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Abstract. The Discrete Logarithm Problem with Auxiliary Inputs
(DLPwAI) is an important cryptographic hard problem to compute α ∈
Zp for given g, gα, · · · , gαd

where g is a generator of a group of order
p. In this paper, we introduce a generalized version of this problem, so
called the generalized DLPwAI (GDLPwAI) problem which is asked to
compute α for given g, gαe1

, · · · , gαed
, and propose an efficient algorithm

when K := {e1, · · · , ed} is a multiplicative subgroup of Z
×
p−1. Although

the previous algorithms can only compute α when p±1 has a small divi-
sor d, our algorithm resolves the problem when neither p+1 or p−1 has
an appropriate small divisor. Our method exploits a group action of K
on Z

×
p to partition Z

×
p efficiently.

Keywords: The discrete logarithm problem · The discrete logarithm
problem with auxiliary inputs · Cheon’s algorithm

1 Introduction

The Discrete Logarithm Problem (DLP) is a cryptographic hard problem which
is asked to find α ∈ Zp for given g and gα where g is a generator of a group
G of prime order p. In recent decades, many variants of this hard problem such
as the Bilinear Diffie-Hellman Problem (BDHP) [6], the �-Strong Diffie-Hellman
Problem (�-SDHP) [2], the Bilinear Diffie-Hellman Exponent Problem [7], and
the Bilinear Diffie-Hellman Inverse Problem [1] have been introduced to support
the security of many cryptographic applications using pairing groups such as
ID-based encryption (IBE) [1,6], the short signatures [2], the broadcast encryp-
tion [7], and so on [3–5,8]. In spite of the importance of these computational
problems, there have been only few researches on these assumptions to the best
of our knowledge. The first realization of this importance was done by Brown
and Gallant [9] and Cheon [10,11]. Brown and Gallant presented an algorithm
to compute α for given g, gα, gαd

when d divides p − 1. Cheon generalized this
problem into the Discrete Logarithm Problem with Auxiliary Inputs (DLPwAI),
which finds the value α for given g, gα, · · · , gαd

, and solved it when either p − 1
or p + 1 has a small divisor d. Jao and Yoshida [14] gave an algorithm to forge
the Boneh-Boyen signatures using the Cheon’s algorithm.
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The idea of Cheon is to utilize the embedding to an auxiliary group such as Fp

or Fp2 . The similar technique to embed into auxiliary groups such as an elliptic
curve group or a finite field can also be found in the famous reduction algorithms
from the DL problem to the DH problem [13,18,19]. After the Cheon’s algorithm,
Satoh [21] tried to generalize the attack using an embedding Fp into a subgroup
of order Φk(p) in GL(n,Fp), where Φk(x) is the k-th cyclotomic polynomial for
k ≥ 3, but the efficiency of the algorithm was not clear. Finally, Kim [15] realized
that the Satoh’s algorithm essentially uses an embedding from Fp into Fpn

and proved that the algorithm can never be faster than the ordinary algorithm
for the DLP when d|Φk(p) for k ≥ 3. All these algorithms are developed by
embedding an element in Fp into a certain auxiliary group. More recently, Kim
and Cheon [16] suggested rather different approach. Their result reduced the
problem to find a polynomial with small value sets. However, finding a good
polynomial with small value sets is not easy and still open.

In this paper, we introduce the generalized version of the DLPwAI called
the GDLPwAI. The GDLPwAI is a problem to compute α ∈ Zp for given
g, gαe1

, · · · gαed . The rest of the paper is devoted to recover α efficiently but
heuristically when K := {ei : 1 ≤ i ≤ d} is a multiplicative subgroup of
Z

×
p−1 (Theorem 2). Note that in our algorithm ei’s do not divide p − 1 while

the Cheon’s algorithm requires gαd

as an instance for a small divisor d of p ± 1.
The outline of the proof is as follows: (1) For a multiplicative subgroup

K ≤ Z
×
p−1, we define the K-group action on Z

×
p to partition Z

×
p into orbits

generated by group action. (2) Then we define a polynomial f(x) over Zp which
takes the same value for all elements in an orbit but takes different values for
those elements in different orbits. (3) Finally, for randomly chosen β from Z

×
p ,

we find an orbit containing β by computing gf(β) and finding a collision with
gf(αj) where αj = ζ−jα’s are the representatives of distinct orbits. By solving
the equation f(β) = f(αj), we can find the desired value α.

For a multiplicative subgroup K of Z
×
p we define a K-group action on Z

×
p

by (k, x) �→ xk for x ∈ Z
×
p and k ∈ K. Then the orbit generated by x is a set

{xk : k ∈ K}. In particular, an orbit containing just one element is called a
fixed point. We show that the set of fixed points is generated by an element ζ,
a primitive λ-th root of unity for λ := gcd(K − 1), which is defined to be the
greatest common divisor of (k − 1)’s for all integers k such that k mod (p − 1)
belongs to K. Moreover, the collection of orbits (ζiα)K is pairwise disjoint for
0 ≤ i < λ and each orbit contains exactly |K| elements, if αk are distinct for all
k ∈ K. Hence λ|K| elements of Z

×
p belong to one of orbits (ζiα)K for some i.

Now define a polynomial fK(x) by
∑

k∈K xk for K. Then fK takes the same
value for the elements in the same orbit and fK(ζix) = ζifK(x) for a fixed
point ζ. For given gαk

for all k ∈ K, we compute gf(α) in |K| group multiplica-
tions and compute gf(β) for randomly chosen β ∈ Z

×
p . If β belongs one of orbits

(ζiα)K , then we can find t ∈ [0, λ) such that gf(α) = gζtf(β) in O(
√

λ) expo-
nentiations using the baby-step giant-step technique. Finally by finding k ∈ K
satisfying αk = ζtβ, we can recover the value α. Since the probability that a
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random β ∈ Z
×
p belongs to one of the orbits is λ|K|/(p − 1), the total complex-

ity is O
(

p
λ|K| (

√
λ + |K|)

)
exponentiations in Zp and G. Under the assumption

that the cost of a group operation in G is a constant times of the cost of a
multiplication in Zp, the total complexity can be lowered down O(p1/3 log p)
multiplications in Zp when

√
λ ≈ |K| ≈ p1/3.

It also remains an open question to solve the usual DLPwAI by using our
algorithm to solve the GDLPwAI.

Organization. In Sect. 2, we introduce a new representation for multiplicative
subgroup of Z

×
p−1. In Sect. 3, we define a group action on Z

×
p and develop how

all elements in Z
×
p can be represented with only a few elements. In Sect. 4, we

construct a polynomial over Zp which takes the same value on the same orbit.
Finally, we prove our theorem in Sect. 5 and conclude in Sect. 6.

2 Multiplicative Subgroups of Z
×
n

Before the state of our main theorem, we first introduce somewhat new repre-
sentation for multiplicative subgroup K of Z

×
n . From our observation, elements

of a multiplicative subgroup K ≤ Z
×
n seem to form an arithmetic sequence in

many cases.

2.1 Representation of a Multiplicative Subgroup of Z
×
n

Definition 1. For any positive integer n, let S be a subset of Zn. We define
gcd (S; Zn) or gcd(S) unless confused, to be the greatest common divisor of all
integers x such that x mod n belongs to S. Given a divisor λ of n, we define a
subset Kλ of Z

×
n by Kλ := (1+λZn)∩Z

×
n , where 1+λZn := {1 + λm : m ∈ Zn}.

We can see that Kλ is a multiplicative subgroup of Z
×
n because it is closed

under the multiplication and inverse. If K is a multiplicative subgroup of Z
×
n ,

then K is a subgroup of Kλ for λ = gcd(K − 1) where K − 1 = {k − 1 : k ∈
K} ⊆ Zn.

Remark 1. For an even integer n and any multiplicative subgroup K ≤ Z
×
n ,

every element of K is an odd integer so that gcd(K − 1) is even. It shows that

Kλ = (1 + λZn) ∩ Z
×
n = (1 + 2λZn) ∩ Z

×
n = K2λ

for odd λ. For this reason, we only treat the case that λ is even.

From now on, we restrict the case to n = p − 1 for odd prime p. The next
proposition determines the size of Kλ in Z

×
p−1 for given divisor λ of p − 1.

Proposition 1. Let λ be a divisor of p − 1. Then |Kλ| = p−1
λ · ∏

q∈Q

(
1 − 1

q

)
,

where Q is the set of prime divisors of p−1 which do not divide λ. In particular, if
gcd(λ, p−1

λ ) = 1, then |Kλ| = φ(p−1
λ ), where φ denotes the Euler-totient function.
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Proof. Note that 1 + λm ∈ Kλ if and only if gcd(1 + λm, p − 1) = 1,
which is equivalent to gcd(1 + λm, q) = 1 for all q ∈ Q. Consider a surjective
homomorphism

π : Zp−1 −→ Zλ × Zq1 × · · · × Zq�

x �−→ (x mod λ, x mod q1, · · · , x mod q�) ,

where Q = {q1, · · · , q�}. Then each element λm is in the set Kλ − 1 ⊆ Zp−1 if
and only if π(λm) is contained in {0}×T , where T = (Zq1\{−1})×(Zq2\{−1})×
· · · × (Zq�

\{−1}). Hence

|Kλ| = |Kλ − 1| = |π−1 ({0} × T ) |
= |T | · | ker(π)|
=

∏�
i=1 (qi − 1) ·

(
p−1

λ·∏�
i=1 qi

)

= p−1
λ · ∏�

i=1

(
1 − 1

qi

)

Moreover, if gcd
(
λ, p−1

λ

)
= 1, then Q is the set of all prime divisors of p−1

λ .
Thus, we have |Kλ| = φ

(
p−1

λ

)
. ��

Proposition 2. If λ is an even divisor of p − 1, then gcd(Kλ − 1; Zp−1) = λ.

Proof. Let us use the same notations in the proof of Proposition 1. First, we note
that an integer x such that x (mod p−1) ∈ Kλ −1 = π−1({0}×T ) is a multiple
of λ, and gcd(Kλ − 1; Zp−1) is a multiple of λ by definition.

Let P = {pj : 1 ≤ j ≤ k} be the set of common prime divisors of λ and p−1
λ .

Then P
.∪ Q is the set of prime divisors of p−1

λ . Every element q of Q is greater
than 2, and there exist integers mi for 1 ≤ i ≤ � satisfying λmi (mod qi) is not
equal to 0 or −1. Using the Chinese Remainder Theorem, we can find an integer
m such that m ≡ mi (mod qi) for all 1 ≤ i ≤ � and m ≡ 1 (mod pj) for all
1 ≤ k ≤ j.

We can check that 1 + λm is not divisible by q ∈ Q and 1 + λm (mod p − 1)
is contained in Kλ. In addition, gcd(λm; Zp−1) = λ gcd(m; Z p−1

λ
) = λ since m is

not divisible by every prime divisor of p−1
λ . Hence, gcd(Kλ − 1; Zp−1) is equal

to λ. ��
Example 1. Consider a prime p = 29 and λ = 4 be an even divisor of p − 1.
Then, we have

Kλ = K4 = {1, 5, 9, 13, 17, 21, 25} ∩ Z
×
28,

and 21 is the only element which is not in Z
×
28. Since p−1

λ = 7, we can see that
the cardinality of K4 is φ(7) = 6 as shown in Proposition 1. Also we can check
that gcd(K4 − 1) = 4.

3 A Group Action on Z
×
p

In this section, we consider a K-group action on Z
×
p and partition Z

×
p into disjoint

orbits generated by group action. A group action on a set clearly induces a
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partition of the set with orbits. However, what we are dealing here is to partition
Z

×
p with only a few information. Namely, for a certain case, we can represent

almost all elements of Z
×
p with only two elements, one fixed point (i.e. an orbit

with just one element) and the other point not a fixed point. We begin with
defining the group action on Z

×
p . For more information on group theory, refer

to [12,17].

Definition 2. Let K be a multiplicative subgroup of Z
×
p−1. Define a K-action on

Z
×
p by (k, x) �→ xk for k ∈ K and x ∈ Z

×
p . The K-orbit of x is a set xK := {xk :

k ∈ K}. The set of fixed point (Z×
p )K is a set {x ∈ Z

×
p : xk = x for all k ∈ K}

We can easily check that Definition 2 satisfies the definition of group action.
Note that we have |xK | = |K|/|Kx| where Kx is a stabilizer of x which is a set
defined by Kx := {k ∈ K : xk = x}, thus |xK | = |K| if and only if |Kx| = 1.
The next proposition states that if two multiplicative subgroups H and K of
Z

×
p−1 satisfies gcd(H − 1) = gcd(K − 1), then the two sets of fixed points by

H-action and K-action respectively are the same. Furthermore, the set of fixed
points forms a cyclic group of order λ = gcd(H − 1) = gcd(K − 1).

Proposition 3. Let K be a multiplicative subgroup of Z
×
p−1 and λ = gcd(K−1).

Then, (Z×
p )K = (Z×

p )Kλ
= {z ∈ Z

×
p : zλ = 1}.

Proof. The set of fixed point by K-action is denoted by (Z×
p )K = {z ∈ Z

×
p :

zk−1 = 1 for all k ∈ K}. Now it is easy to see that zk−1 = 1 for all k ∈ K if and
only if zλ = 1 where λ = gcd{k−1 : k ∈ K}. Since λ = gcd(K−1) = gcd(Kλ−1),
we have (Z×

p )K = (Z×
p )Kλ

by the same argument. ��

Let ξ be a primitive element in Zp, then ζ = ξ
p−1

λ is a generator of a cyclic
group of fixed points (Z×

p )K = 〈ζ〉 = {z ∈ Z
×
p : zλ = 1}. Note that the orbit

generated by ζix satisfies (ζix)K = ζixK for all 1 ≤ i ≤ λ, since ζk = ζ for all
k ∈ K. The following proposition considers two orbits generated by ζix and ζjx
are disjoint for 0 ≤ i, j < λ and i �= j.

Proposition 4. (Disjoint Orbit Condition) Let K be a multiplicative subgroup
of Z

×
p−1, ζ a generator of a cyclic group of fixed points {z ∈ Z

×
p : zλ = 1} for

λ = gcd(K − 1). If gcd(λ, p−1
λ ) = 1, then two orbits ζixK and ζjxK are disjoint

i.e. (ζixK) ∩ (ζjxK) = ∅ for 0 ≤ i, j < λ, i �= j, and x ∈ Z
×
p .

Proof. Note that two orbits are identical or disjoint. Suppose that (ζixK) ∩
(ζjxK) �= ∅ for some i, j. Then, ζixK = ζjxK and y := ζi−j = xk1−k2 for some

k := k1 − k2 ∈ K. Since
(
ζi−j

)λ = 1 and
(
xk1−k2

) p−1
λ = 1 for a non-fixed

point x ∈ Z
×
p , the order of y divides both λ and p−1

λ . In other words, it divides
gcd(λ, p−1

λ ) which equals to 1, following that y must be equal to 1. ��
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Example 2. Let K := K4 = {1, 5, 9, 13, 17, 25} ≤ Z
×
28 and consider the K-action

on Z
×
29. Then we have 4 disjoint orbits of length 6,

2K = {2, 25, 29, 213, 217, 225} = {2, 3, 19, 14, 21, 11}
4K = {4, 9, 13, 22, 6, 5}
7K = {7, 16, 20, 25, 24, 23}
8K = {8, 27, 15, 18, 10, 26},

and 4 fixed points {1, 12, 17, 28}. Note that 14 ≡ 124 ≡ 174 ≡ 284 ≡ 1 mod 29.

Since there is an one-to-one correspondence between ζixK and ζjxK for all
i, j, they have the same number of elements. If we define

Ox,K := xK .∪ ζxK .∪ · · · .∪ ζλ−1xK ,

where
.∪ denotes the disjoint union, we have |Ox,K | = |xK |λ for x ∈ Z

×
p . Along

with the set of fixed points, we have |Ox,K ∪ 〈ζ〉| = (|xK | + 1)λ number of
elements in Z

×
p for a non-fixed point x ∈ Z

×
p . From now on, ordp(x) denotes the

order of x modulo p.

Remark 2. The set Ox,K behaves just like an extended orbit, which means that
for x, y ∈ Z

×
p , Ox,K and Oy,K are disjoint or identical. In other words, Ox,K ∩

Oy,K �= ∅ implies y = ζixk and Ox,K = Oy,K . Therefore, Z
×
p can be expressed by

the disjoint union of distinct Ox,K ’s. Moreover, if Ox,K = Oy,K , then y = ζixk

for some 0 ≤ i < λ, k ∈ K and yλ = xλk. It implies that ordp(xλ) = ordp(yλ).

The next proposition gives a condition to satisfy |xK | = |K|.
Proposition 5. Let K be a multiplicative subgroup of Z

×
p−1, λ = gcd(K−1) and

x ∈ Zp. If gcd(λ, p−1
λ ) = 1, then |xK | = |K| for x satisfying ordp(xλ) = p−1

λ . In
particular, if p−1

λ is prime, then |xK | = |K| for x /∈ (Z×
p )K .

Proof. Note that |xK | = |K| if and only if |Kx| = |{k ∈ K : xk = x}| = 1.
Suppose that xk = x for some k = 1 + λn ∈ K and 0 ≤ n < p−1

λ . It implies that
(xλ)n = 1 for some 0 ≤ n < p−1

λ . However, since ordp(xλ) = p−1
λ , n must be

zero. It follows that Kx contains only one element, k = 1.
Since (xλ)

p−1
λ ≡ 1 (mod p) for all x ∈ Zp, we have ordp(xλ) divides p−1

λ .
In addition, ordp(xλ) = 1 if and only if x ∈ (Z×

p )K . Thus, if p−1
λ is a prime, it

follows that ordp(xλ) = p−1
λ if and only if x /∈ (Z×

p )K . ��

Example 3. Note that for p = 29 and λ = 4, we have |K| = |2K | = |4K | =
|7K | = |8K | = 6 for K = K4, and 〈17〉 = {17, 28, 12, 1} forms a cyclic group of
fixed points. It is easily verified that 17 ·2K = 4K , 28 ·2K = 8K and 12 ·2K = 7K ,
thus O2,K = 2K

.∪ 4K
.∪ 8K

.∪ 7K = Z
×
29\〈17〉.

The following proposition shows how many x’s in Z
×
p satisfy ordp(xλ) = p−1

λ .
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Proposition 6. Assume that λ is a divisor of p − 1. Then there are exactly
λφ(p−1

λ ) elements x in Z
×
p such that ordp(xλ) = p−1

λ .

Proof. Let ξ be a primitive element of Zp. There exists a unique 0 ≤ j < p
satisfying x = ξj for any x ∈ Z

×
p . We will use the fact that ordp(ξi) = p−1

gcd(i,p−1)

for all i.
From ordp(xλ) = ordp(ξλj) = p−1

gcd(λj,p−1) = p−1
λ

1
gcd(j, p−1

λ )
, we show that

ordp(xλ) = p−1
λ if and only if gcd(j, p−1

λ ) = 1. Therefore, there are exactly
φ(p−1

λ )-number of j’s modulo p−1
λ satisfying gcd(j, p−1

λ ) = 1, thus λφ(p−1
λ )-

number of x’s in Z
×
p satisfying ordp(xλ) = p−1

λ . ��

Note that λφ(p−1
λ ) = λp−1

λ

∏
q∈Q(1 − 1

q ) = (p − 1)
∏

q∈Q(1 − 1
q ) where Q is

the set of prime divisors of p−1
λ . Hence, if we randomly take x in Z

×
p , then the

probability that ordp(xλ) = p−1
λ is

∏
q∈Q(1− 1

q ). Moreover, if p−1
λ has only large

prime divisors, then the probability
∏

q∈Q(1 − 1
q ) will be almost equal to 1.

Combining these results with Proposition 1, we surprisingly obtain an imme-
diate partition of Z

×
p . Recall that for an even divisor λ of p − 1, we defined a

multiplicative subgroup Kλ = {1 + λn : n ∈ [0, p−1
λ ) ∩ Z} ∩ Z

×
p−1.

Theorem 1. Let λ be an even divisor of p−1 satisfying gcd(λ, p−1
λ ) = 1 and Kλ

be a multiplicative subgroup of Z
×
p−1 defined as above. Consider the Kλ-action

on Z
×
p . Let ζ be a generator of a cyclic group of fixed points by the Kλ-action,

{z ∈ Z
×
p : zλ = 1}. Then the followings hold:

1. If p−1
λ = μ is prime, then Z

×
p = Ox,Kλ

.∪ (Z×
p )Kλ

for x /∈ (Z×
p )Kλ

.
2. If p−1

λ = μ1 · · · μ� is square-free for prime μ1, · · · , μ�, then Z
×
p =

.∪J⊆I OxμJ ,Kλ

for x ∈ Z
×
p such that ordp(xλ) = p−1

λ , where I = {1, 2, · · · , �} is an index
set and μJ =

∏
j∈J μj for J ⊆ I (For the convenience, define μ∅ = 1 for the

empty subset ∅ ⊆ I). In particular, OxμI ,Kλ
= (Z×

p )Kλ
.

Proof. If p−1
λ = μ is prime, then |Kλ| = φ(p−1

λ ) = φ(μ) = μ−1 by Proposition 1.
Note that Ox,Kλ

and (Z×
p )Kλ

are disjoint subsets of Z
×
p for x /∈ (Z×

p )Kλ
. Thus

we have |Ox,Kλ

.∪ (Z×
p )Kλ

| = |Ox,Kλ
| + |(Z×

p )Kλ
|. By Proposition 5, we obtain

|Ox,Kλ
| = |xKλ |λ = |Kλ|λ = (μ − 1)λ and |(Z×

p )Kλ
| = λ. Therefore, |Ox,Kλ

.∪
(Z×

p )Kλ
| = p − 1 deduces that Ox,Kλ

.∪ (Z×
p )Kλ

= Z
×
p .

In the case that p−1
λ = μ1 · · · μ� is square-free and ordp(xλ) = p−1

λ , we have
|xKλ | = |Kλ| = φ(p−1

λ ) = φ(μI) =
∏

1≤j≤�(μj − 1) by Proposition 1. For a
subset J of I and y = xμJ , we first calculate |yKλ | and |Oy,Kλ

| by using the
fact that |yKλ | = |Kλ|/|(Kλ)y|, where (Kλ)y = {k ∈ Kλ : yk = y}. Since
k = 1 + λn ∈ (Kλ)y if and only if yk−1 = (xμJ )λ·n = 1 if and only if μI\J =
μI/μJ divides n, the size of (Kλ)y is equal to the number of n satisfying that
1 + λn ∈ Z

×
p−1, 0 ≤ n < μI and μI\J divides n. Therefore, by the similar

argument in Proposition 1, we get
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|(Kλ)y| =
∣
∣
{
n ∈ [0, μI) ∩ Z : 1 + λn ∈ Z

×
p−1 and μI\J |(λn)

}∣
∣

=
∣
∣
{
n ∈ [0, μI) ∩ Z : μj � (1 + λn) for each j and μI\J |n}∣

∣

=
μI

μI\J
·
∏

j∈J

(

1 − 1
μj

)

= μJ ·
∏

j∈J

(

1 − 1
μj

)

= φ(μJ ),

resulting |yKλ | = |Kλ|
|(Kλ)y| = φ(μI)

φ(μJ ) = φ(μI\J) and |Oy,Kλ
| = λ|yKλ | = λφ(μI\J).

Since OxμJ ,Kλ
’s are pairwise disjoint for all J ⊆ I, we have | .∪J⊆I OxμJ ,Kλ

| =∑
J⊆I |OxμJ ,Kλ

| = λ
∑

J⊆I φ(μI\J ). Finally, using elementary number theory, we
have

∑
J⊆I φ(μI\J) =

∑
d|μI

φ(d) = μI and | .∪J⊆I OxμJ ,Kλ
| = λ · μI = p − 1

deducing that Z
×
p =

.∪J⊆I (OxμJ ,Kλ
). ��

Note that for any given x ∈ Oy,Kλ
, there exist 0 ≤ i < λ and k ∈ Kλ

satisfying x = ζiyk. By virtue of Theorem 1, all elements in Z
×
p can be expressed

with only a few information. For example, we can simply partition Z
×
p with only

two elements x ∈ Z
×
p − (Z×

p )Kλ
and ζ ∈ (Z×

p )Kλ
, when gcd(λ, p−1

λ ) = 1 and
q = p−1

λ is prime, so that any of element in Z
×
p is of form ζixk for 0 ≤ i < λ and

k ∈ K. In our example, with only x = 2 and ζ = 17, we can express all elements
in Z

×
29.

In the case of p−1
λ = μ1 · · · μ� is square-free and ordp(xλ) = p−1

λ , Remark 2
says that ordp(yλ) = μI\J if y ∈ OxμJ ,Kλ

. The converse is also true because
Z

×
p =

.∪J⊆I OxμJ ,Kλ
and y cannot be contained in Oxμ

J′ ,Kλ
for J �= J ′ ⊆ I.

4 Polynomial Construction

In this section, we will define a polynomial f(x) ∈ Zp[x] of degree d having small
value sets. Recently, the similar idea was developed by Kim and Cheon [16]
to solve the DLPwAI. Their approach exploited the fast multipoint evaluation
method, so the degree of their polynomial was restricted to at most d ≈ p1/3

due to the efficiency issue.
The polynomial we will use in this paper is of very large degree which might

be greater than p1/3 but is sparse (all but d coefficients are zero) and have small
value sets. Thus the fast multipoint evaluation method as in [16] seems hardly
to be applied in our case. Instead, we take somewhat different approach with
the idea developed in Sect. 3. We will define a polynomial so that it takes the
same value for all elements in an orbit. In the proof of our main theorem, we will
make some lists of f(α1), · · · , f(α�) from f(α) where αi’s are the representatives
of distinct orbits and α is a discrete log to find. Then we find an index j such
that f(αj) = f(β) for randomly chosen β ∈ Z

×
p i.e. we find an orbit in which β

is contained. For this process, f(α) should be nonzero.
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Definition 3. Let K be a multiplicative subgroup of Z
×
p−1. Define a polynomial

fK(x) over Zp by fK(x) :=
∑

k∈K xk. We will simply write fK = f if there is
no ambiguity in the meaning.

By the definition, it is clear that fK takes the same value for the elements
in the same orbit defined by K-action.

Proposition 7. For any k ∈ K and x ∈ Z
×
p , we have f(xk) = f(x). If ζi ∈

(Z×
p )K is a fixed point, then f(ζix) = ζif(x).

Since the degree of f = fK might be large (approximately p), it looks hard to
evaluate f(α1), · · · , f(α�) in O(�) time complexity for random αi’s with fast mul-
tipoint evaluation method. However, for a non-fixed point α ∈ Z

×
p and a fixed

point (not necessarily generator) ζ ∈ (Zp)K , we can compute f(α), f(ζα) =
ζf(α), · · · , f(ζ�α) = ζ�f(α) in � multiplications by ζ with O(|K|) exponentia-
tions for computing f(α). Furthermore, if f(α) is nonzero, then we can deduce
that all α, ζα, · · · , ζ�α are the different representatives for distinct orbits. The
following proposition calculates f(x) explicitly in special cases.

Proposition 8. Assume that λ is an even divisor of p−1 satisfying gcd(λ, p−1
λ )

= 1. Let K = Kλ and f = fK be defined as aforementioned. Then the followings
hold:

1. If p−1
λ = μ is prime, then f(x) �= 0 for x ∈ Z

×
p .

2. If p−1
λ = μ1 · · · μ� is square-free for prime μ1, . . . , μ�, then f(x) �= 0 for

x ∈ Z
×
p .

Proof. If p−1
λ = μ is prime, then |K| = μ − 1 by Proposition 1. Consider a map

from Zμ to itself defined by n �→ (1 + λn). Since λ and μ are relatively prime,
this map is bijective. In other words, 1 + λn for 0 ≤ n < μ induces complete
residue modulo μ. Thus, there exists a unique 0 ≤ n0 < μ such that 1 + λn0 is
divisible by μ. Therefore,

f(x) =
∑

k∈K

xk =
∑

0≤n<μ

x1+λn − x1+λn0 = x · xp−1 − 1
xλ − 1

− x1+λn0 = −x1+λn0

for x /∈ (Z×
p )K . Otherwise, if xλ = 1 then xk = x for all k ∈ K and f(x) =

(μ − 1)x �= 0.
In the case of p−1

λ = μ1 · · · μ� is square-free, |K| = φ(μ1 · · · μ�) by
Proposition 1. By similar argument as above, for a subset J of an index set
I = {1, 2, · · · �}, let μJ =

∏
j∈J μj , and define a map from ZμJ

to itself by
n �→ (1 + λn). Since λ and μJ are relatively prime, it also induces the complete
residue modulo μJ . Thus, there exists a unique 0 ≤ nJ < μJ such that 1+λnJ is
divisible by μJ (For convenience, define μJ = 1 and nJ = 0 for empty set J = ∅).
We easily check that nJ ≡ nI (mod μJ) for all J ⊆ I. Now, ordp(xλ) = μI0 for
some I0 ⊆ I since ordp(xλ) is a divisor of p−1

λ = μI . For J ⊆ I, xλμJ = 1 if and
only if I0 ⊆ J .
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Using the inclusion–exclusion principle, we have

f(x) =
∑

k∈K

xk =
∑

J⊆I

(−1)|J| ∑

n

x1+λn,

where n in summation runs through 0 ≤ n < μI satisfying n ≡ nJ (mod μJ).
If I0 � J ⊆ I, then xλμJ �= 1 and

∑
n x1+λn = x1+λnJ xp−1−1

xλμJ −1
= 0. Otherwise

I0 ⊆ J ⊆ I, then xλμJ = 1 and
∑

n x1+λn =
∑

n x1+λnJ = μI

μJ
x1+λnJ =

μI\Jx1+λnI since n in summation is equivalent to nJ modulo μJ , and nJ ≡ nI

(mod μJ).
Finally, we have

f(x) =
∑

J⊆I

(−1)|J| ∑

n

x1+λn =
∑

I0⊆J⊆I

(−1)|J| ∑

n

x1+λn

=x1+λnI

∑

I0⊆J⊆I

(−1)|J|μI\J = x1+λnI

∑

J⊆I\I0

(−1)|I\J|μJ

=x1+λnI (−1)�
∏

j∈I\I0

(1 − μj) �= 0.

In particular, if ordp(xλ) = μI , then f(x) = (−1)�x1+λnI . ��
The above proposition says that fK(x) is not identically zero for Kλ = K for

even divisor λ of p − 1. Actually, it appears to be of form fK(x) = −xd where
gcd(d, p − 1) is large, however in our application, it is desirable that fK(x) �= 0
but is not of simple form such as xd, where d has large common divisor with p−1,
since this simple form leads us to the already known Cheon’s p − 1 algorithm.
In many cases, for a non proper subgroup K of Kλ, fK(x) also tends to not to
be identically zero, although it seems hard to show it.

Example 4. For K = K4 = {1, 5, 9, 13, 17, 25} ≤ Z
×
28, define fK(x) = x + x5 +

x9 + x13 + x17 + x25 = −x21 ∈ Z29[x], where 21 and 28 have common divisor
7. For a subgroup K ′ = 〈9〉 = {9, 25, 1} of K, we have K/〈9〉 = {1, 5}. Now
consider fK′(x) = x + x9 + x25. Then fK′(x) takes same value for x in the same
orbit. We have 8 disjoint orbits of length 3 and 4 fixed points. Note that the
fixed points for K and K ′ are same as shown in Proposition 3.

2K′
= {2, 19, 11}, 25K′

= 3K′
= {3, 14, 21}

4K′
= {4, 13, 5}, 45K′

= 9K′
= {9, 22, 6}

7K′
= {7, 20, 23}, 75K′

= 16K′
= {16, 25, 24}

8K′
= {8, 15, 26}, 85K′

= 27K′
= {27, 18, 10}.

The polynomial fK′(x) takes nonzero value 2 + 19 + 11 ≡ 3 mod 29 for all
x ∈ 2K′

, and we can check that fK′(x) take distinct values for disjoint orbits.

Proposition 9. Assume that λ is an even divisor of p−1 satisfying gcd(λ, p−1
λ )

= 1. Let K = Kλ and f = fK . If p−1
λ = qe for some prime q and e ≥ 2, then

f(x) = 0 unless xλq = 1 in Z
×
p .
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Proof. Since p−1
λ has only one prime divisor q, we can efficiently express elements

of K and compute f(x). For n ∈ Zμ, 1 + λn is contained in K if and only if
gcd(1+λn, q) = 1. Since 1+λn ≡ 0 (mod q) has exactly one solution n0 ≡ −λ−1

in modulo q, there exist qe−1-number of solutions {n0 + qm : 0 ≤ m < qe−1} in
Zμ. Therefore, f(x) is computed by

f(x) =
∑

n∈[0, p−1
λ )∩Z,1+λn∈K

x1+λn =
∑

0≤n<qe

x1+λn −
∑

0≤m<qe−1

x1+λ(n0+qm)

=x

⎛

⎝
∑

0≤n<qe

xλn

⎞

⎠ − x1+λn0

⎛

⎝
∑

0≤m<qe−1

xλqm

⎞

⎠ ,

and it is equal to zero unless xλq = 1. However, there are only λq = p−1
qe−1 -number

of such elements x in Z
×
p−1. ��

In general, if p−1
λ is not square-free, then fKλ

(x) = 0 for most of the elements
in Z

×
p−1. Modifying the proofs of Propositions 8 and 9 easily show it. We will omit

details here.

5 Main Theorem

By using a group action on Z
×
p , we can efficiently partition Z

×
p with only a few

elements. This leads us to a new algorithm that solves the GDLPwAI efficiently.
Now we can state our main theorem as follows.

Theorem 2. Let K be a multiplicative subgroup of Z
×
p−1 with λ = gcd(K − 1).

Assume that we are given
{(

k, gαk
)

: k ∈ K
}

and |αK | = |K|. Then, we can

solve α ∈ Zp in O
(

p
λ

)
exponentiations in Zp and O

(
p

|K|√λ
+ |K|

)
exponentia-

tions in G unless
∑

k∈K αk = 0.

Proof. We give a sketch of the proof following the next steps.

1. For given gαk

for all k ∈ K, one computes gf(α) =
∏

k∈K gαk ∈ G in |K|
multiplications in G. Note that gf(α) �= 1, since f(α) �= 0.

2. Take a random element β from Z
×
p and compute f(β) =

∑
k∈K βk ∈ Zp in

|K| exponentiations in Zp. If β ∈ Oα,K , then there exists a unique 0 ≤ t < λ
satisfying αK = ζtβK and f(α) = ζtf(β).

3. To find such t, we use Baby-Step Giant-Step method. Let L := �√λ�. Make
two lists {gf(ζL·iβ) = (gf(β))ζL·i ∈ G : 0 ≤ i < L} and {gf(ζ−jα) = (gf(α))ζ−j ∈
G : 0 ≤ j < L} in 2

√
λ exponentiations in G. If β ∈ Oα,K , these two lists

must have a collision since there exist 0 ≤ i, j < L satisfying t = Li + j.
4. Repeat the steps 2 and 3 until finding a collision. The expected number of

repetitions is p
|K|λ , since the probability that β ∈ Oα,K is |Oα,K |

p = |αK |λ
p =

|K|λ
p .
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5. Locate gζtβ from the set
{

gαk

: k ∈ K
}

to find k0 ∈ K such that gαk0 = gζtβ .

This gives α = (ζtβ)k−1
0 in |K| comparisons in G.

We carry out the above process in
|K| multiplications in G in Step 1, O

(
p

|K|λ · |K|
)

= O
(

p
λ

)
exponentiations

in Zp in Steps 2 and O
(

p

|K|√λ

)
exponentiations in G in Step 3 and 4, and |K|

comparisons in G in Step 5. The overall complexity is as in the theorem. ��
Remark 3. In the proof of Theorem2, we may find a fake collision. That is, some
element β ∈ Zp could satisfy f(α) = ζtf(β) but ζtβ /∈ αK . If a fake collision
occurs in Step 3 and 4, there would be no element k0 ∈ K such that αk0 = ζtβ
and we can check it in Step 5. They do not affect the total complexity.

For any multiplicative subgroup K of Z
×
p−1, K is a multiplicative subgroup

of Kλ where λ = gcd(K − 1). Hence we can define κ = [Kλ : K].

Corollary 1. For a multiplicative subgroup K of Z
×
p , set λ = gcd(K − 1) and

define κ = [K : Kλ]. Assume that the computational cost for the multiplications
in G is a constant times of the cost for the multiplications in Zp. Then we can

solve the GDLPwAI in O
((

κ
√

λ + p
λ

)
log p

)
multiplications in Zp.

Proof. In Proposition 1, we showed that |Kλ| = p−1
λ

∏
q∈Q(1− 1

q ) where Q is the
set of prime divisors of p − 1 not dividing λ. We may assume that

∏
q∈Q(1 − 1

q )

is a constant greater than zero since
∏

q∈Q(1 − 1
q ) ≥ φ( p−1

λ )
p−1

λ

≥ 1
6 log log p−1

λ

and

log log p−1
λ is not so large for usual size of p. In fact,

∏
q∈Q(1− 1

q ) is much greater

than this lower bound in almost cases. Then we have |K| = |Kλ|
κ = O

(
p

λκ

)
and

p

|K|√λ
= O

(
κ
√

λ
)
.

By Theorem 2, the overall complexity is O(|K| log p) = O
(

p
λ log p

)

multiplications in Zp and O
((

|K| + p

|K|√λ

)
log p

)
= O

((
κ
√

λ + p
λ

)
log p

)

multiplications in G. By the assumption, we can put them together in one
notation. ��
Example 5. Consider a multiplicative group Z

×
q for prime q = 1984044749. The

element g = 268435456 ∈ Z
×
q generates the multiplicative subgroup G = 〈g〉 of

20-bit prime order p = 70858741. Suppose that we are given
{(

k, gαk
)

: k ∈ K
}

= {(1, 368141755), (9447833, 908277040), (14171749, 1018628336), (51963077,
651549246)} for the multiplicative subgroup K of Z

×
p−1 with λ = gcd(K; Zp−1) =

4723916. Following Theorem 2, we have gf(α) = 104646375 and f(β) = 29994755
for randomly chosen β = 27015355 in G. Using the BSGS technique, we find
t = 993142 satisfying gf(α) = gζtf(β) for a primitive element ξ and a fixed point
ζ = ξ

p−1
λ . Then we find out that αk0 = ζtβ for k0 = 51963077 by comparing

gζtβ with {gαk

: k ∈ K}. Finally, we have α = (ζtβ)k−1
0 = 37217684.
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Example 6. We use the same notations with Example 5. Set q =
8307519720650407, g = 3814697265625 ∈ Z

×
q . The element g has the order

p = 461528873369467 of 50-bit prime. We are given our instance for a multiplica-
tive subgroup K of Kλ such that λ = 4742043558, |Kλ| = 97326, |K| = 16221.
Our algorithm finds that

α = ζtβ = 55526261320836

for ζ = 265871590696697, β = 257387303120427 and t = 275438533.

In summary, if we are given gαk

for all k ∈ Kλ, then κ = 1 and we can solve
the GSDL problem in O

((√
λ + p

λ

)
log p

)
. However, in this case, gfKλ

(α) = g−d

with nontrivial gcd(d, p−1), which falls into the Cheon’s p−1 algorithm. When
we are working with |K| < |Kλ|, then we need to carry out O

((
κ
√

λ + p
λ

)
log p

)

multiplications, so we want κ > 1 to be sufficiently small. The computation
amount can be reduced to O

(
p1/3 log p

)
, when κ is small enough and λ ≈ p2/3.

Remark 4. If we assume that α is chosen randomly in Z
×
p , the condition |αK | =

|K| is satisfied with high probability. As we mentioned in Proposition 5 and
Proposition 6, there are λφ(p−1

λ )-number of x’s in Z
×
p such that ordp(xλ) =

p−1
λ , and they satisfy |xK | = |K|. Therefore, the probability is greater than

1
6 log log(p−1) , since λφ( p−1

λ )

p−1 ≥ φ(p−1)
p−1 and φ(n)

n ≥ 1
6 log log n for all n ≥ 5 [20].

Remark 5. It is hard to compute the probability of
∑

k∈K αk = 0 in general, but
we can predict that fK(x) = 0 has not so many roots in Zp if p−1

λ is a square-free
which is relatively prime to λ. Let κ = [Kλ : K] and {k1, · · · kκ} be elements of
distinct left cosets of K in Kλ. Then we have fKλ

(x) =
∑κ

i=1 fK(xki). We saw
in Proposition 8 that if p−1

λ is a square-free which is relatively prime to λ, then
fKλ

is a monomial and hence it is never zero on Zp. Therefore, we can say that
the condition fK(α) �= 0 in Theorem 2 is not so unnatural in this case. In the
contrary, it may be harder to satisfy the condition fK(α) �= 0 if p−1

λ has prime
powers. The case of Proposition 9 is a typical example.

We have another strategy to avoid ‘bad cases’ aforementioned by randomizing
α. In the case of |αK | �= |K|, take a random element γ in Z

×
p and compute new

parameters {(gαk

)γk

: k ∈ K}, which can be done in |K| exponentiations in Zp

and G. We repeat this process until finding γ which satisfies |(αγ)K | = |K|, and
the expected number of repetition is less than 6 log log(p−1). Finally, we can com-
pute αγ in O

(
p

λ|K| (
√

λ + |K|)
)

exponentiations by Theorem 2, and get α = (αγ)·
γ−1. The total number of computations is O

(
|K| log log p + p

λ|K| (
√

λ + |K|)
)
,

which does not have significant difference with O
(

p
λ|K| (

√
λ + |K|)

)
.

This strategy can be also used in the case of fK(α) = 0. We can compute
new parameters {(gαk

)γk

: k ∈ K} in |K| exponentiations in Zp, and check
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whether fK(αγ) is equal to zero or not in |K| multiplications in G. The expected
number of repetition depends on the number of roots of fK(x) = 0 in Zp−1. This
algorithm must be more efficient than the above, but the exact complexity is
not resolved yet.

6 Conclusion

In this paper, we generalized the discrete logarithm problem with auxiliary
inputs and proposed an algorithm to solve this problem efficiently. Precisely,
our algorithm takes g, gα, gαe1

, · · · , gαed−1 as an instance where ei’s form a mul-
tiplicative subgroup in Z

×
p−1. If d ≈ p1/3 is a prime (or square-free) divisor of

p − 1 and ei = 1 + p−1
d · ni ∈ Z

×
p−1 for some 0 ≤ ni < d, then our algorithm

solves α ∈ Zp in O(p1/3) group operations.
The main part of our technique is to partition the set Z

×
p using a group

action. In particular, if d is square-free with � prime factors, then all elements
in Z

×
p can be represented by using only 2� elements.

It would be of interest to find an algorithm to solve the DLPwAI using our
algorithm, that is, to convert an instance of the form g, gα, · · · , gαd

for d < p1/3

into gαk

’s with k ∈ K for a multiplicative subgroup K of Z
×
p−1.

Acknowledgement. This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2011-0018345).
Yongsoo Song was partially supported by NRF-12-Global Ph.D. Fellowship Program.

References

1. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, Ch., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

2. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, Ch.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

3. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

4. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol.
3494, pp. 440–456. Springer, Heidelberg (2005)

5. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

6. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

7. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol.
3621, pp. 258–275. Springer, Heidelberg (2005)



A Group Action on Z
×
p and the Generalized DLP 135

8. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J.
Cryptol. 17(4), 297–319 (2004)

9. Brown, D.R.L., Gallant, R.P.: The static Diffie-Hellman problem. IACR Cryptol-
ogy ePrint Archive. http://eprint.iacr.org/2004/306 (2004)

10. Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaude-
nay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg
(2006)

11. Cheon, J.H.: Discrete logarithm problems with auxiliary inputs. J. Cryptol. 23(3),
457–476 (2010)

12. Conrad, K.: Group theory. http://www.math.uconn.edu/∼kconrad/blurbs/
13. den Boer, B.: Diffie-Hellman is as strong as discrete log for certain primes. In: Gold-

wasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 530–539. Springer, Heidelberg
(1990)

14. Jao, D., Yoshida, K.: Boneh-Boyen signatures and the strong Diffie-Hellman prob-
lem. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 1–16.
Springer, Heidelberg (2009)

15. Kim, M.: Integer factorization and discrete logarithm with additional information.
Ph.D. dissertation, Seoul National University (2011)

16. Kim, T., Cheon, J.H.: A new approach to discrete logarithm problem with auxiliary
inputs. IACR Cryptology ePrint Archive. http://eprint.iacr.org/2012/609 (2012)

17. Lang, S.: Algebra, 3rd edn. Springer, New York (2002)
18. Maurer, U.M.: Towards the equivalence of breaking the Diffie-Hellman protocol and

computing discrete logarithms. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol.
839, pp. 271–281. Springer, Heidelberg (1994)

19. Maurer, U.M., Wolf, S.: The relationship between breaking the Diffie-Hellman
protocol and computing discrete logarithms. SIAM J. Comput. 28(5), 1689–1721
(1999)

20. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press, Boca Raton (1996)

21. Satoh, T.: On generalization of Cheon’s algorithm. IACR Cryptology ePrint
Archive. http://eprint.iacr.org/2009/058 (2009)

http://eprint.iacr.org/2004/306
http://www.math.uconn.edu/~kconrad/blurbs/
http://eprint.iacr.org/2012/609
http://eprint.iacr.org/2009/058

	A Group Action on Zp and the Generalized DLP with Auxiliary Inputs
	1 Introduction
	2 Multiplicative Subgroups of Zn
	2.1 Representation of a Multiplicative Subgroup of Zn

	3 A Group Action on Zp
	4 Polynomial Construction
	5 Main Theorem
	6 Conclusion
	References


