
How to Recover Any Byte of Plaintext on RC4

Toshihiro Ohigashi1(B), Takanori Isobe2, Yuhei Watanabe2,
and Masakatu Morii2

1 Hiroshima University, 1-4-2 Kagamiyama,
Higashi-Hiroshima, Hiroshima 739-8511, Japan

ohigashi@hiroshima-u.ac.jp
2 Kobe University, 1-1 Rokkoudai, Nada-ku, Kobe 657-8501, Japan

Takanori.Isobe@jp.sony.com

yuheiwatanabe@stu.kobe-u.ac.jp

mmorii@kobe-u.ac.jp

Abstract. In FSE 2013, Isobe et al. proposed efficient plaintext recovery
attacks on RC4 in the broadcast setting where the same plaintext is
encrypted with different user keys. Their attack is able to recover first
1000 terabytes of a plaintext with probability of almost one, given 234

ciphertexts encrypted by different keys. Since their attack essentially
exploits biases in the initial (1st to 257th) bytes of the keystream, it
does not work any more if such initial bytes are disregarded. This paper
proposes two advanced plaintext recovery attacks that can recover any
byte of a plaintext without relying on initial biases, i.e., our attacks are
feasible even if initial bytes of the keystream are disregarded. The first
attack is the modified Isobe et al.’s attack. Using the partial knowledge
of the target plaintext, e.g., only 6 bytes of the plaintext, the other bytes
can be recovered with the high probability from 234 ciphertexts. The
second attack does not require any previous knowledge of a plaintext. In
order to achieve it, we develop a guess-and-determine plaintext recovery
method based on two strong long-term biases. Given 235 ciphertexts, any
byte of a plaintext can be recovered with probability close to one.

Keywords: RC4 · Broadcast setting · Plaintext recovery attack · Bias ·
Guess-and-determine attack · Multi-session setting · RC4-drop

1 Introduction

RC4, designed by Rivest in 1987, is one of most widely used stream ciphers in
the world. It is adopted in many software applications and standard protocols
such as SSL/TLS, WEP, Microsoft Lotus and Oracle secure SQL. RC4 consists
of a key scheduling algorithm (KSA) and a pseudo-random generation algorithm
(PRGA). The KSA converts a user-provided variable-length key (typically, 5–32
bytes) into an initial state S consisting of a permutation of {0, 1, 2, . . . , N − 1},
where N is typically 256. The PRGA generates a keystream Z1, Z2, . . ., Zr,
. . . from S, where r is a round number of the PRGA. Zr is XOR-ed with the

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 155–173, 2014.
DOI: 10.1007/978-3-662-43414-7 8, c© Springer-Verlag Berlin Heidelberg 2014



156 T. Ohigashi et al.

r-th plaintext byte Pr to obtain the ciphertext byte Cr. The algorithm of RC4
is shown in Algorithm 1, where + denotes arithmetic addition modulo N , � is
the key length, and i and j are used to point to the locations of S, respectively.
Then, S[x] denotes the value of S indexed x.

In FSE 2001, Mantin and Shamir proposed a plaintext recovery attack on
RC4 in the broadcast setting where the same plaintext is encrypted with different
user keys [12]. Using a bias of Z2, a second byte of the plaintext is recovered from
Ω(N) ciphertexts encrypted with randomly-chosen different keys. In FSE 2011,
Maitra, Paul and Sen Gupta showed that Z3, Z4, . . . , Z255 are also biased to
0 [9]. The bytes 3 to 255 are also obtained in the broadcast setting, from Ω(N3)
ciphertexts. In FSE 2013, Isobe et al. introduced several new biases in the initial
bytes of the RC4 keystream, and constructed a cumulative list of strong biases
in the first 257 bytes with theoretical reasons [7]. They demonstrated plaintext
recovery attacks using their strong biases set with typical parameters of N = 256
and � = 16 (128-bit key). 232 ciphertexts encrypting the same plaintext enable
to extract first 257 bytes of a plaintext with probability more than 0.8. Using
these initial biases in conjunction with the digraph repetition bias proposed
by Mantin in EUROCRYPT 2005 [11], the consecutive first 1000 terabytes of
a plaintext is theoretically recovered with probability of almost one from 234

ciphertexts encrypted by different keys. After that, AlFardan et al. also proposed
similar plaintext recovery attack of the first 256 bytes [1] independently of [7],
and this attack can recover first 256 bytes of a plaintext with probability more
than 0.96 from 232 ciphertexts encrypted by different keys. Note that broadcast
attacks [1,7] can be converted into the attacks for the multi-session setting of
SSL/TLS where the target plaintext blocks are repeatedly sent in the same
position in the plaintexts in multiple sessions [3].

Previous plaintext recovery attacks essentially exploit biases in the 1st to
257th bytes of the keystream. If the initial 256/512/768 bytes of the keystream
are disregarded, as recommended in case of RC4 usages, it does not work any
more as mentioned in [7]. Thus, RC4 that disregards the first n bytes of a
keystream seem to be secure against above attacks for n > 257.

This paper proposes two advanced plaintext recovery attacks that can recover
any byte of a plaintext without relying on initial biases of the keystream, i.e.,
our attacks are feasible even if initial bytes of the keystream are disregarded,
unlike Isobe et al. and AlFardan et al.’s attacks. To begin with, we improve
Isobe et al.’s attack so that it works without initial biases of a keystream. In
particular, we assume that an attacker knows some bytes of the target plaintext,
e.g., fixed header information. Using the digraph repetition biases in forward
and backward manners, the other bytes of the plaintext are recovered from the
partial knowledge of the plaintext. In our attack, if only consecutive 6 bytes of
the target plaintexts are known, 1000 terabytes of the target plaintext can be
recovered with probability of about 0.636 from 234 ciphertexts. The number of
required ciphertexts of this attack is same as that of Isobe et al.’s attack, while
Isobe et al.’s attack needs the initial 257 bytes of the keystream. The second
attack does not require any previous knowledge of a plaintext. In order to achieve



How to Recover Any Byte of Plaintext on RC4 157

Algorithm 1. RC4 Algorithm
KSA(K[0 . . . � − 1]):

for i = 0 to N − 1 do
S[i] ← i

end for
j ← 0
for i = 0 to N − 1 do

j ← j + S[i] + K[i mod �]
Swap S[i] and S[j]

end for

PRGA(K):

i ← 0
j ← 0
S ← KSA(K)
loop

i ← i + 1
j ← j + S[i]
Swap S[i] and S[j]
Output Z ← S[S[i] + S[j]]

end loop

it, we develop a novel guess-and-determine plaintext recovery method based on
two strong long-term biases, i.e., digraph repetition biases [11] and Fluhrer-
McGrew biases [4]. The basic idea behind our guess-and-determine attack is
that two biases are used for the detection the wrong candidates of plaintext
bytes. Given 235 ciphertext encrypted by different keys, any byte of a plaintext
can be recovered with probability close to one1.

We emphasize that our attacks are applicable even if any number of initial
bytes of the keystream are disregarded, with almost same amount of ciphertexts
as Isobe et al.’s attack. Therefore, our work reveals that the RC4 implementation
that disregards the first n bytes of a keystream is also not secure even if n is
enough large (e.g. n = 3072).

2 Preliminary

In this section, we introduce two known long-term biases, which occur in any
keystream bytes, because our attacks are based on them. Then we describe
previous plaintext recovery attacks on RC4 in the broadcast setting.

2.1 Long-term Bias

As a long-term bias, following two types of biases were proposed.

Bias of Digraph Probabilities (FM00 Bias). Fluhrer and McGrew showed
a long-term bias of digraph probabilities in the RC4 keystream, called the FM00
bias. It is a bias of 2-byte word of the keystream with the condition of index i
(= r mod N) [4], and consists of 12 positive or negative events. The detail of
the FM00 bias is shown in Table 1.
1 Independently of our work, other plaintext recovery attacks on RC4 implementation

which disregards the first n bytes of a keystream, was recently reported in [1,2].
The attack uses only the Fluhrer-McGrew biases with the sophisticated count-up
method, and obtains experimental results similar to that of our attack.



158 T. Ohigashi et al.

Table 1. Events of the FM00 bias with the condition of index i (= r mod N)

Condition of event Digraph (Zr, Zr+1) Pr(Zr ∧ Zr+1)

i = 1 (0, 0) N−2 · (1 + 2 · N−1)
i �= 1, N − 1 (0, 0) N−2 · (1 + N−1)
i �= 0, 1 (0, 1) N−2 · (1 + N−1)
i �= N − 2 (i + 1, N − 1) N−2 · (1 + N−1)
i �= 1, N − 2 (N − 1, i + 1) N−2 · (1 + N−1)
i �= 0, N − 3, N − 2, N − 1 (N − 1, i + 2) N−2 · (1 + N−1)
i = N − 2 (N − 1, 0) N−2 · (1 + N−1)
i = N − 1 (N − 1, 1) N−2 · (1 + N−1)
i = 0, 1 (N − 1, 2) N−2 · (1 + N−1)
i = 2 (N/2 + 1, N/2 + 1) N−2 · (1 + N−1)
i �= N − 2 (N − 1, N − 1) N−2 · (1 − N−1)
i �= 0, N − 1 (0, i + 1) N−2 · (1 − N−1)

The Digraph Repetition Bias (ABSAB Bias). Mantin found another long-
term bias of digraph distribution in the RC4 keystream [11], called the ABSAB
bias. Assuming A and B are two words of the keystream, the digraph AB tends to
repeat with short gaps S between them, e.g., ABAB, ABCAB and ABCDAB,
where gap S is defined as zero, C, and CD, respectively. The detail of the
ABSAB bias is as follows,

Zr || Zr+1 = Zr+2+G || Zr+3+G for G ≥ 0, (1)

where || is a concatenation. The probability that Eq. (1) holds is given as
Theorem 1.

Theorem 1 [11]. For small values of G the probability of the pattern ABSAB
in RC4 keystream, where S is a G-byte string, is (1 + e(−4−8G)/N/N) · 1/N2.

2.2 Previous Works

This section briefly reviews known attacks on RC4 in the broadcast setting where
the same plaintext is encrypted with different randomly-chosen keys.

Mantin-Shamir (MS) Attack. Mantin and Shamir first presented broadcast
RC4 attacks. Their attacks exploit a bias of second byte of keystream, Z2 [12]
as follows.

Theorem 2 [12]. Assume that the initial permutation S is randomly chosen
from the set of all the possible permutations of {0, 1, 2, . . . , N − 1}. Then the
probability that the second output byte of RC4 is 0 is approximately 2

N .

This probability is estimated as 2
256 when N = 256. Based on this bias, a distin-

guishing attack and a plaintext recovery attack on RC4 in the broadcast setting
are demonstrated by Theorems 3 and 4, respectively.



How to Recover Any Byte of Plaintext on RC4 159

Theorem 3 [12]. Let X and Y be two distributions, and suppose that the event
e happens in X with probability p and in Y with probability p · (1 + q). Then for
small p and q, O( 1

p·q2 ) samples suffice to distinguish X from Y with a constant
probability of success.

In this case, p and q are given as p = 1/N and q = 1. The number of samples is
about 1

p·q2 = N .

Theorem 4 [12]. Let P be a plaintext, and let C(1), C(2), . . . , C(k) be the RC4
encryptions of P under k uniformly distributed keys. Then, if k = Ω(N), the
second byte of P can be reliably extracted from C(1), C(2), . . . , C(k).

According to the relation C
(i)
2 = P

(i)
2 ⊕ Z

(i)
2 , if Z

(i)
2 = 0 holds, then C

(i)
2 is same

as P
(i)
2 . From Theorem 2, Z2 = 0 occurs with twice the expected probability of

a random one. Thus, most frequent byte in amongst C
(1)
2 , C

(2)
2 , . . . , C

(k)
2 is likely

to be P2 itself. When N = 256, it requires more than 28 ciphertexts encrypted
with randomly-chosen keys.

Maitra-Paul-Sen Gupta (MPS) Attack. Maitra, Paul and Sen Gupta
showed that Z3, Z4, . . . , Z255 are also biased to 0 [6,9]. Although Mantin and
Shamir assume that an initial permutation S is random, Maitra et al. exploit
biases of S after the KSA [10]. Then the 3rd to 255th bytes of a plaintext are
obtained from Ω(N3) ciphertexts encrypted with different keys.

Isobe-Ohigashi-Watanabe-Morii (IOWM) Attack. Isobe et al. proposed a
full plaintext recovery attack, which is able to extract the full bytes of a plaintext
on RC4 from ciphertexts in the broadcast setting [7]. Their attack consists of
two phases: an initial byte recovery phase and a sequential recovery phase for
finding later bytes of a plaintext.

In the initial byte recovery phase, the first 257 bytes of a plaintext are
recovered by using the cumulative bias set of Z1, Z2, . . . , Z257. Their cumula-
tive bias set includes a conditional bias Z1 = 0|Z2 = 0 [7] and single byte
biases Z2 = 0 [12], Z3 = 131 [7], Zr = 0 for 3 ≤ r ≤ 255 [6,9], Zr = r for
3 ≤ r ≤ 255 [7], Z16 = 240 [5], Zr = (256 − r) for r = 32, 48, 64, 80, 96, 112 [7],
and Z256 �= 0 [7], Z257 = 0 [7] (when N = 256 and � = 16). Given 232 cipher-
texts encrypted by randomly-chosen keys, the first 257 bytes of a plaintext are
extracted with probability more than 0.8.

In the sequential recovery phase, the later bytes (after P258) are sequentially
recovered with the first 257 bytes of the plaintext, which were already obtained in
the initial byte recovery phase. The sequential algorithm effectively uses a long-
term bias, the ABSAB bias [11]. In particular, ABSAB biases with different
G are simultaneously used for enhancing the attack, using the following lemmas
for the discrimination.

Lemma 1 [11]. Let X and Y be two distributions and suppose that the inde-
pendent events {ei: 1 ≤ i ≤ k} occur with probabilities PrX(ei) = pi in X and



160 T. Ohigashi et al.

PrY (ei) = (1 + qi) · pi in Y . Then the discrimination D of the distributions is∑
i pi · q2i .

The number of required samples for distinguishing the biased distribution from
the random distribution with probability of 1−α is given as the following lemma.

Lemma 2 [11]. The number of samples that is required for distinguishing two
distributions that have discrimination D with success rate 1 − α (for both direc-
tions) is (1/D) · (1 − 2α) · log2

1−α
α .

This lemma shows that in the broadcast RC4 attack, once the discrimination D
and the number of samples k are given, the success probability Prdistinguish for
distinguishing the distribution of correct candidate plaintext byte (the biased
distribution) from the distribution of one wrong candidate of plaintext byte
(a random distribution) always becomes constant. The success probability for
recovering plaintext bytes depends on Prdistinguish. Thus if k is fixed, the success
probability only depends on D.

In their attack, the following equation regarding the ABSAB bias is used.

(Cr || Cr+1) ⊕ (Cr+2+G || Cr+3+G)
= (Pr ⊕ Zr || Pr+1 ⊕ Zr+1) ⊕ (Pr+2+G ⊕ Zr+2+G || Pr+3+G ⊕ Zr+3+G)
= (Pr ⊕ Pr+2+G ⊕ Zr ⊕ Zr+2+G || Pr+1 ⊕ Pr+3+G ⊕ Zr+1 ⊕ Zr+3+G). (2)

Assuming that Eq. (1) (event of the ABSAB bias) holds, the relation of plain-
texts and ciphertexts without keystreams is obtained, i.e., (Cr || Cr+1)⊕(Cr+2+G

|| Cr+3+G) = (Pr⊕Pr+2+G || Pr+1⊕Pr+3+G) = (Pr || Pr+1)⊕(Pr+2+G || Pr+3+G).
For combining these relations with different G to enhance the biases, the algo-
rithm uses the knowledge of pre-guessed plaintext bytes. For example, in the
cases of (r = r′ and G = 1) and (r = r′ + 1 and G = 0), right parts of equations
are given as (Pr′ || Pr′+1)⊕(Pr′+3 || Pr′+4) and (Pr′+1 || Pr′+2)⊕(Pr′+3 || Pr′+4),
respectively. Then, if Pr′ , Pr′+1, and Pr′+2 are already known, the two equations
with respected to (Pr′+3 || Pr′+4) is obtained by transposing Pr′ , Pr′+1, and Pr′+2

to the left part of the equation. Then, these equations with different G can be
merged.

Suppose that P1, P2, . . . , P257 are guessed by the cumulative bias set. Then,
the sequential algorithm for recovering Pr for r = 258, 259, . . . , PMAX , from k
ciphertexts C(1), C(2), . . . , C(k) encrypted by different keys, by using ABSAB
biases of G = 0, 1, . . . , GMAX is given as follows.

Step 1 Obtain C258−3−GMAX
, C258−2−GMAX

, . . . , CPMAX
in each ciphertext,

and make frequency tables Tcount[r][G] of (Cr−3−G || Cr−2−G)⊕(Cr−1 || Cr)
for all r = 258, 259, . . . , PMAX and G = 0, 1, . . . , GMAX , where (Cr−3−G ||
Cr−2−G) ⊕ (Cr−1 || Cr) = (Pr−3−G || Pr−2−G) ⊕ (Pr−1 || Pr) only if Eq. (1)
holds.

Step 2 Set r = 258.
Step 3 Guess the value of Pr.



How to Recover Any Byte of Plaintext on RC4 161

Step 3.1 For G = 0, 1, . . . , GMAX , convert Tcount[r][G] into a frequency
table Tmarge[r] of (Pr−1 || Pr) by using pre-guessed values of Pr−3−GMAX

,
. . . , Pr−2, and merge counter values of all tables.

Step 3.2 Make a frequency table Tguess[r] indexed by only Pr from Tmarge[r]
with knowledge of the Pr−1. To put it more precisely, using a pre-guessed
value of Pr−1, only tables Tmarge[r] corresponding to the value of Pr−1

is taken into consideration. Finally, regard most frequency one in table
Tguess[r] as the correct Pr.

Step 4 Increment r. If r = PMAX + 1, terminate this algorithm. Otherwise, go
to Step 3.

Isobe et al. theoretically showed that this algorithm can recover consecutive
1000 terabytes of a plaintext from 234 ciphertexts when GMAX = 63 (D =
2−28.03) is adopted.

Countermeasure. These attacks essentially exploit biases in the initial (1st
to 257th) bytes of the RC4 keystream. If initial bytes of the keystream are
disregarded, it does not work any more as mentioned in [7]. Thus, the RC4-
drop(257) is considered as a countermeasure against previous plaintext recovery
attacks, where RC4-drop(n) is an RC4 implementation that disregards the first
n bytes of a keystream2.

In addition, Mironov also recommended n = 512 or 768, and gave a conser-
vative recommended parameter n = 3072 based on the experimental data for
avoiding initial bytes biases [13].

3 Plaintext Recovery Attack Using Known Partial
Plaintext Bytes

In this section, we propose a plaintext recovery attack that is feasible even if
initial bytes of a keystream are disregarded, unlike previous attacks. We improve
Isobe et al.’s attack so that it works without initial biases of the keystream. In
particular, we suppose that an attacker has the partial knowledge of a target
plaintext, e.g., fixed header information. This assumption is reasonable in the
practical usage on RC4. Then, with partial knowledge of the target plaintext,
the other bytes of the plaintext can be recovered by using ABSAB biases.

For the simplification, the encryption on RC4-drop(n) denotes Cr = Pr ⊕
Zr+n = Pr ⊕ Zr∗ where r∗ = r + n.

3.1 Attack Functions

We give two functions based on ABSAB biases for recovering an unknown byte
of the plaintext.
2 RC4-drop(n) is a generalized implementation of the countermeasure written by [13],

and this is defined at http://www.users.zetnet.co.uk/hopwood/crypto/scan/cs.html.

http://www.users.zetnet.co.uk/hopwood/crypto/scan/cs.html


162 T. Ohigashi et al.

Algorithm 2. fABSAB F ()
Require: r, /* round number of a plaintext to be guessed */

GMAX , /* parameter of the ABSAB bias*/
Pr−GMAX−3, . . . , Pr−1, /* known plaintext bytes */
(Cr−GMAX−3, . . . , Cr)s of C(1), C(2), . . . , C(k) /* bytes of k ciphertexts encrypted
by different keys */

Ensure: Pr

1: for G = 0 to GMAX do
2: Make frequency tables Tcount[r][G] of (Cr−3−G || Cr−2−G) ⊕ (Cr−1 || Cr) from

all ciphertexts C(1), C(2), . . . , C(k).
3: Convert Tcount[r][G] into a frequency table Tmarge[r] of (Pr−1 || Pr) by

Pr−3−GMAX , . . . , Pr−2, and merge counter values of all tables.
4: end for
5: Make a frequency table Tguess[r] indexed by only Pr from Tmarge[r] with knowledge

of Pr−1. To put it more precisely, using a pre-guessed value of Pr−1, only tables
Tmarge[r] corresponding to the value of Pr−1 is taken into consideration.

6: Regard most frequency one in table Tguess[r] as the correct Pr.
7: Output Pr

fABSAB F () : Find an unknown byte Pr from pre-known consecutive (GMAX +
3) bytes of a plaintext Pr−GMAX−3, . . . , Pr−1 (See Algorithm 2).

fABSAB B() : Find an unknown byte Pr from pre-known consecutive (GMAX +
3) bytes of a plaintext Pr+1, . . . , Pr+GMAX+3.

The algorithm of fABSAB B() is given by replacing “−” of subscripts of vari-
ables in Algorithm 2 to “+”. These functions can be obtained from Step 1
and Step 3 of the IOWM attack. Figure 1 (Fig. 3) illustrates the procedures of
fABSAB F () and fABSAB B(). By using above two functions, all plaintext bytes
can be recovered from the partial knowledge of the plaintext and the correspond-
ing ciphertexts.

3.2 Attack Procedure

Suppose that x bytes of a target plaintext, Pr, . . . Pr+x−1, are given. An attacker
aims to recover the next byte (Pr+x) or the previous byte (Pr−1) of the known
plaintext bytes by using fABSAB F () or fABSAB B(), respectively. If (Pr+x) or
(Pr−1) is successfully recovered, the attacker recovers (Pr+x+1) or (Pr−2) with
knowledge of (Pr+x) or (Pr−1). Since GMAX increases, the probability for recov-
ering a plaintext byte also increases in the next step.

Our attack repeats above procedure until the all plaintext bytes are found.
After GMAX reaches 63, GMAX is fixed since the increase of D is converged
around GMAX = 63 as mentioned in [7]. Figure 2 shows that our plaintext
recovery attack using known partial plaintext bytes when consecutive 6 bytes of
a target plaintext are given.



How to Recover Any Byte of Plaintext on RC4 163

Pr-GMAX-3   ...  Pr-2  Pr-1   Pr

recoverfABSAB_F ( )

 Pr    Pr+1  Pr+2 ...  Pr+GMAX+3

recover fABSAB_B ( )

Fig. 1. Forward and backward functions for recovering one byte of a target plaintext
using the partial knowledge of the plaintext and ABSAB biases

Pr-6  Pr-5  ... Pr-2  Pr-1  Pr

fABSAB_F ( )

GMAX = 3

Pr-6  Pr-5  ... Pr-2  Pr-1  Pr   Pr+1

fABSAB_F ( )

GMAX = 4

Pr-6  Pr-5  ... Pr-2  Pr-1  Pr   Pr+1  Pr+2

fABSAB_F ( )

GMAX = 5

Pr-6  Pr-5  ... Pr-2  Pr-1  Pr   Pr+1  Pr+2  ... Pr+59  Pr+60

fABSAB_F ( )

GMAX = 63

Pr-6  Pr-5  ... Pr-2  Pr-1  Pr   Pr+1  Pr+2  ... Pr+59  Pr+60  Pr+61

fABSAB_F ( )

GMAX = 63

Fig. 2. A plaintext recovery attack using the known partial plaintext bytes when con-
secutive 6 bytes of a target plaintext are known

3.3 Experimental Results

We evaluate our plaintext recovery attack on RC4-drop(n) in the broadcast set-
ting by the computer experiment when N = 256 and n = 3072, which is a con-
servative recommended parameter given in [13]. Then, ciphertext C is expressed
as (C1, C2, . . . , Cr, . . .) = (P1 ⊕ Z1+3072, P2 ⊕ Z2+3072, . . . , Pr ⊕ Zr+3072, . . .).

In order to estimate the success probability of our attack, we evaluate the
probabilities for recovering the one byte of the target plaintext by fABSAB F ()
and fABSAB B(). The probabilities dependent on GMAX and the number of
obtained ciphertexts, but does not depend on the round number r. Thus, our
experiment uses parameters such that GMAX = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 15, 31, 63
and 231, 232, . . . , 236 ciphertexts.

Table 2 shows the experimental result for 128 different plaintexts when r =
128, n = 3072, and the number of known plaintext bytes and the discrimination
D and corresponding GMAX . The success probability for recovering Pr increases
with the increasing the value of GMAX and D.

For the estimation of the impact in the realistic environment, let us consider
the situation of Fig. 2 where an attacker knows consecutive only 6 bytes of a tar-
get plaintext. Suppose that 234 ciphertexts encrypted by randomly-chosen keys
are obtained, the probability for recovering Pr by fABSAB F () with GMAX = 3 is
estimated as 0.8125. Similarly, Pr+1, Pr+2, . . . Pr+5 are recovered by fABSAB F ()



164 T. Ohigashi et al.

Table 2. The probabilities for recovering P128 by using fABSAB F () and P128−GMAX−3,
. . . , P127 when n = 3072

# of known # of ciphertexts

plaintext bytes GMAX D 231 232 233 234 235 236

3 0 2−32.05 0.0078 0.0547 0.0625 0.1250 0.4609 0.8750
4 1 2−31.09 0.0156 0.0469 0.1797 0.4141 0.8516 0.9766
5 2 2−31.55 0.0625 0.1484 0.3516 0.6641 0.9688 1.0000
6 3 2−30.18 0.0703 0.1875 0.4297 0.8125 0.9922 1.0000
7 4 2−29.90 0.1172 0.2266 0.5156 0.8750 0.9922 1.0000
8 5 2−29.68 0.0938 0.2656 0.6250 0.9375 1.0000 1.0000
9 6 2−29.50 0.1563 0.3438 0.7344 0.9688 1.0000 n/a

10 7 2−29.35 0.1484 0.3594 0.7656 0.9922 1.0000 n/a
11 8 2−29.22 0.1484 0.4063 0.7578 0.9922 1.0000 n/a
12 9 2−29.11 0.1484 0.4922 0.8203 1.0000 1.0000 n/a
18 15 2−28.66 0.2969 0.6172 0.9453 1.0000 1.0000 n/a
34 31 2−28.21 0.3359 0.7656 0.9766 1.0000 n/a n/a
66 63 2−28.03 0.3672 0.7656 0.9766 1.0000 n/a n/a

with probabilities of 0.8750, 0.9375, 0.9688, 0.9922, 0.9922, where these parame-
ters are GMAX = 4, 5, 6, 7, 8, respectively. Then, the attacker obtains the consec-
utive 12(= 6+6) bytes with probability of (0.8125) · (0.8750) · (0.9375) · (0.9688) ·
(0.9922) · (0.9922) ∼ 0.636. Pr+6, Pr+7, . . . , Pr+59 are expected to be recovered
by fABSAB F () with probability of one from Table 2. After that, other bytes
of the target plaintexts can be recovered with probability of one similar to the
IOWM attack because the parameter becomes GMAX = 63. Therefore, in our
attack, the only knowledge of consecutive 6 bytes of the target plaintexts enables
to recover 1000 terabytes of the target plaintext with probability of about 0.636
from 234 ciphertexts. The number of required ciphertexts of this attack is same
as that of IOWM attack, while IOWM attack uses the initial 257 bytes of the
keystream.

4 Guess-and-Determine Plaintext Recovery Attack (GD
Attack)

This section gives a plaintext recovery attack which does not require any previous
knowledge of the plaintext unlike the attack in Sect. 3. In order to achieve it,
we develop a guess-and-determine (GD) plaintext recovery method based on
two strong long-term biases, the FM00 bias and the ABSAB bias. Generally, in
stream ciphers, the guess-and-determine method is considered as a technique for
internal state recovery attacks such that a part of an internal state is determined
from the other parts by exploiting the relations between the state and keystream.
Our method seems to be a new class of the guess-and-determine methods for the
plaintext recovery attack.



How to Recover Any Byte of Plaintext on RC4 165

Assuming Pr is the target byte, the overview of our GD attack is given as
follows.

1. Guess the value of Pr.
2. Recover x bytes of the plaintext, Pr−x, . . . , Pr−1, from Pr (guessed in Step 1)

by using the FM00 bias.
3. Recover P ′

r from Pr−x, . . . , Pr−1 (guessed in Step 2) by using the ABSAB
bias.

4. If P ′
r is not equal to Pr guessed in Step 1, the value is wrong. Otherwise the

value is regarded as a candidate of correct Pr.

For each candidate of Pr, Step 1–4 are performed. The basic idea behind our
GD attack is that if the value of Pr guessed in Step 1 is correct, P ′

r is surely
same as Pr guessed in Step 1. Two biases are used for the detection the wrong
candidates of plaintext bytes.

In this section, we firstly give attack functions based on the FM00 bias for
guess-and-determine methods. Then, we explain the detailed algorithm of guess-
and-determine methods. Finally we evaluate this attack.

4.1 FM00 Bias for GD Attack

The FM00 bias is a two-word bias (See Table 1), and is relatively weaker than
the ABSAB bias. If the simple count-up method for guessing correct plaintext
byte is used, the FM00 bias is not directly used for efficient plaintext recovery
attacks, because some events indexed by same r∗ are dependent each other.

For example, let us consider two events of (Zr∗ , Zr∗+1) = (0, 0) and (Zr∗ ,
Zr∗+1) = (0, 1), whose probabilities are same. Here, the relation of plaintext
and ciphertext is given as (Pr, Pr+1) = (Cr ⊕ Zr∗ , Cr+1 ⊕ Zr∗+1). If the event
of (Zr∗ , Zr∗+1) = (0, 0) occurs, the relation of (Pr, Pr+1) = (Cr, Cr+1) hold.
On the other hand, if the event of (Zr∗ , Zr∗+1) = (0, 1) occurs, (Pr, Pr+1 ⊕
1) = (Cr, Cr+1) holds. Since these probabilities are same, we can not determine
whether most frequency (Cr, Cr+1) is equal to (Pr, Pr+1) or (Pr, Pr+1 ⊕ 1) in
the plaintext recovery attack3.

Conditional Bias Regarding the FM00 Bias. So that FM00 biases can be
independently used for the plaintext recovery attack, we convert the FM00 bias
into conditional bias such that Pr(Zr∗+1|Zr∗) (the forward) or Pr(Zr∗ |Zr∗+1)
(the backward), assuming that one byte of the plaintext can be known. Here, we
consider the forward and backward conditional biases for previous two events
(Zr∗ , Zr∗+1) = (0, 0) and (Zr∗ , Zr∗+1) = (0, 1).

The backward conditional biases, (Zr∗ = 0|Zr∗+1 = 0) and (Zr∗ = 0|Zr∗+1 =
1), are independently used for the plaintext recovery attack. Suppose that Pr+1

3 Yarrkov showed a plaintext recovery attack using the FM00 bias on his web page
[15] before our results. However, the detailed description of attacks and estimations
are not given, and only the source code is given.



166 T. Ohigashi et al.

Algorithm 3. fFM00 B()
Require: r, /* round number of plaintext to be guessed */

Pr+1, /* known plaintext bytes */
(Cr, Cr+1)s of C(1), C(2), . . . , C(k) /* bytes of k ciphertexts encrypted by different
keys */

Ensure: Pr

1: Make frequency tables of Tcount[bias] of Pr and Pr+1 for all FM00 biases regarding
Pr+1 from all ciphertexts C(1), C(2), . . . , C(k).

2: Convert Tcount[bias] into a frequency table Tguess[r] indexed by only Pr with knowl-
edge of Pr+1. Here, we only deal with the bias independent of other biases.

3: Regard most frequency one in table Tguess[r] as the correct Pr.
4: Output Pr

is obtained, the values of Zr∗+1 = 0 is computed by Zr∗+1 = Cr+1⊕Pr+1. Then,
two tables of Zr∗ = 0 are obtained from two backward conditional biases (Zr∗ =
0|Zr∗+1 = 0) and (Zr∗ = 0|Zr∗+1 = 1). In these tables, it is expected that most
frequency values of these tables indicate same value of the plaintext, because
source event Zr∗+1 are different. Thus, these frequency tables are efficiently
merged to recover the plaintext byte Pr.

On the other hand, the forward conditional biases (Zr∗+1 = 0|Zr∗ = 0) and
(Zr∗+1 = 1|Zr∗ = 0) are not independently used. Even if two tables of Zr∗ = 0
obtained from (Zr∗+1 = 0|Zr∗ = 0) and (Zr∗+1 = 1|Zr∗ = 0) are merged, it is
expected that two peaks of Zr∗+1 = 0 and Zr∗+1 = 1 are observed due to same
source event Zr∗ = 0.

Therefore, if the source events of conditional bias (the forward is Zr∗ and
the backward is Zr∗+1) are different, these events can be independently used.
Note that events for positive bias and negative bias are not dependent even if
the source events of conditional bias are same.

Attack Functions Based on the FM00 Bias. By using all the independent
conditional biases, we construct the forward and backward functions for the
guess-and-determine attack based on the FM00 bias as follows:

fFM00 F () : Find an unknown byte Pr from pre-known a byte of a plaintext
Pr−1.

fFM00 B() : Find an unknown byte Pr from pre-known a byte of a plaintext
Pr+1 (See Algorithm 3).

The algorithm of fFM00 F () is given by replacing “+” of subscripts of variables
in Algorithm 3 to “−”. Figure 3 illustrates the procedures of fFM00 F () and
fFM00 B().

The number of independent events of the forward conditional bias Nf and
that of the backward conditional bias Nb in each index i are shown in Table 3.
When index i = 0, the all events of backward conditional bias are independent,
and Nb = 5. On the other hand, two events of forward conditional bias Zr∗+1 =
1|Zr∗ = N − 1 and Zr∗+1 = 2|Zr∗ = N − 1 are not independent, and Nf =



How to Recover Any Byte of Plaintext on RC4 167

Pr-1  Pr

recoverfFM00_F ( )

 Pr    Pr+1

recover fFM00_B ( )

Fig. 3. The guess-and-determine methods based on the conditional bias of the FM00
bias

5 − 2 = 3. For all index i, Nb is larger than Nf . Hence, the success probability
of fFM00 B() is larger than that of fFM00 F ().

4.2 Plaintext Recovery Method for Recovering Any Plaintext Byte

Our GD attack utilizes the backward conditional bias of the FM00 bias and the
forward ABSAB bias.

To begin with, a plaintext byte Pr is guessed from N candidates. Then, our
attack sequentially recovers Pr−1 → Pr−2 → . . . from Pr and the ciphertexts by
using fFM00 B() in the backward manner. Since the number of the candidates
of Px is N , the number of candidates of (Pr, Pr−1, Pr−2, . . . ) is also N . In order
to detect the wrong candidates of Pr, we use fABSAB F (), which is based on
the other bias. In particular, P ′

r is obtained from ciphertexts and the candidate
of plaintext bytes (Pr−1, Pr−2, . . . ) by using fABSAB F () with GMAX . If the
number of ciphertexts is enough larger and Pr is correctly guessed, the relation of
Pr = P ′

r surely holds. Otherwise the probability that Pr = P ′
r holds is 1/N . After

this method, about two candidates of Pr are expected to be left. If the number of
the candidates of Pr is not one, the same method is repeated for P ′

r−1, P
′
r−2, . . . ,

which are obtained by Pr. If Pr is correct, these method correctly works. In most
cases, the number of repeating this method Nrepeat is less than three. Figure 4
shows the procedure of our plaintext recovery attack for recovering any plaintext
byte. The detail of our attack for recovering any plaintext byte Pr is given in
Algorithm 4.

We consider the parameter GMAX for the ABSAB bias. It should be chosen
so that ABSAB bias is stronger than the FM00 bias to efficiently detect wrong
candidates. From Lemma 2, given 1/D samples, Prdistinguish become constant.
Since the probability of the plaintext recovery attack depends on Prdistinguish,
we evaluate our attack by the number of required ciphertexts for obtaining 1/D
samples. For example, D of the backward conditional bias of the FM00 bias is
estimated as D = N−3 = 2−24 for N = 256 and i = 3, 4, . . . , N − 4. From
Table 3, there are seven independent events of the FM00 conditional biases in
this case. As mentioned before, these biases are independently used. Thus, the
probability that a ciphertext matches one of these source events is 7/N . The
number of the required ciphertexts is (N/7) · (1/D) = 229.19 for 1/D samples.
On the other hand, discriminations D of the ABSAB bias and these number of



168 T. Ohigashi et al.

Table 3. Events of the conditional bias of the FM00 bias in each index i (= r∗ mod N)

Index i Zr∗ Zr∗+1 Conditional probability Nf Nb

0 0 N−1 · (1 + N−1)
1 N − 1 N−1 · (1 + N−1)

0 N − 1 1 N−1 · (1 + N−1) 3 5
N − 1 2 N−1 · (1 + N−1)
N − 1 N − 1 N−1 · (1 − N−1)

0 0 N−1 · (1 + 2 · N−1)
2 N − 1 N−1 · (1 + N−1)

1 N − 1 3 N−1 · (1 + N−1) 4 6
N − 1 2 N−1 · (1 + N−1)
N − 1 N − 1 N−1 · (1 − N−1)
0 2 N−1 · (1 − N−1)

0 0 N−1 · (1 + N−1)
0 1 N−1 · (1 + N−1)
3 N − 1 N−1 · (1 + N−1)

2 N − 1 3 N−1 · (1 + N−1) 4 8
N − 1 4 N−1 · (1 + N−1)
N/2 + 1 N/2 + 1 N−1 · (1 + N−1)
N − 1 N − 1 N−1 · (1 − N−1)
0 3 N−1 · (1 − N−1)

0 0 N−1 · (1 + N−1)
0 1 N−1 · (1 + N−1)
i + 1 N − 1 N−1 · (1 + N−1)

3, 4, . . . , N − 4 N − 1 i + 1 N−1 · (1 + N−1) 3 7
N − 1 i + 2 N−1 · (1 + N−1)
N − 1 N − 1 N−1 · (1 − N−1)
0 i + 1 N−1 · (1 − N−1)

0 0 N−1 · (1 + N−1)
0 1 N−1 · (1 + N−1)

N − 3 N − 2 N − 1 N−1 · (1 + N−1) 4 6
N − 1 N − 2 N−1 · (1 + N−1)
N − 1 N − 1 N−1 · (1 − N−1)
0 N − 2 N−1 · (1 − N−1)

0 0 N−1 · (1 + N−1)
N − 2 0 1 N−1 · (1 + N−1) 2 2

N − 1 0 N−1 · (1 + N−1)
0 N − 1 N−1 · (1 − N−1)

0 1 N−1 · (1 + N−1)
0 N − 1 N−1 · (1 + N−1)

N − 1 N − 1 0 N−1 · (1 + N−1) 1 3
N − 1 1 N−1 · (1 + N−1)
N − 1 N − 1 N−1 · (1 − N−1)



How to Recover Any Byte of Plaintext on RC4 169

Algorithm 4. Plaintext Recovery Attack for Recovering Any Plaintext
Byte
Require: r, /* round number of plaintext to be guessed */

GMAX , /* parameter of the ABSAB bias*/
C(1), C(2), . . . , C(k) /* k ciphertexts encrypted by different keys */

Ensure: Pr

1: Set all N candidates of a plaintext byte Pr into table Tcand.
2: Set Nrepeat = 0.
3: for all Pr ∈ Tcand do
4: Recover GMAX + 3 + Nrepeat bytes of the plaintext,

Pr−GMAX−3−Nrepeat , . . . , Pr−1, from a candidate Pr by using fFM00 B()

and k ciphertexts C(1), C(2), . . . , C(k).
5: Recover P ′

r−Nrepeat
from Pr−GMAX−3−Nrepeat , . . . , Pr−1−Nrepeat (guessed in Step

4) by using fABSAB F () and k ciphertexts C(1), C(2), . . . , C(k).
6: if Pr−Nrepeat �= P ′

r−Nrepeat
then

7: The candidate of Pr is removed from Tcand.
8: end if
9: end for

10: if the number of candidates in Tcand is one then
11: Output Pr, and the algorithm stops.
12: else if the number of candidates in Tcand is zero then
13: Our attack fails, and the algorithm stops.
14: else
15: Increment Nrepeat, and go back to Step 3.
16: end if

required ciphertexts for recovering a plaintext byte are shown as (D = 2−29.22,
1/D = 229.22 ciphertexts) for GMAX = 8 and (D = 2−29.11, 1/D = 229.11

ciphertexts) for GMAX = 9. Therefore GMAX = 9 is chosen for N = 256 and
i = 3, 4, . . . , N − 4.

4.3 Experimental Results

We perform the computer experiment for demonstrating the effectiveness of our
attack with GMAX on RC4-drop(n) in the broadcast setting when N = 256 and
n = 3072. In this experiment, P128 is recovered from ciphertexts without the
knowledge of the target plaintext. The parameters of the backward conditional
bias of the FM00 bias, index i, satisfy r∗ mod 256 = i ∈ {3, 4, . . . , N −4}. Hence,
GMAX = 9 is used as the parameter of the ABSAB bias.

First, in order to evaluate fFM00 B(), we obtain the success probability for
recovering P114, . . . , P127 under the condition that the correct P128 is given. The
success probabilities when 229 to 235 ciphertexts are given is shown in Table 4,
where the number of tests is 256. The experimental result shows that all bytes
of P114, . . . , P127 are recovered from 235 ciphertexts encrypted by randomly-
chosen different keys with probability of one by using fFM00 B(). This results
also shows that if one byte of the plaintext is known, 233 ciphertexts enable to



170 T. Ohigashi et al.

Pr-12 Pr-11  ... Pr-2 Pr-1 Pr

fABSAB_F ( )

Pr-12 Pr-11  ... Pr-2 Pr-1 Pr

fFM00_B ( )

Pr-2 Pr-1 Pr

fFM00_B ( )

Pr-1 Pr

fFM00_B ( )

Pr

P’r

Compare Pr

with P’r

Start

(2) Recover
Pr-1 to Pr-12

      by fFM00_B ( )

(3) Check Pr

      by fABSAB_F ( )

The procedure for one candidate of Pr Pr = 0 Pr = 1 Pr = N-1

Pr-13 Pr-12 Pr-11  ... Pr-2 Pr-1 Pr

fABSAB_F ( )

P’r-1

Compare Pr-1

with P’r-1

fFM00_B ( )

If the number of candidates 
of Pr  is larger than 1

(1) Set a 
       candidate 
       of Pr

Fig. 4. The procedure of our plaintext recovery attack for recovering any plaintext
byte (GMAX = 9)

recover the other one byte with probability of about 0.8. Interestingly, it is more
efficient than the attack in Sect. 3 when GMAX is small. The attack in Sect. 3 are
improved by using fFM00 B(). If consecutive 6 bytes of the plaintext are known,
the other bytes can be recovered from 234 with probability of about 0.984, while
that of the attack in Sect. 3 is about 0.636.

Then, we estimate the success probability for recovering P128 from only
ciphertexts by our plaintext recovery attack. The success probability when 232

to 235 ciphertexts are given is shown in Table 5, where the number of tests is
256. This experiment requires about one week with one CPU core (Intel(R)
Core(TM) i7 CPU 920@ 2.67 GHz) to obtain the result of one plaintext. The
experimental result shows that our attack can recover the target plaintext byte
P128 with probability of one from 235 ciphertexts encrypted by randomly-chosen
different keys. Remaining plaintext bytes, namely Pr(r �= 128) can be recovered
by repeating our attack or using our attack functions fABSAB F (), fABSAB B(),
fFM00 F (), and fFM00 B(). Especially, in the cases of i = N − 2, N − 1, the suc-
cess probabilities of conditional bias of the FM00 bias are relatively small than
that of others cases. These bytes should be recovered by using fABSAB F (),
fABSAB B() for an efficient recovery attack after other bytes are recovered by
using our GD attack.



How to Recover Any Byte of Plaintext on RC4 171

Table 4. Success probabilities of fFM00 B() for recovering (P114, . . . , P127) under the
condition that the correct P128 is given when n = 3072

# of ciphertexts

229 230 231 232 233 234 235

P114 0.0039 0.0039 0.0039 0.0078 0.0781 0.8750 1.0000
P115 0.0039 0.0039 0.0078 0.0117 0.1055 0.8828 1.0000
P116 0.0078 0.0000 0.0078 0.0117 0.1133 0.8828 1.0000
P117 0.0039 0.0039 0.0078 0.0078 0.1328 0.8945 1.0000
P118 0.0078 0.0195 0.0078 0.0078 0.1758 0.9023 1.0000
P119 0.0078 0.0000 0.0078 0.0117 0.1992 0.9180 1.0000
P120 0.0039 0.0039 0.0078 0.0156 0.2422 0.9258 1.0000
P121 0.0039 0.0039 0.0117 0.0078 0.2773 0.9492 1.0000
P122 0.0039 0.0078 0.0039 0.0117 0.3203 0.9570 1.0000
P123 0.0000 0.0117 0.0117 0.0195 0.3672 0.9688 1.0000
P124 0.0078 0.0039 0.0195 0.0391 0.4727 0.9844 1.0000
P125 0.0078 0.0039 0.0078 0.0742 0.5820 0.9883 1.0000
P126 0.0039 0.0078 0.0391 0.1602 0.6680 0.9922 1.0000
P127 0.0430 0.0898 0.1719 0.3984 0.8008 0.9922 1.0000

Table 5. Success probabilities of our attack for recovering P128 when n = 3072

# of ciphertexts

232 233 234 235

P128 0.0039 0.1133 0.9102 1.0000

Given 234 ciphertexts encrypted by randomly-chosen different keys, our
attack can recover any plaintext byte with probability of about 0.91. The number
of required ciphertexts are same as that of IOWM attack on original RC4, which
does not discard initial keystream bytes. In addition, even if 233 ciphertexts are
given, our attack is more efficient than a random guess.

Also, this attack is applicable to original RC4 with constant success probabil-
ity regardless of the position of plaintext bytes, while that of the IOWM attack
decrease for the later plaintext byte. It is an advantage of our attack from the
IOWM attack on the original RC4.

5 Conclusion

In this paper, we have evaluated the security of relatively secure RC4 implemen-
tation called RC4-drop(n), which discards the first n bytes of the keystream. We
proposed two advanced plaintext recovery attacks that can recover any byte of a
plaintext on RC4-drop(n) in the broadcast setting or the multi-session setting.
The first attack is the modified IOWM attack. Using partial knowledge of the
target plaintext, the other bytes can be recovered from ciphertexts encrypted
by different keys. The attack can recover 1000 terabytes of a target plaintext



172 T. Ohigashi et al.

with the high probability from 234 ciphertexts encrypted by different keys if the
knowledge of only consecutive 6 bytes of the target plaintext is given. The sec-
ond attack does not rely on any previous knowledge of a plaintext. In order to
achieve it, we developed a guess-and-determine plaintext recovery method based
two strong long-term biases. Given 235 ciphertext encrypted by different keys,
any byte of a plaintext can be recovered with probability close to one from only
ciphertexts. The amount of ciphertext is almost same as the IOWM attack on
original RC4. Therefore, RC4 is not secure even if the enough initial keystream
bytes are disregarded.

We recommend to replace RC4 with other stream ciphers [8] or the algorithms
of authenticated encryption in the practical protocols and software applications.

A future work is to compare our attack with the method of [1,2] in the same
conditions. In addition, we will combine our attack with the method of [1,2] for
obtaining more efficient attacks.

Acknowledgments. This work was supported in part by Grant-in-Aid for Scientific
Research (C) (KAKENHI 23560455) and Grant-in-Aid for Young Scientists (B) (KAK-
ENHI 25730085) for Japan Society for the Promotion of Science.

References

1. AlFardan, N.J., Bernstein, D.J., Paterson, K.G., Poettering, B., Schuldt, J.C.N.:
On the security of RC4 in TLS. In: USENIX Security 2013 (2013) (to appear)

2. AlFardan, N.J., Bernstein, D.J., Paterson, K.G., Poettering, B., Schuldt, J.C.N.:
On the security of RC4 in TLS and WPA. http://www.isg.rhul.ac.uk/tls/
RC4biases.pdf (2013)

3. Canvel, B., Hiltgen, A.P., Vaudenay, S., Vuagnoux, M.: Password interception in
a SSL/TLS channel. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
583–599. Springer, Heidelberg (2003)

4. Fluhrer, S.R., McGrew, D.A.: Statistical analysis of the alleged RC4 keystream
generator. In: Schneier [14], pp. 19–30

5. Sen Gupta, S., Maitra, S., Paul, G., Sarkar, S.: Proof of empirical RC4 biases and
new key correlations. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118,
pp. 151–168. Springer, Heidelberg (2012)

6. Sen Gupta, S., Maitra, S., Paul, G., Sarkar, S.: (Non-)random sequences from
(Non-) random permutations - analysis of RC4 stream cipher. J. Cryptol. 1–42
(2012). http://dblp.uni-trier.de/rec/bibtex/journals/joc/GuptaMPS14

7. Isobe, T., Ohigashi, T., Watanabe, Y., Morii, M.: Full plaintext recovery attack
on broadcast RC4. Preproceeding of Fast Software Encryption (FSE) (2013)

8. Josefsson, S., Strombergson, J., Mavrogiannopoulos, N.: The salsa20 stream cipher
for transport layer security (TLS) and datagram transport layer security (DTLS).
Network Working Group Internet-Draft, March 2013. http://tools.ietf.org/html/
draft-josefsson-salsa20-tls-01 (2013)

9. Maitra, S., Paul, G., Sen Gupta, S.: Attack on broadcast RC4 revisited. In: Joux,
A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 199–217. Springer, Heidelberg (2011)

10. Mantin, I.: Analysis of the stream cipher RC4. Master’s Thesis, The Weiz-
mann Institute of Science, Israel. http://www.wisdom.weizmann.ac.il/itsik/RC4/
rc4.html (2001)

http://www.isg.rhul.ac.uk/tls/RC4biases.pdf
http://www.isg.rhul.ac.uk/tls/RC4biases.pdf
http://dblp.uni-trier.de/rec/bibtex/journals/joc/GuptaMPS14
http://tools.ietf.org/html/draft-josefsson-salsa20-tls-01
http://tools.ietf.org/html/draft-josefsson-salsa20-tls-01
http://www.wisdom.weizmann.ac.il/itsik/RC4/rc4.html
http://www.wisdom.weizmann.ac.il/itsik/RC4/rc4.html


How to Recover Any Byte of Plaintext on RC4 173

11. Mantin, I.: Predicting and distinguishing attacks on RC4 keystream generator. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 491–506. Springer,
Heidelberg (2005)

12. Mantin, I., Shamir, A.: A practical attack on broadcast RC4. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, pp. 152–164. Springer, Heidelberg (2002)

13. Mironov, I.: (not so) random shuffles of RC4. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 304–319. Springer, Heidelberg (2002)

14. Schneier, B. (ed.): FSE 2000. LNCS, vol. 1978. Springer, Heidelberg (2001)
15. Yarrkov, E.: Why the recent RC4 attack doesn’t surprise me. https://cipherdev.

org/rc4 2013-03-13.html (2013)

https://cipherdev.org/rc4_2013-03-13.html
https://cipherdev.org/rc4_2013-03-13.html

	How to Recover Any Byte of Plaintext on RC4
	1 Introduction
	2 Preliminary
	2.1 Long-term Bias
	2.2 Previous Works

	3 Plaintext Recovery Attack Using Known Partial Plaintext Bytes
	3.1 Attack Functions
	3.2 Attack Procedure
	3.3 Experimental Results

	4 Guess-and-Determine Plaintext Recovery Attack (GD Attack)
	4.1 FM00 Bias for GD Attack
	4.2 Plaintext Recovery Method for Recovering Any Plaintext Byte
	4.3 Experimental Results

	5 Conclusion
	References


