the idea is based on decomposing
a process in simpler processes, computing the level of privacy of these, and combining
them to obtain the level of privacy of the original program.

A line of one very interesting approach related to ours in spirit - considering pseu-
dometrics on probabilistic automata - includes the work by Desharnais et al. [13] and
Deng et al. [11]. They both use the metric à la Kantorovich proposed in [13], which
represents a cornerstone in the area of bisimulation metrics. It would be attractive to
see how the Kantorovich metric can be adapted to reason about differential privacy.

Finally, among several formalizations of the notion of information protection based
on probability theory, we mention some rather popular approaches, mainly based on
information theory, in particular, to consider different notions of entropy depending on
the kind of adversary, and to express the leakage of information in terms of the notion of
mutual information. We name a few works also discussed in the models of probabilistic
automata and process algebra: Boreale [4] establishs a framework for quantifying infor-
mation leakage using absolute leakage, and introduces a notion of rate of leakage. Deng
et al. [12] use the notion of relative entropy to measure the degree of anonymity. Compo-
sitional methods based on Bayes risk method are discussed by Braun et al. [5]. A metric
for probabilistic processes based on the Jensen-Shannon divergence is proposed in [22]
for measuring information flow in reactive processes. Unlike the information-theoretical
approach, differential privacy provides strong privacy guarantees independently from
side knowledge. However, progress for differential privacy has been relatively new and
going slowly. It would be interesting to see how the issues stressed and the reasoning
techniques developed there can be adapted for differential privacy.

Contribution. The main contributions of this paper can be summarized as follows:

- We reformulate the notion of approximate similarity proposed in [27] in terms of a
pseudometric and we study the properties of the distance relation (in Section 3).
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- We propose the second pseudometric which is more liberal than the former one, in
the sense that the total differences of probabilities get amortised during the mutual
simulation. We show that the level of differential privacy is continuous with respect
to the metric, which says that if every two processes running on two adjacent secrets
of a system are close in the metric then the system is differentially private, making
the metric suitable for verification (in Section 4).

- We show that 0-distance in the pseudometrics implies bisimilarity (in Section 5).
- We present the non-expansiveness property in the pseudometrics for CCSp operators

in a probabilistic variant of Milner’s CCS [21] (in Section 6).
- We use the pseudometric framework to show that the Dining Cryptographers protocol

with probability-p biased coins is | ln p
1−p |-differentially private. (in Section 7).

The rest of the Paper. In the next section we recall some preliminary notions about prob-
abilistic automata, differential privacy and pseudometrics. Section 8 concludes. Long
proofs can be found in the appendix.

2 Preliminaries

2.1 Probabilistic Automata

Given a set X , we denote by Disc(X) the set of discrete sub-probability measures
over X ; the support of a measure μ is defined as supp(μ) = {x ∈ X |μ(x) > 0}. A
probabilistic automaton (henceforth PA) A is a tuple (S, s, A,D) where S is a finite set
of states, s ∈ S is the start state, A is a finite set of action labels, and D ⊆ S × A ×
Disc(S) is a transition relation. We write s

a−→ μ for (s, a, μ) ∈ D, and we denote
by act(d) the action of the transition d ∈ D. A PA A is fully probabilistic if from each
state of A there is at most one transition available.

An execution α of a PA is a (possibly infinite) sequence s0a1s1a2s2 . . . of alternat-
ing states and labels, such that for each i : si

ai+1−→ μi+1 and μi+1(si+1) > 0. We use
lstate(α) to denote the last state of a finite executionα. We use Exec∗(A) andExec(A)
to represent the set of finite and all executions of A, respectively. A scheduler of a PA
A = (S, s, A,D) is a function ζ : Exec∗(A) �→ D such that ζ(α) = s

a−→ μ ∈ D
implies that s = lstate(α). The idea is that a scheduler selects a transition among the
ones available in D, basing its decision on the history of the execution. The execution
tree of A with respect to the scheduler ζ, denoted by Aζ , is a fully probabilistic au-
tomaton (S′, s′, A′, D′) such that S′ ⊆ Exec∗(A), s′ = s, A′ = A, and α

a−→ ν ∈ D′

if and only if ζ(α) = lstate(α)
a−→ μ for some μ and ν(αas) = μ(s). Intuitively,

Aζ is produced by unfolding the executions of A and resolving all non-deterministic
choices using ζ. Note that Aζ is a simple and fully probabilistic automaton. We use α
with primes and indices to range over states in an execution tree.

A trace is a sequence of labels in A∗ ∪ Aω obtained from executions by removing
states. We use [ ] to represent the empty trace, and � to concatenate two traces. A state
α of Aζ induces a probability measure over traces as follows. The basic measurable
events are the cones of finite traces, where the cone of a finite trace t, denoted by Ct, is
the set {t′ ∈ A∗ ∪ Aω|t ≤ t′}, where ≤ is the standard prefix preorder on sequences.
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The probability of a cone Ct induced by state α, denoted by Prζ [α � t], is defined
recursively as follows.

Prζ [α � t] =

⎧
⎪⎪⎨

⎪⎪⎩

1 if t = [ ],
0 if t = a�t′ and act(ζ(α)) �= a,∑

si∈supp(μ) μ(si)Prζ [αasi � t′]
if t = a�t′ and ζ(α) = s

a−→ μ.

(1)

Admissible schedulers. We consider a restricted class of schedulers, called admissi-
ble schedulers, following the definition of [2]. Essentially this definition requires that
whenever given two adjacent states s, s′, namely, differing only for the choice for some
secret value, then the choice made by the scheduler on s and s′ should be consistent, i.e.
the scheduler should not be able to make a different choice on the basis of the secret.
Note that in [27] scheduling is not an issue since non-determinism is not allowed.

More precisely, in [2] admissibility is achieved by introducing tags for transitions.
Admissible schedulers are viewed as entities that have access to a system through a
screen with buttons, where each button represents one (current) available option, i.e.
an enabled tag. A scheduler ζ is admissible if for all finite executions having the same
sequence of screens, ζ decides the same tagged transition for them.

Pseudometrics on states. A pseudometric1 on S is a function m : S2 → R satisfying
the following properties: m(s, s) = 0 (reflexivity), m(s, t) = m(t, s) (symmetry) and
m(s, t) ≤ m(s, u) + m(u, t) (triangle inequality). We define m1 	 m2 iff ∀s, t :
m1(s, t) ≥ m2(s, t) (note that the order is reversed).

2.2 Differential Privacy

Differential privacy [14] was originally defined in the context of statistical databases,
by requiring that a mechanism (i.e. a probabilistic query) gives similar answers on ad-
jacent databases, that is those differing on a single row. More precisely, a mechanism
K satisfies ε-differential privacy iff for all adjacent databases x, x′: Pr[K(x) ∈ Z] ≤
eε · Pr[K(x′) ∈ Z] for all Z ⊆ range(K). Differential privacy imposes looser restric-
tions on non-adjacent secrets, which is considered as another merit of it.

In this paper, we study concurrent systems taking a secret as input and producing
an observable trace as output. Let U be a set of secrets and ∼ an adjacency relation
on U , where u ∼ u′ denotes the fact that two close secrets u, u′ should not be easily
distinguished by the adversary after seeing observable traces. A concurrent system A
is a mapping of secrets to probabilistic automata, where A(u), u ∈ U is the automaton
modelling the behaviour of the system when running on u. Differential privacy can be
directly adapted to this context:

Definition 1 (Differential Privacy). A concurrent system A satisfies ε-differential pri-
vacy (DP) iff for any u ∼ u′, any finite trace t and any admissible scheduler ζ:

Prζ [A(u) � t] ≤ eε · Prζ [A(u′) � t]

1 Unlike a metric, points in a pseudometric need not be distinguishable; that is, one may have
m(s, t) = 0 for distinct values s �= t.
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3 The Accumulative Pseudometric

In this section, we present the first pseudometric based on a reformulation of the relation
family proposed in [27]. We reformulate their notion in the form of an approximate
bisimulation relation, named accumulative bisimulation, and then use it to construct a
pseudometric on the state space.

We start by defining an approximate lifting operation that lifts a relation over states
to a relation over distributions. Intuitively, we use a parameter ε to represent the total
privacy leakage budget. A parameter c ranging over [0, ε], starting from 0, records the
current amount of leakage and increasing over time by adding the maximum absolute
difference of probabilities, denoted by σ, in each step during mutual simulation. Once
c reaches the budget bound ε, processes must behave exactly the same. Since the total
bound is ε, only a total of ε privacy can be leaked, a fact that will be used later to verify
differential privacy. We use D to simply differentiate notions of this section from the
following sections.

Definition 2. Let ε � 0, c ∈ [0, ε], R ⊆ S×S× [0, ε]. The D-approximate lifting of R
up to c, denoted by LD(R, c), is the relation on Disc(S) defined as:

μLD(R, c)μ′ iff ∃ bijection β : supp(μ) → supp(μ′) such that

∀s ∈ supp(μ) : (s, β(s), c+ σ) ∈ R where σ = max
s∈supp(μ)

| ln μ(s)

μ′(β(s))
|

This lifting allows us to define an approximate bisimulation relation:

Definition 3 (Accumulative bisimulation). A relation R ⊆ S × S × [0, ε] is a ε-
accumulative bisimulation iff for all (s, t, c) ∈ R:

1. s
a−→ μ implies t

a−→ μ′ with μLD(R, c)μ′

2. t
a−→ μ′ implies s

a−→ μ with μLD(R, c)μ′

We can now define a pseudometric based on accumulative bisimulation as:

mD(s, t) = min{ε | (s, t, 0) ∈ R for some ε-accumulative bisimulation R}

Proposition 1. mD is a pseudometric, that is:

1. (reflexivity) mD(s, s) = 0
2. (symmetry) mD(s1, s2) = mD(s2, s1)
3. (triangle inequality) mD(s1, s3) ≤ mD(s1, s2) +mD(s2, s3)

Proof Sketch. The proof proceeds by showing for each clause respectively that: 1.
IdS = {(s, s, 0)|s ∈ S} is a 0-accumulative bisimulation; 2. Assume that (s1, s2, 0)
is in a ε-accumulative bisimulation R, then R′ = {(s′2, s′1, c)|(s′1, s′2, c) ∈ R} is
a ε-accumulative bisimulation; 3. Assume that (s1, s2, 0) is in the ε1-accumulative
bisimulation R1 ⊆ S × S × [0, ε1], (s2, s3, 0) is in the ε2-accumulative bisimulation
R2 ⊆ S × S × [0, ε2]. Their relational composition R1R2 ⊆ S × S × [0, ε1 + ε2]:

{(s′1, s′3, c)|∃s′2, c1, c2.(s′1, s′2, c1) ∈ R1 ∧ (s′2, s
′
3, c2) ∈ R2 ∧ c ≤ c1 + c2}

is a ε1 + ε2-accumulative bisimulation. ��
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Fig. 1. A PIN-checking system: mD(A(u1),A(u2))=∞, mA(A(u1),A(u2)) = ln 9
4

Verification of differential privacy using mD . As already shown in [27], the closeness
of processes in the relation family implies a level of differential privacy. We here restate
this result in terms of the metric mD.

Lemma 1. Given a PA A, let R be a ε-accumulative bisimulation, c ∈ [0, ε], let ζ
be an admissible scheduler, t be a finite trace, α1, α2 two finite executions of A. If
(lstate(α1), lstate(α2), c) ∈ R, then

1

eε−c
≤ Prζ [α1 � t]

Prζ [α2 � t]
≤ eε−c

The above lemma shows that in a ε-accumulative bisimulation, two states related by
a current leakage amount c, produce distributions over the same trace that only deviate
by a factor (ε− c) representing the remaining amount of leakage. Then it is easy to get
that the level of differential privacy is continuous with respect to mD.

Theorem 1. A concurrent system A is ε-differentially private if mD(A(u),A(u′)) ≤ ε
for all u ∼ u′.

4 The Amortised Pseudometric

As shown in the previous section, mD is useful for verifying differential privacy. How-
ever, a drawback of this metric is that the definition of accumulative bisimulation is
too restrictive: first, the amount of leakage is only accumulated, independently from
whether the difference in probabilities is negative or positive. Moreover, the accumu-
lation is the same for all branches, and equal to the worst branch, although the actual
difference on some branch might be small. As a consequence, mD is inapplicable in
several systems, as shown by the following toy example.
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Example 1. Consider a PIN-checking system A(u) in which the PIN variable u is des-
ignated from two secret codes u1 and u2. In order to protect the secrecy of the two
PINs, rather than announcing to a user deterministically that whether the password he
enters is correct or wrong, the system makes a response probabilistically. The idea is to
give a positive answer with a higher probability when the password and the PIN match,
and to give a negative answer with a higher probability otherwise.

The PIN-checking system could be defined as the PA shown in Fig. 1.We use label
ai to model the behavior that the password entered by a user is ui, where i ∈ {1, 2}.
We use label ok and no to represent a positive and a negative answer, respectively.

Consider an admissible scheduler always choosing for A(u1) the a1-branch (the case
for the a2-branch is similar), thus scheduling for A(u2) also the a1-branch. It is easy
to see that the ratio of probabilities for A(u1) and A(u2) producing the same finite
sequences (a1no a2 no)∗ is (0.4×0.6

0.6×0.4 )
∗ = 1. For the rest sequences (a1no a2 no)∗a1ok

and (a1no a2 no)
∗a1no a2 ok, we can check that the ratios are bounded by 9

4 . Thus, A
satisfies ln 9

4 -differential privacy. However, we can not find an accumulative bisimula-
tion with a bounded ε between A(u1) and A(u2). The problem lies in that the leakage
amount is always accumulated by adding the absolute differences during cyclic simula-
tions, resulting in a convergence to ∞.

In order to obtain a more relaxed metric, we employ the amortised bisimulation rela-
tion of [18,10]. The main intuition behind this notion is that the privacy leakage amount
in each simulation step may be either reduced due to a negative difference of prob-
abilities, or increased due to a positive difference. Hence, the long-term budget gets
amortised, in contrast to the accumulative bisimulation in which the budget is always
consumed. We start by defining the corresponding lifting, using A to represent amor-
tised bisimulation-based notions. Note that the current leakage c ranges over [−ε, ε].

Definition 4. Let ε � 0, c ∈ [−ε, ε], R ⊆ S × S × [−ε, ε]. The A-approximate lifting
of R up to c, denoted by LA(R, c), is a relation on Disc(S) defined as:

μLA(R, c)μ′ iff ∃ bijection β : supp(μ) → supp(μ′) such that

∀s ∈ supp(μ) : (s, β(s), c+ ln
μ(s)

μ′(β(s))
) ∈ R

Note that if ln μ(s)
μ′(β(s)) is positive, then after this mutual step, the current leakage for

s and β(s) gets increased, otherwise decreased. We are now ready to define amortised
bisimulation.

Definition 5 (Amortised bisimulation). A relation R ⊆ S × S × [−ε, ε] is a ε-
amortised bisimulation iff for all (s, t, c) ∈ R:

1. s
a−→ μ implies t

a−→ μ′ with μLA(R, c)μ′

2. t
a−→ μ′ implies s

a−→ μ with μLA(R, c)μ′

Similarly to the previous section, we can finally define a pseudometric on states as:

mA(s, t) = min{ε | (s, t, 0) ∈ R for some ε-amortised bisimulation R}

Proposition 2. mA is a pseudometric.
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Proof Sketch. The proof proceeds by showing that: 1. IdS = {(s, s, 0)|s ∈ S} is a
0-amortised bisimulation; 2. Assume that (s1, s2, 0) is in a ε-amortised bisimulation
R, then R′ = {(s′2, s′1, c) |(s′1, s′2,−c) ∈ R} is a ε-amortised bisimulation; 3. Let
(s1, s2, 0) be in the ε1-amortised bisimulation R1 ⊆ S × S × [−ε1, ε1], (s2, s3, 0) be
in the ε2-amortised bisimulation R2 ⊆ S × S × [−ε2, ε2]. Their relational composition
R1R2 ⊆ S × S × [−ε1 − ε2, ε1 + ε2]:

{(s′1, s′3, c)|∃s′2, c1, c2.(s′1, s′2, c1) ∈ R1 ∧ (s′2, s
′
3, c2) ∈ R2 ∧ c1 + c2 = c}

is a ε1 + ε2-amortised bisimulation. ��

Verification of differential privacy using mA. We now show that mA can be used to
verify differential privacy.

Lemma 2. Given a PA A, let R be a ε-amortised bisimulation, c ∈ [−ε, ε], let ζ
be an admissible scheduler, t be a finite trace, α1, α2 two finite executions of A. If
(lstate(α1), lstate(α2), c) ∈ R, then

1

eε+c
≤ Prζ [α1 � t]

Prζ [α2 � t]
≤ eε−c

Note that there is a subtle difference between Lemmas 1 and 2, in that the denominator
in the left-hand bound is eε+c instead of eε−c. This comes from the amortised nature of
R. We can now show that differential privacy is continuous with respect to mA as well.

Theorem 2. A concurrent system A is ε-differentially private if mA(A(u),A(u′)) ≤ ε
for all u ∼ u′.

Proof Sketch. SincemA(A(u),A(u′)) ≤ ε for all u ∼ u′, by the definition ofmA, there
exists a ε-amortised bisimulation R such that (A(u),A(u′), 0) ∈ R. By Lemma 2, for
any admissible scheduler ζ, any finite trace t:

1

eε
≤ Prζ [A(u) � t]

Prζ [A(u′) � t]
≤ eε

Thus, we obtain that A is ε-differentially private. ��

Example 2 (Example 1 revisited). Consider again the concurrent system shown in Fig. 1.
Let S and T denote the state space of A(u1) and A(u2), respectively. Let R ⊆ S×T ×
[ln 4

9 , ln
9
4 ]. It is straightforward to check according to Def. 5 that the following relation

is an amortised bisimulation between A(u1) and A(u2).

R = { (A(u1),A(u2), 0),

(s2, t2, ln
2
3 ), (s5, t5, ln

3
2 ), (s3, t3, ln

2
3 ), (s4, t4, 0), (s5, t5, ln

4
9 ),

(s6, t6, ln
3
2 ), (s5, t5, ln

2
3 ), (s7, t7, ln

3
2 ), (s8, t8, 0), (s5, t5, ln

9
4 ) }

Thus mA(A(u1),A(u2)) ≤ ln 9
4 . By Theorem 2, A is ln 9

4 -differentially private.
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5 Comparing the Two Pseudometrics

In this section, we formally compare the two metrics, showing that our pseudometric is
indeed more liberal than the first one. Moreover,we investigate whether they can fully
characterise bisimilarity. We show that mD and mA only imply bisimilarity, while the
converse direction does not hold because of the strong requirement of the bijections in
their definitions.

We show that mA is bounded by mD. Note the converse does not hold, since Exam-
ples 1 and 2 already show the cases in which mD is infinite while mA is finite.

Lemma 3. mD 	 mA.

Proof Sketch. Let RD ⊆ S × S × [0, ε] be the ε-accumulative bisimulation such that
(s, t, 0) ∈ RD . It is sufficient to show that the relation RA ⊆ S × S × [−ε, ε] defined
on the basis of RD as follows is a ε-amortised bisimulation.

(s′, t′, cA) ∈ RA iff ∃cD.(s′, t′, cD) ∈ RD ∧ |cA| ≤ cD

Relations with probabilistic bisimilarity. We adopt the notion of probabilistic bisimi-
larity which was first defined in [19]. An equivalence relation over S can be lifted to a
relation over distributions over S by stating that two distributions are equivalent if they
assign the same probability to the same equivalence class.

Formally, let R ⊆ S×S be an equivalence relation. Two probability distributions μ1

and μ2 are R-equivalent, written μ1L(R)μ2, iff for every equivalence class E ∈ S/R
we have μ1(E) = μ2(E), in which μi(E) =

∑
s∈E μi(s), i = 1, 2.

Definition 6. An equivalence relation R ⊆ S × S is a strong bisimulation iff for all
(s, t) ∈ R, s

a−→ μ implies t
a−→ μ′ with μL(R)μ′2. We write s ∼ t whenever there is

a strong bisimulation that relates them. ∼ is the maximum strong bisimulation, namely
strong bisimilarity.

Proposition 3. The following hold:

– mD(s, t) = 0 ⇒ s ∼ t
– mA(s, t) = 0 ⇒ s ∼ t

The proofs are achieved by showing that the relation R induced by 0 distance in mA

(or mD), namely, (s, t) ∈ R iff mA(s, t) = 0, is a strong bisimulation.

6 Process Algebra

Process algebras provide the link to the desired compositional reasoning about approx-
imate equality in such a pseudometric framework. We would like process operators to
be non-expansive in the pseudometrics, which allows us to estimate the degree of differ-
ential privacy of a complex system from its components. In this section we consider a
simple process calculus whose semantics is given by probabilistic automata. We define

2 The converse is implied by the symmetry of the equivalence relation R.
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ACT
α.P

α−→ δ(P )
PROB ⊕

i∈I pi Pi
τ−→

∑
i pi Pi

SUM1
P

α−→ μ

P +Q
α−→ μ

PAR1
P

α−→ μ

P |Q α−→ μ |Q

COM
P

a−→ δ(P ′) Q
a−→ δ(Q′)

P |Q τ−→ δ(P ′ |Q′)
RES

P
α−→ μ α �= a, a

(νa)P
α−→ (νa)μ

Fig. 2. The semantics of CCSp. SUM1 and PAR1 have corresponding right rules SUM2 and
PAR2, omitted for simplicity.

prefixing, non-deterministic choice, probabilistic choice, restriction and parallel com-
position constructors for the process calculus, and show that they are non-expansive in
the sense that when neighboring processes are placed in the same context, the resulting
processes are still neighboring.

The syntax of CCSp is:

α ::= a | a | τ prefixes
P,Q ::= α.P | P |Q | P +Q |

⊕
i∈1..n piPi | (νa)P | 0 processes

Here
⊕

i∈1..n piPi stands for a probabilistic choice constructor, where the pi’s repre-
sent positive probabilities, i.e., they satisfy pi ∈ (0, 1] and

∑
i∈1..n pi = 1. It may be

occasionally written as p1P1 ⊕ · · · ⊕ pnPn. The rest constructors are the standard ones
in Milner’s CCS [21].

The semantics of a CCSp term is a probabilistic automaton defined according to the
rules in Fig. 2. We write s

a−→ μ when (s, a, μ) is a transition of the probabilistic
automaton. We also denote by μ|Q the measure μ′ such that μ′(P |Q) = μ(P ) for all
processes P and μ′(R) = 0 if R is not of the form P |Q. Similarly (νa)μ = μ′ such that
μ′((νa)P ) = μ(P ). A transition of the form P

a−→ δ(P ′), i.e. a transition having for
target a Dirac measure, corresponds to a transition of a non-probabilistic automaton.

Proposition 4. If m(P,Q) ≤ ε, where m ∈ {mD,mA}, then

1. m(a.P, a.Q) ≤ ε
2. m(pR⊕ (1− p)P, pR ⊕ (1− p)Q) ≤ ε
3. m(R+ P,R +Q) ≤ ε
4. m((νa)P, (νa)Q) ≤ ε
5. m(R |P,R |Q) ≤ ε.

Proof sketch. The proof proceeds by finding a ε-accumulative (resp. amortised)
bisimulation relation witnessing their distance in m not greater than ε. Let R be a ε-
accumulative (resp. amortised) bisimulation relation witnessing m(P,Q) ≤ ε. Define
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Fig. 3. Chaum’s system for the Dining Cryptographers

the relation IdS = {(s, s, 0)|s ∈ S}. We construct for each clause a relation R′ as
follows and show that it is a ε-accumulative (resp. amortised) bisimulation relation.

1. R′ = { (a.P, a.Q, 0) } ∪R,
2. R′ = { (pR⊕ (1− p)P, pR ⊕ (1− p)Q, 0) } ∪ R ∪ IdR,
3. R′ = { (R+ P,R +Q, 0) } ∪ R ∪ IdR,
4. R′ = { ((νa)P ′, (νa)Q′, c) | (P ′, Q′, c) ∈ R},
5. R′ = { (R′ |P ′, R′ |Q′, c) | (P ′, Q′, c) ∈ R} ∪ IdR.

7 An Application to the Dining Cryptographers Protocol

In this section we use the pseudometric method to reason about the degree of differential
privacy of the Dining Cryptographers Protocol [9] with biased coins. In particular, we
show that with probability-p biased coins, the degree of differential privacy in the case
of three cryptographers is | ln p

1−p |. This result can also be generalized to the case of n
cryptographers.

The problem of the Dining Cryptographers is the following: Three cryptographers
dine together. After the dinner, the bill has to be paid by either one of them or by
another agent called the master. The master decides who will pay and then informs
each of them separately whether he has to pay or not. The cryptographers would like
to find out whether the payer is the master or one of them. However, in the latter case,
they wish to keep the payer anonymous.

The Dining Cryptographers Protocol (DCP) solves the above problem as follows:
each cryptographer tosses a fair coin which is visible to himself and his neighbor to
the left. Each cryptographer checks his own coin and the one to his right and, if he is
not paying, announces “agree” if the two coins are the same and “disagree” otherwise.
However, the paying cryptographer says the opposite. It can be proved that the master
is paying if and only if the number of disagrees is even [9].
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Fig. 4. The probabilistic automata of the Dining cryptographers

The graph shown in Fig. 3 illustrates the dinner-table and the allocation of the coins
between the three cryptographers. We consider the coins which are probability-p biased,
i.e., producing 0 (for “head”) with probability p, and 1 (for “tail”) with 1 − p. We
consider the final announcement in the order of out0out1out2, with out i ∈ {a, d} (a
for “agree” and d for “disagree”, i ∈ {0, 1, 2}) announced by Crytpi. For example, if
Crytp0 is designated to pay, Coin0Coin1Coin2 = 010, then out0out1out2 = ada.

We are interested in the case when one of the cryptographers is paying, since that
is the case in which they want to keep the payer anonymous. We use Master (mi) to
denote the system in which Crytpi is designated to pay. To show that the DCP is dif-
ferentially private, both pseudometrics introduced before can be used. In this problem,
it suffices to find between Master(mi)’s bounded distances in the accumulative pseu-
dometric mD, more precisely, bounded accumulative bisimulation relations.

Proposition 5. A DCP with three cryptographers and with probability-p biased coins
is | ln p

1−p |-differentially private.

Proof. Fig. 4 shows two probabilistic automata Master (m0) and Master(m1) when
Crytp0 and Crytp1 are paying respectively. Basically they are probabilistic distribu-
tions over all possible outcomes Coin0Coin1Coin2 (i.e. inner states) produced by
the three-coins toss, followed by an announcement determined by each outcome. For
simplicity initial τ transitions are merged harmlessly. Let b0b1b2 and c0c1c2 represent
two inner states of Master (m0) and Master(m1) respectively. There exists a bijection
function f between them:

c0c1c2 = f(b0b1b2) = b0(b1 ⊕ 1)b2

where ⊕ represents the addition modulo 2 (xor), such that the announcement of b0b1b2
can be shown equal to the one of c0c1c2.

Note that, the probability of reaching an inner state b0b1b2 from Master(m0) is
pi(1 − p)(3−i), where i ∈ {0, 1, 2, 3} is the number of 0 in {b0, b1, b2}. Because
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c0 = b0, c1 = b1 ⊕ 1, c2 = b2, the ratio between the probabilities of reaching b0b1b2
from Master (m0) and c0c1c2 from Master(m1) differs at most by | ln p

1−p |. It is
easy to see that {(Master(m0),Master (m1), 0)} ∪ { (b0b1b2, f(b0b1b2), | ln p

1−p |) |
b0, b1, b2 ∈ {0, 1} } forms a | ln p

1−p |-accumulative bisimulation relation. Thus

mD(Master (m0), Master (m1)) ≤ | ln p
1−p |.

Similarly, we consider the probabilistic automata Master (m2) when Crytp2 is pay-
ing (though omitted in Fig. 4). Let e0e1e2 represent one of its inner states. We can also
find a bijection f ′ between c0c1c2 and e0e1e2: e0e1e2 = f ′(c0c1c2) = c0c1(c2 ⊕ 1),
and a bijection f ′′ between b0b1b2 and e0e1e2: e0e1e2 = f ′′(b0b1b2) = (b0 ⊕ 1)b1b2
such that they output same announcements, The rest proceeds as above. By Theorem 1,
the DCP is | ln p

1−p |-differentially private. ��

The above proposition can be extended to the case of n dining cryptographers where
n ≥ 3. We assume that the n cryptographers are fully connected, i.e., that a coin exists
between every pair of cryptographers. Let ckl (k, l ∈ Z, k, l ∈ [0, n− 1], k < l) be the
coin linking two cryptographers Crytpk and Crytpl. In this case the output of Crytpi

would be out i = c0i ⊕ c1i ⊕ · · · ci(n−1) ⊕ pay(i), where pay(i) = 1 if Crytpi pays
and 0 otherwise.

Proposition 6. A DCP with n fully connected cryptographers and with probability-p
biased coins is | ln p

1−p |-differentially private.

We can see that the more the coins are biased, the worse the privacy gets. If the
coins are fair, namely, p = 1 − p = 1

2 , then the DCP is 0-differentially private, in
which case the privacy is well protected. With the help of the pseudometric method,
we get a general proposition about the degree of differential privacy of DCP. Moreover,
it is obtained through some local information, rather than by computing globally the
summations of probabilities for each trace.

8 Conclusion and Future Work

We have investigated two pseudometrics on probabilistic automata: the first one is a
reformulation of the notion proposed in [27], the second one is designed in the sense that
the total privacy leakage bound gets amortised. Each of them establishs a framework
for the formal verification of differential privacy for concurrent systems. Namely, the
closer processes are in the pseudometrics, the higher level of differential privacy they
can preserve. We have showed that our pseudometric is more liberal than the former
one. They both impliy strong bisimilarity, and the typical process algebra operators
are non-expansive with respect to the distance in the pseudometrics. We have used the
pseudometric verification method to learn that: A Dining Cryptographers protocol with
probability-p biased coins is | ln p

1−p |-differentially private.
In this paper we have mainly focused on developing a basic framework for the for-

mal verification of differential privacy for concurrent systems. In the future we plan
to develop more realistic case-studies and applications. Another interesting direction,
which is also our ongoing work, is to investigate a new pseudometric, adapted from the
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metric à la Kantorovich proposed in [13], see whether it can fully characterise bisimilar-
ity, and moreover, release the bijection requirement in the definition of the quantitative
bisimulations considered in this paper.
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A Appendix

A.1 Proof of Lemma 2

Proof. We prove by induction on the length of trace t: |t|.

1. |t| = 0: According to equation (1), for any ζ, Prζ [α1 � t] = Prζ [α2 � t] = 1.
2. IH: For any two executions α1 and α2 of A, let s1 = lstate(α1) and s2 =

lstate(α2). (s1, s2, c) ∈ R implies that for any admissible scheduler ζ, trace t′

where |t′| ≤ L: 1
eε+c ≤ Prζ [α1�t′]

Prζ [α2�t′] ≤ eε−c.
3. We have to show that for any admissible scheduler ζ, trace t with |t| = L + 1,

(s1, s2, c) ∈ R implies 1
eε+c ≤ Prζ [α1�t]

Prζ [α2�t] ≤ eε−c.

Assume that t = a�t′. We prove first the right-hand part Prζ [α1 � t] ≤ eε−c ∗
Prζ [α2 � t]. According to equation (1), two cases must be considered:
- Case act(ζ(α1)) �= a. Then Prζ [α1 � t] = 0. Since ζ is admissible, it schedules

for α2 a transition consistent with α1, namely, not a transition labeled by a either.
Thus Prζ [α2 � t] = 0, the inequality is satisfied.

- Case ζ(α1) = s1
a−→ μ1. So, Prζ [α1 � t] =

∑
si∈supp(μ1)

μ1(si)Prζ [α1asi �
t′]. Since (s1, s2, c) ∈ R, there must be also a transition from s2 such that s2

a−→
μ2 and μ1LA(R, c)μ2. Since ζ is admissible, ζ(α2) = s2

a−→ μ2. We use ti to
range over elements in supp(μ2). Thus, Prζ [α2 � t] =

∑
ti∈supp(μ2)

μ2(ti)·



Metrics for Differential Privacy in Concurrent Systems 215

Prζ [α2ati � t′]. Since μ1LA(R, c)μ2, there is a bijection β : supp(μ1) −→
supp(μ2), s.t. for any si ∈ supp(μ1), there is a state ti ∈ supp(μ2), ti = β(si)
and (si, ti, c + lnμ1(si) − lnμ2(ti)) ∈ R. Apply the inductive hypothesis to
α1asi, α2ati and t′, we get that:

Prζ [α1asi � t′] ≤ eε−(c+lnμ1(si)−lnμ2(ti)) ∗ Prζ [α2ati � t′] (2)

Thus,

Prζ [α1 � t] (3)

=
∑

si∈supp(μ1)

μ1(si)Prζ [α1asi � t′] (4)

≤
∑

si∈supp(μ1)

μ1(si)e
ε−(c+lnμ1(si)−lnμ2(β(si)))Prζ [α2aβ(si) � t′] (5)

=
∑

si∈supp(μ1)

μ1(si) ∗
μ2(β(si))

μ1(si)
∗ eε−c ∗ Prζ [α2aβ(si) � t′] (6)

=
∑

ti∈supp(μ2)

μ2(ti) ∗ eε−c ∗ Prζ [α2ati � t′] (7)

= eε−c
∑

ti∈supp(μ2)

μ2(ti)Prζ [α2ati � t′] (8)

= eε−c ∗ Prζ [α2 � t] (9)

which completes the proof of right-hand part. Lines (4) and (9) follow from the
equation (1). Line (5) follow from the inductive hypothesis, i.e. Line (2).
For the left-hand part Prζ [α2 � t] ≤ eε+c ∗ Prζ [α1 � t], exchange the roles of
s1 and s2, use β−1 instead of β, and all the rest is analogous. ��

A.2 Proof of Proposition 6

Proof sketch. The proof proceeds analogously to the case of three cryptographers. To
find an accumulative bisimulation relation between every two instances of the DCP
Master(mi) and Master(mj), (i, j ∈ Z, i, j ∈ [0, n − 1], i < j), we point out
here mainly the bijection function between their inner states. Let b12b13 · · · b(n−1)n

and c12c13 · · · c(n−1)n represent the inner states of Master(mi) and Master (mj) re-
spectively, where the subscript (kl), (k, l ∈ Z, k, l ∈ [0, n − 1], k < l), indicates the
coin linking two cryptographers Crytpk and Crytpl. There exists a bijection function
f between them defined as: c12c13 · · · c(n−1)n = f(b12b13 · · · b(n−1)n), precisely,

ckl =

{
bkl ⊕ 1 if kl = ij,
bkl otherwise.

We can check that the bijective states defined in this way produce the same announce-
ment in Master(mi) and Master (mj). Moreover, only the coin (ij) is different, the
ratio between the probability mass of every bijective states is at most | ln p

1−p |. ��
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