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Abstract. This paper presents key recovery attacks on Sandwich-MAC
instantiating MD5, where Sandwich-MAC is an improved variant of
HMAC and achieves the same provable security level and better perfor-
mance especially for short messages. The increased interest in lightweight
cryptography motivates us to analyze such a MAC scheme. We first
improve a distinguishing-H attack on HMAC-MD5 proposed by Wang
et al. We then propose key recovery attacks on Sandwich-MAC-MD5 by
combining various techniques such as distinguishing-H for HMAC-MD5,
IV Bridge for APOP, dBB-near-collisions for related-key NMAC-MD5,
meet-in-the-middle attack etc. In particular, we generalize a
previous key-recovery technique as a new tool exploiting a conditional
key-dependent distribution. Our attack also improves the partial-key
(K1) recovery on MD5-MAC, and extends it to recover both K1 and K2.

Keywords: HMAC · Sandwich-MAC · MD5-MAC · MD5 · Key
recovery

1 Introduction

A Message Authentication Code (MAC) is a cryptographic primitive which pro-
duces authenticity and data integrity. It takes a message M and a secret key K
as input and computes a tag τ . A secure MAC must resist forgery attacks.

A MAC is often constructed from a hash function such as MD5 [1] and SHA-
2 [2] for its performance and availability in software libraries. There are three
hash-based MAC constructions [3]. Let H be a hash function. A secret-prefix
method computes a tag of a message M by H(K‖M). A secret-suffix method
computes a tag by H(M‖K). A hybrid method computes a tag by H(K‖M‖K).

When H processes M by iteratively applying a compression function h, a
generic existential forgery attack with a complexity of 2n/2 exists for any of those
three methods, where n is the size of the tag, τ , and the internal chaining variable
[4]. Besides, each of the three types has its own features. The secret-prefix method
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Fig. 1. Description of HMAC Fig. 2. Description of Sandwich-MAC

is vulnerable when a finalization process is not performed. This is called length-
extension attack [5,6]. The secret-suffix method suffers from the collision attack on
h. Two distinct messages (M,M ′) such that h(M) = h(M ′) cause forgery attacks.
The hybrid method seems to hide the weakness of two methods at a short glance.
Strictly speaking, the hybrid method in [3] computes a tag by H(K‖pad‖M‖K ′)
where K and K ′ are two independent keys and pad denotes the padding string
making the length of K‖pad equal to the block length. The security of this con-
struction can be proven by [7] up to O(2n/2) queries. The single-key version, where
K = K ′, is well-known as envelope MAC, and was standardized for IPsec version 1
[8,9]. However, Preneel and van Oorschot showed that collisions of h can reveal the
second key K or K ′ of the hybrid method [10] when the padding is not performed
between M and the second key.

Currently, the most widely used hash-based MAC is HMAC [7,11] whose
structure is a hybrid method with an appropriate padding before the second
key. It computes a tag by H((K ⊕ opad)‖H((K ⊕ ipad)‖M)) as shown in Fig. 1.
HMAC was proven to be a secure PRF up to O(2n/2) queries [12]. Several
researchers proposed improvement of HMAC from various viewpoints, e.g., secu-
rity bound [13], performance [14–16], and side-channel resistance [17].

Comparison of HMAC and Sandwich-MAC. Sandwich-MAC [15] is
another hybrid-type MAC with an appropriate padding before the second key. It
computes a tag by H(K‖pad1‖M‖pad2‖K) as shown in Fig. 2. As with HMAC,
it can call current hash functions without modifying the Merkle-Damg̊ard (MD)
implementations. It was proven to have the same security as HMAC, i.e., it
is a PRF up to O(2n/2) queries as long as the underlying compression func-
tion h is a PRF. Then, Sandwich-MAC has several advantages compared to
HMAC.

Sandwich-MAC can be computed only with a single key K, while HMAC
creates an inner-key h(IV,K ⊕ ipad) and an outer-key h(IV,K ⊕ opad). This
reduces the number of additional blocks, where the “additional” is defined to
be the number of h invocations in the scheme minus that in the usual Merkle-
Damg̊ard. HMAC requires 3 additional blocks, while Sandwich-MAC requires 1
or 2. It also avoids a related-key attack on HMAC [18] which exploits two keys
with difference ipad⊕ opad. Another advantage is the number of hash function
calls. HMAC requires 2 invocations of H, while Sandwich-MAC requires only 1.
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Table 1. Summary and comparison of results. ISR stands for internal state recovery.

Target Model Attack goal Data Time Memory Ref. Remarks

HMAC-MD5 Adaptive Dist-H/ISR 297 297 289 [32]
Adaptive Dist-H/ISR 289.09 289 289 Ours
Non-adaptive Dist-H/ISR 2113 2113 266 [32]
Non-adaptive Dist-H/ISR 2113−x 2113−x 266+x Ours 0 ≤ x ≤ 6

MD5-MAC K1-recovery 297 297 289 [32]
K1-recovery 289.09 289 289 Ours
(K1, K2)-recovery 289.04 289 289 Ours

Sandwich- Basic Key recovery 289.04 289 289 Ours
MAC-MD5 Variant B Key recovery 289.04 289 289 Ours

Extended B Key recovery 289.04 289 289 Ours

As shown in [19], these drawbacks of HMAC are critical especially for short
messages. Taking these features into account, though it is not widely used at
present, Sandwich-MAC is potentially a good candidate for a future MAC use.

Cryptanalysis Against Hybrid MAC. If the padding is not applied before
the second key, the key is recovered with O(2n/2) [10]. The attack was opti-
mized when the underlying hash function is MD5 [20–23] through attacks against
APOP protocol [24]. In this paper, the IV Bridge technique [21] will be exploited.
However, these analyses basically cannot be used if an appropriate padding is
applied before the second key as HMAC and Sandwich-MAC.

For HMAC/NMAC, most of attacks have been proposed with specific under-
lying hash functions. Kim et al. [25] proposed the notion of distinguishing-H
attack. Contini and Yin presented how to exploit a differential characteristic of
an underlying compression function to recover an inner-key of HMAC/NMAC
[26]. Since then, many attacks have developed for HMAC/NMAC instantiat-
ing the MD4-family [27–31]. Regarding MD5, inner-key and outer-key recovery
attacks were proposed only for NMAC only in the related-key model. Wang et
al. presented a distinguishing-H attack on full HMAC-MD5 in the single-key
model [32]. This is the only known result in the single-key model against hybrid
MAC constructions with an appropriate padding instantiating full MD5.

Our Contributions. In this paper, we present key-recovery attacks against
several hybrid MAC schemes with an appropriate padding when MD5 is instan-
tiated as an underlying hash function. The summary of results is given in Table 1.
The main contribution is an original-key recovery attack against Sandwich-MAC-
MD5. This is the first result that recovers the original-key in the hybrid method.
Even if the key-length is longer than the tag size n, the key is recovered faster
than 2n computations. Moreover, an attacker does not need to know the key
length in advance. Given the specification of MD5, up to a 447-bit key is recov-
ered with 289.04 queries, 289 table look-ups, and 289 memory.
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For the first step, we improve the distinguishing-H attack against HMAC-
MD5 in the single-key model presented by Wang et al. [32], which can be utilized
to reveal an internal state value. This reduces the number of queries from 298 to
289.09. This can be achieved by combining the attack in [32] with the message
modification technique presented by Contini and Yin [26].

We then explain our original-key recovery attack against Sandwich-MAC-
MD5 and its variant with combining various techniques on MD5. Specifically,
we generalize the idea in [31] as a tool exploiting conditional key-dependent
distributions. Note that a similar idea can be seen in [33] against Phelix. In this
paper our goal is generalizing and simplifying the technique so that it can be
applied to other cases. In the below, let α, κ and β be x-bit variables, and αi, κi

and βi be the i-th bit of α, κ and β, respectively, where 0 ≤ i ≤ x − 1.

Let us consider a modular addition α + κ = β; α is a partially known
variable where 1 bit (MSB) of αx−1 is known but αi is unknown for
the other i. κ is an unknown constant. β is a public variable computed
by α + κ, and its value is known. Intuitively, α, κ, and β correspond to
the internal state, the key, and the tag, respectively. Then, the attacker
can recover all bits of κ by iteratively collecting many pairs (β, αx−1).

Experimental verification of this observation is shown in Appendix A.
Our attack on Sandwich-MAC-MD5 recovers the key with a complexity below

2n, hence it also leads to a universal forgery attack on Sandwich-MAC-MD5.
MD5-MAC [4] generates three keys K0,K1, and K2. The previous attack

[32] only recovers K1 with a cost of 297. Our improvement of HMAC-MD5
also reduces this complexity to 289.09. Moreover, by applying our techniques on
Sandwich-MAC-MD5, we achieve the first attack that recovers both K1 and K2.

2 Preliminaries

2.1 HMAC

HMAC is a hash-based MAC proposed by Bellare et al. [7]. Denote a hash
function by H. On an input message M , HMAC based on H is computed using
a single secret key K as HMAC-HK(M) = H(K ⊕ opad‖H(K ⊕ ipad‖M)),
where K is K padded to a full block by adding ‘0’s, opad and ipad are two
public constants, and ‘‖’ denotes the concatenation.

2.2 Sandwich-MAC

Sandwich-MAC [15] is another hash-based MAC proposed by Yasuda. Besides
the main scheme called Basic, there exist three variants called variant A, B, and
C. Inside variant B, one extension is proposed, which we call extended B. In this
paper, we analyze Basic, variant B, and extended B. We assume that the length
of the key after the padding, |K‖pad|, is shorter than the block length, b.
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Sandwich-MAC Basic. Sandwich-MAC Basic computes tag values as follows.

Sandwich-MAC-HK(M) = H(K‖pad1‖M‖pad2‖K), (1)

where, pad1 appends b − |K| bits of ‘0’s so that |K‖pad1| becomes equal to b
and pad2 appends a single bit ‘1’ and b − ((|M | + 1) mod b) bits of ‘0’s so that
|M‖pad2| becomes a multiple of b. Note that the input message for the last block
always becomes K‖pad3, where pad3 is the padding scheme defined in a hash
function H. As long as MD5 is analyzed, pad3 is MD-strengthening.

Variant B and Extended B. Variant B is an optimized version when |M | is
already a multiple of the block length. The computation is described in Eq. (2).

Extended B is another optimization when the input message M ends in the
middle of the block. Intuitively, the meaningless bits of ‘0’ in pad3 in the last
message block can be replaced with the message to be processed. For example,
MD5 uses the MD-strengthening as pad3 and 65 bits are enough for it. Therefore,
up to b − |K| − 66 bits in the last message block can be used to process the
message. Let M consist of � blocks (M0‖ · · · ‖M�−1), and |M�−1| < b − |K| − 66.
The computation of extended B is described in Eq. (3).

Sandwich-MACB-HK(M) = H(K‖pad1‖M‖K‖1). (2)
Sandwich-MACExtB-HK(M) = H(K‖pad1‖M0‖ · · · ‖M�−2‖K‖1‖M�−1). (3)

2.3 MD5 Specification and Free-Start Collision Attack on MD5

MD5 [1] is a Merkle-Damg̊ard based hash function. Its block length is 512 bits
and the output size is 128 bits. At first, an input message M is padded by
the MD strengthening. The padded message is divided into 512-bit blocks, Mi

(i = 0, 1, . . . , N − 1). First H0 is set to IV, which is the initial value defined in
the specification. Then, Hi+1 ← h(Hi,Mi) is computed for i = 0, 1, . . . , N − 1,
where h is a compression function and HN is the hash value of M .

h takes a 128-bit value Hi and a 512-bit value Mi as input. Mi is divided
into sixteen 32-bit values m0‖m1‖ · · · ‖m15, and Hi is divided into four 32-bit
values Q−3‖Q0‖Q−1‖Q−2. Then, Qj+1 ← Rj(Qj−3‖Qj‖Qj−1‖Qj−2,mπ(j)) is
computed for j = 0, . . . , 63 and (Q61+Q−3)‖(Q64+Q0)‖(Q63+Q−1)‖(Q62+Q−2)
is the output of h. Rj is the step function which computes Qj+1 as below.

Qj+1 ← Qj + (Qj−3 + Φj(Qj , Qj−1, Qj−2) + mπ(j) + cj) ≪ sj ,

where Φj , cj , and ≪ sj denote Boolean function, constant, and left rotation by
sj-bits, respectively. π(j) denotes a message expansion. Refer to [1] for details.
Hereafter, we denote the B-th bit of variable X and Qj by XB and Qj,B .

den Boer and Bosselaers [34] generated paired values (Hi,Mi) and (H ′
i,Mi)

such that h(Hi,Mi) = h(H ′
i,Mi), where Hi and H ′

i have the difference: Hi⊕H ′
i =

(80000000, 80000000, 80000000, 80000000). Moreover, the MSB of the second,
third, and fourth variables of Hi must be equal. Hereafter, we denote this differ-
ence (including two conditions of Hi) by ΔMSB. To satisfy the characteristic, 46
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conditions shown below must be satisfied: Qj−1,31 = Qj−2,31 (2 ≤ j ≤ 15), Qj,31

= Qj−1,31 (16 ≤ j ≤ 31), Qj,31 = Qj−2,31 (48 ≤ j ≤ 63).

3 Improved Single-Key Attacks on HMAC-MD5

3.1 Previous Distinguishing-H Attack on HMAC-MD5

Wang et al. presented the distinguishing-H attack on HMAC-MD5 [32], which
can also recover the internal-state value. The attack aims to detect a 2-block
message where ΔMSB is generated by the birthday paradox in the first block
and the second block forms the dBB-collision [34]. The procedure is as follows.

1. Prepare 289 distinct M0 and a single message block M1. Then, make queries
of 289 two-block messages M0‖M1, and collect collisions of tags.

2. For each collision (M0‖M1,M
′
0‖M1), replace M1 with different M ′

1, and query
(M0‖M ′

1,M
′
0‖M ′

1). If a collision of the tag is obtained, the pair is not a dBB-
collision and is erased.

3. For the remaining collisions, choose up to 247 distinct values of M ′
1, and query

(M0‖M ′
1,M

′
0‖M ′

1). If a collision is obtained, the pair is a dBB-collision.

22∗89−1 = 2177 pairs are generated at step 1. We expect a pair (M0‖M1,M
′
0‖M1)

such that the internal state after the first block denoted by H1 and H ′
1 satisfy

ΔMSB (with probability 2−130; 2−128 for the difference and 2−2 for the MSB
values) and the second block follows the dBB-differential characteristic (with
probability 2−46). The other collisions are either collisions after the first block,
i.e., H1 = H ′

1 (249 pairs), or random collisions after the second block, i.e., ΔH1 /∈
{0,ΔMSB} (250 pairs). At step 2, collisions of H1 = H ′

1 are erased and at step
3, a dBB-collision can be identified. Step 1 requires 289 queries, table lookups,
and memory. Step 2 requires (1 + 249 + 250) · 2 ≈ 251.58 queries. Step 3 requires
(1 + 250) · 247 ≈ 297 queries. Thus, step 3 dominates the entire cost.

Wang et al. also tweaked their attack to a chosen message attack. Firstly
choose 266 distinct M0. Secondly build a structure of 266 two-block messages
M0‖M1 by choosing a random message M1. Then build 247 such structures
by choosing 247 distinct M1. Thirdly, query each structure and collect colli-
sions of the tag. Finally, for each collision (M0‖M1,M

′
0‖M1), check the sit-

uation for the other 247 − 1 M1. If there exists at least one M ′
1 such that

(M0‖M ′
1,M

′
0‖M ′

1) do not collide, which implies H1 �= H ′
1, and exists another M ′′

1

such that (M0‖M ′′
1 ,M ′

0‖M ′′
1 ) collides, then (M0‖M1,M

′
0‖M1) is a dBB-collision.

The attack requires 266+47 = 2113 queries, while the memory is reduced to 266.

Distinguishing-H Attack. Let MD5r be a hash function where the compres-
sion function of MD5 is replaced with a random function with the same domain
and range. This implies that the domain extension and the padding algorithm
for MD5r are the same as the ones of MD5. The distinguishing-H attack aims
to decide whether a given oracle is HMAC-MD5 or HMAC-MD5r. Wang et al.
applied their attack to the given oracle. If a dBB-collision is found, they decide
that the given oracle is HMAC-MD5. Otherwise, the oracle is HMAC-MD5r.
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Internal-State Recovery Attack. After a dBB-collision (M0‖M1,M
′
0‖M1)

is obtained, Wang et al. apply the technique proposed by Contini and Yin [26]
to recover the chaining variables Q7‖Q8‖Q9‖Q10 of h(H1,M1). Then H1 will be
recovered by an inverse computation. For a completed description we refer to [26].
The complexity of recovering H1 is only 244 queries and 260 computations. The
procedure of recovering H1 is an adaptive chosen message attack. Thus the whole
attack is an adaptive chosen message attack with a complexity of 297 queries.

3.2 Improved Attacks on HMAC-MD5

We observe that the complexity of the core part i.e., finding a dBB-collision
can be improved by applying the technique in [26]. In order to verify whether a
collision (M0‖M1,M

′
0‖M1) is a dBB-collision at step 3, Wang et al. chooses 247

completely different values as M ′
1 to generate a second pair following the dBB-

characteristic. Our idea is generating many M ′
1 by modifying M1 only partially

so that the differential characteristic for the first several steps remains satisfied.
We focus on the computations of h(H1,M1) and h(H ′

1,M1). Recall the MD5
specification. M1 is divided into m0‖m1‖ · · · ‖m15 and mi is used at step i in the
first 16 steps. Our strategy is only modifying message words that appear later.
Note that one bit of m13 and the entire bits of m14 and m15 are fixed to the
padding string and thus cannot be modified. So we modify m12 and 31 bits of m13

to generate distinct m′
12‖m′

13. Therefore, if (M0‖M1,M
′
0‖M1) is a dBB-collision,

the modified pair can always satisfy the conditions for the first 12 steps. Thus
we only need to generate 235(=47−12) pairs at step 3. The complexity of step 3
is now reduced to (1 + 250) · 235 ≈ 285 queries. Finally, the query complexity is
improved from the previous 297 to the sum of 289 for step 1 and 285 for step
3, which is 289.09. Time and memory complexities remain unchanged (289). The
success probability is around 0.87, following the similar evaluation in [32].

Our idea can also improve the previous non-adaptive chosen message attack.
We prepare 266+x (0 ≤ x ≤ 6) distinct values for M0. We can make 2131+2x pairs
of M0‖M1 for a fixed M1. ΔH1 satisfies ΔMSB with probability 2−130, and we
need 2131 pairs to observe this event with a good probability. Therefore, with
2131+2x pairs, one pair should satisfy ΔMSB at H1 and conditions for the first
2x steps in the second block. Then, M1 is partially modified. We choose 247−2x

distinct M1 differing in the words m2x and m2x+1, and build 247−2x structures.
Then, the above conditions are satisfied in any structure. Finally we find about
two collisions (M0‖M1,M

′
0‖M1) and (M0‖M ′

1,M
′
0‖M ′

1), where H1 �= H ′
1 holds,

i.e., there exists at least one M ′′
1 such that (M0‖M ′′

1 ,M ′
0‖M ′′

1 ) do not collide.
The complexity is 2113−x queries and the memory is 266+x, where 0 ≤ x ≤ 6.

4 Key Recovery Attacks on Sandwich-MAC-MD5

4.1 Attacks on Sandwich-MAC-MD5 Basic

We show the attack for a key K with |K| < 447, which indicates that K‖pad3
fits in one block. The attack can recover all bits of K‖pad3 and the value of pad3
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Fig. 3. Attack structure for Sandwich-
MAC-MD5

Fig. 4. dBB-near-collisions

depends on |K|. Hence the attacker does not have to know |K| in advance. Also
note that the value of pad3 is determined as the MD-strengthening defined in
MD5, whereas the Sandwich-MAC can principally accept any padding scheme
but the same padding as pad1. Our attack can be extended for any padding
scheme as long as K‖pad3 fits in one block. Hereafter, we denote a 512-bit value
K‖pad3 by sixteen 32-bit values k0‖k1‖ · · · ‖k15, and aim to recover these values.

Overview. The attack is divided into 5 phases. The structure is shown in Fig. 3

1. Apply the internal state recovery attack in Sect. 3.2 to Sandwich-MAC to
obtain the first message block M0 and the corresponding internal state H1.

2. For the second message block, search for 277 message pairs (M1,M
′
1) such that

ΔH2 = h(H1,M1‖pad2) ⊕ h(H1,M
′
1‖pad2) = ΔMSB. Because H1 is already

recovered, the computation can be done offline.
3. Query 277 2-block message pairs (M0‖M1,M0‖M ′

1), and pick the ones which
produce dBB-near-collisions at the tag τ . A pair forms a dBB-near-collision
with a probability 2−45. Hence, we will obtain 277−45 = 232 pairs.

4. From 232 pairs, recover the 32-bit subkey for the last step by exploiting a
conditional key-dependent distribution.

5. As with phase 4, recover 512-bit key during the last 16 steps.

Phase 1: Internal State Recovery. The same procedure as the internal state
recovery for HMAC-MD5 can be applied. Strictly speaking, the procedure can
be optimized for Sandwich-MAC. Recall that our method in Sect. 3.2 could not
modify m14 and m15 because they are fixed for the padding. In Sandwich-MAC,
pad2 forces only 1 bit to be fixed, and thus we can modify m14 and 31 bits of
m15. This reduces the number of queries from 289 + 285 to 289 + 284 ≈ 289.04.
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Phase 2: Generating (M1, M ′
1) Producing ΔMSB. This phase is offline

without queries. For any underlying hash function, 277 message pairs (M1,M
′
1)

can be found by the birthday attack with 2104 computations and memory. For
MD5, the attack can be optimized. With the help of the collision attack tech-
niques [35,36], Sasaki et al. proposed a tool called IV Bridge [21], which is a
message difference producing the output difference ΔHi+1 = ΔMSB from the
input difference ΔHi = 0 with a complexity of 242. The complexity was later
improved by Xie and Feng to 210 [37]. With the IV Bridge, message pairs can
be found much faster than the birthday attack. Note that both characteristics
in [21,37] assume that Hi is MD5’s IV. Therefore, if IV is replaced with another
H1, the differential characteristic search must be performed again. Because the
known automated differential characteristic search [37–39] can deal with any IV,
a new characteristic will be found in the same manner. Also note that if the
padding string pad2 forces many bits to be fixed, the IV Bridge search becomes
harder or impossible due to the hardness of applying the message modification
[36]. Because pad2 forces only 1 bit to be fixed, this is not a problem. The com-
plexity for this phase is one execution of the differential characteristic search
and 210 · 277 = 287 computations. The memory can be saved by running phase 3
as soon as we obtain each pair.

Phase 3: Detecting dBB-Near-Collisions. For the last message block, the
probability that a pair produces the dBB-collision is 2−46. We observe that
producing collisions is not necessary because the attacker can observe the output
values as a tag τ . Hence, the dBB-collision can be relaxed to the dBB-near-
collision, and this increases the probability of the differential characteristic.

Considering the details for phase 4, the pair must follow the dBB-collision
characteristic up to step 62. The differential propagation for the last 2 steps is
depicted in Fig. 4. One condition in step 63 is erased, and the probability of the
characteristic becomes 2−45. After examining 277 pairs, we obtain 277−45 = 232

pairs. This phase requires 277 queries, and the memory to store 232 pairs.
Note that false positives are unlikely. Our dBB-near-collisions do not produce

any difference in the left most and right most words. Besides, the difference for
the second right most word is limited to 2 patterns. The probability for randomly
satisfying the dBB-near-collision is 2−95, which is unlikely with 277 trials.

Phase 4: Recovering the Last Subkey. Because both tags and H2 are
known, the attacker can compute Q61‖Q64‖Q63‖Q62 for each dBB-near-collision.
We then analyze the last step. The equation to compute Q64 is Q64 = Q63 +
(Q60 + Φ63(Q63, Q62, Q61) + k9 + c63) ≪ 21. The value of (Q64 ≫ 21) − Q63 −
Φ63(Q63, Q62, Q61) − c63 can be computed with known values of Q61‖Q64‖Q63‖
Q62. We denote this value by Z63. Then, the equation becomes Z63 = Q60 + k9.

We then observe that the attacker can know the MSB of Q60 from the dif-
ference of Q63. The difference ΔQ63 = ±231 indicates that ΔΦ62 = ±231. This
only occurs when Q62,31 = Q60,31. The difference ΔQ63 = ±231 ± 214 indicates
that ΔΦ62 = 0. This only occurs when Q62,31 �= Q60,31. Because the value of
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Fig. 5. Recovering κ31 and κ30. Known
bits are in bold squares.

Fig. 6. Recovering κ29 to κ0. Known
bits are in bold squares.

Q62 is known, the value of Q60,31 can be computed. In the following, we show
how to recover k9 with exploiting a conditional key-dependent distribution.

Conditional Key-dependent Distribution Technique: Let us con-
sider a modular addition α + κ = β; α is a variable where 1 bit (MSB)
is known but the other bits are unknown. κ is an unknown constant. β is
a public variable computed by α + κ, and its value is known. Then, the
attacker can recover all bits of κ by collecting many pairs (β, αx−1).1

The attacker separates the collected data into two groups depending on
a condition on several bits of β. For each separated group, behavior of
the other unconditioned bits is analyzed, i.e., conditional distribution is
analyzed. If the conditional distribution differs depending on some bits
of κ, those bits can be recovered by observing the conditional distribution.

The details of the modular addition computation is shown in Fig. 5. We denote
the carry value from bit position B to B + 1 by c+B+1, e.g. the carry value to
the MSB is c+31. Because α31 and β31 are known, the 1-bit relation of c+31 ⊕ κ31

denoted by R can be computed by R = α31 ⊕ β31.
At first, we recover κ31 and κ30. We separate the data into two groups by

the condition β30 = 0 or 1, i.e., a group satisfying β30 = 0 and a group satisfying
β30 = 1. For the group with β30 = 0, the distribution of other bits differs
depending on the value of κ30.

- If κ30 = 0, c+31 is 0 with probability 1/2 and is 1 with probability 1/2. This
is because β30 = κ30 = 0 occurs only if α30 = c+30 = 0 (with c+31 = 0) or
α30 = c+30 = 1 (with c+31 = 1).

- If κ30 = 1, c+31 is 1 with probability 1.

To utilize this difference, for each data in the group with β30 = 0, we simulate
the value of κ31 by assuming that c+31 is 1. If κ30 = 0, the simulation returns the
right value and wrong value of κ31 with a probability of 1/2. Therefore, we will
obtain 2 possibilities of κ31. If κ30 = 1, the simulation always returns the right
1 As a tool, the technique can be generalized more. If the B-th bit of α is known

instead of the MSB, from the LSB to the B-th bit of κ can be recovered.
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value of κ31. Therefore, we can obtain the unique (right) value of κ31. Due to
the difference, we can recover κ30, and at the same time, recover κ31.

We can do the same for the group with β30 = 1.

- If κ30 = 0, c+31 is 0 with probability 1.
- If κ30 = 1, c+31 is 0 with probability 1/2 and is 1 with probability 1/2.

For each data in the group with β30 = 1, we simulate the value of κ31 by assuming
that c+31 is 0, and check the number of returned values of the simulation.

We then recover κ29 to κ0 in this order. In this time, we filter the data rather
than separate it. In order to recover κB , where 29 ≥ B ≥ 0, we set (31 − B)-bit
conditions, and only pick the data satisfying all conditions. The conditions are
(κ30 = β30), . . . , (κB+1 = βB+1), and (c+31 = βB). Note that κ31,30,...,B+1 are
already recovered and c+31 can be easily computed by α31 ⊕ κ31 ⊕ β31. Let x be
the value of c+31, where x ∈ {0, 1}. Then, we can deduce that the value of κB is
x. The proof is shown below, and is described in Fig. 6.

Proof. The value of βB is x by the condition c+31 = βB . From the condition
κ30 = β30, the values of α30 and c+30 are also known to be x. By iterating the
same analysis from bit position 30 to B + 1, the values of αB+1 and c+B+1 are
known to be x. The event c+B+1 = βB = 0 only occurs when κB = 0. Similarly,
the event c+B+1 = βB = 1 only occurs when κB = 1. 
�

The number of necessary pairs to recover all bits of κ is dominated by the
recovery for κ0, which is 231 pairs. To increase the success probability, we gen-
erate 232 pairs. Note that these pairs can also be used to analyze the other
bits.

By replacing (α, κ, β) with (Q60, k9, Z63), k9 is recovered with 232 dBB-near-
collisions. If a high success probability is required, more pairs than 232 should
be collected. See Appendix A for more discussion.

Note that recovering κ with exhaustive search instead of the conditional
key-dependent distribution is possible but inefficient. The attempt is as follows.
Guess κ, and then compute α by β − κ. The known 1-bit α31 takes a role of the
filtering function. During the computation of β −κ, the probability that flipping
κ0 changes the value of α31 (through the carry effect) is 2−31. If we collect 232

pairs of (β, αx−1) and guess 32 bits of κ, all wrong guesses can be filtered out.
However, this requires 264 additions, which is worse than our attack.

Phase 5: Recovering 512-Bit Key in the Last 16 Steps. This phase is
basically the iteration of phase 4. After k9 is recovered, the tag value can be
computed until step 63 in backward, and the same analysis as k9 can be applied
to the second last step to recover k2. By iterating this for the last 16 steps, the
original key K and the padding string pad3 are recovered. The number of dBB-
near-collisions that we can use will increase as we recover more subkeys. This is
because the probabilistic part of the differential characteristic will be shorter.
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Attack Evaluation. Phase 1 requires 289.04 queries, 289 table look-ups, and
a memory for 289 states. Phase 2 requires 210 · 277 = 287 compression function
computations. Phase 3 queries 277 2-block paired messages. It also requires to
store 232 pairs of H2 and H ′

2, which requires a memory for 233 states. Phase 4
requires 232·1/64 = 226 computations. Phase 5 requires 15·232·16/64 which is less
than 234 computations. Hence, the dominant part is the internal state recovery
attack for Phase 1. Our experiment in Appendix A suggests that generating
more pairs at Phase 2 is better to obtain a high success probability. Then, the
complexity for Phase 2 becomes 288 or 289 compression functions. The attack
works without knowing |K| as long as |K| < 447. The length of the queried
message can always be a multiple of the block size. Hence, the attack can be
extended to Sandwich-MAC variant B.

4.2 Attacks on Sandwich-MAC-MD5 Extended B

For this variant, the last message block can contain several bits chosen by the
attacker. This reduces the complexity of the key recovery phase. Although the
bottleneck of the attack is the internal state recovery phase, we show the attacks
from two viewpoints. (1) We show the security gap between extended B and
Basic. Although they have the the same provable security, the attack is easier
in extended B. (2) In practice, K may be stored in a tamper-resistant device to
prevent the side-channel analysis. However, the internal state value may not be
protected, and the bottleneck of the attack may become the key-recovery part.

The range of |K| in extended B is |K| < 446 because pad3 for MD5 is 65 bits
minimum and one extra bit ‘1’ is appended right after K. Although the attack
strategy and the complexity depend on |K|, the initial part of the attack is the
same. Due to the message block structure K‖1‖M1‖pad3 and the MD5 message
expansion π(·), the first steps of the compression function are updated by K. We
call these steps keyed steps. The following steps are updated by the controlled
message or the padding string until step 16. For example, if |K| is 128, the first
4 steps are the keyed steps. The initial part of the attack is as follows.

1. Recover the internal state value H1 by applying the internal state recovery
attack in Sect. 3.2 or some side-channel analysis.

2. Searching for #X ·245 message pairs (M1,M
′
1) such that ΔH2 = ΔMSB, where

#X depends on |K|. Query them to obtain #X dBB-near-collisions.
3. Recover the internal state value right after the keyed steps by using the free-

dom degrees of M2 with the approach by Contini and Yin [26].

Phase 2 requires about #X ·245 ·210 computations and #X ·245 queries. Phase 3
requires about #X · 247 queries. We then recover K with the recovered internal
state value right after the keyed steps. The attack strategy depends on |K|.

Case Study for |K| = 128. Because the tag size is 128 bits, |K| = 128 is a
natural choice. We choose #X = 1 for this case. In the last block, the value of
H2 = Q−3‖Q0‖Q−1‖Q−2 is known. After phase 3, the value of Q1‖Q4‖Q3‖Q2
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Fig. 7. MitM procedure for |K| = 224. Fig. 8. MitM procedure for |K| = 352.

becomes known. Then, all of k0, k1, k2, and k3 are easily recovered by solving the
equation of the step function, e.g. k0 is recovered by k0 =

(
(Q1 − Q0) ≫ 7

) −
Q−3−Φ0(Q0, Q−1, Q−2)−c0. Other keys are also recovered with 1 computation.

Case Study for |K| = 224. K is divided into 7 words k0, . . . , k6. In the last
block, the values for Q−3‖Q0‖Q−1‖Q−2 and Q4‖Q7‖Q6‖Q5 are known after
phase 3. To recover k0, . . . , k6, we use the meet-in-the-middle (MitM) attack
[40,41]. Particularly, all subkey recovery attacks [42] can be applied directly.
The attack structure is depicted in Fig. 7. For each of the forward and backward
chunks, the attacker guesses 64 key bits. The results from two chunks can match
without computing 3 middle steps with the partial-matching [43]. To reduce
the key space into a sufficiently small size, 4 pairs of Q−3‖Q0‖Q−1‖Q−2 and
Q4‖Q7‖Q6‖Q5 are required. Hence, we set #X = 4. The attack complexity is
about 4 · 264 = 266.

Case Study for |K| = 352. K is divided into 11 words k0, . . . , k10. The
attack structure is depicted in Fig. 8. For each chunk, 16 key bits are additionally
guessed (all bits of k0, k1, k9, k10 and 16 bits of k2, k8). This increases the number
of skipped steps from 3 to 7 with the partial-fixing [44] or the indirect partial-
matching [45]. To reduce the key space, we use 10 pairs of Q−3‖Q0‖Q−1‖Q−2 and
Q8‖Q11‖Q10‖Q9, thus #X = 10. The complexity for the attack is about 10·280 <
284. After k0, k1, k9, k10 and 16 bits of k2, k8 are recovered, the remaining 192
bits can be recovered by iterating the MitM attack. Note that if |K| > 352, the
attack becomes worse than the one in Sect 4.1.
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5 Discussion About HMAC and Sandwich-MAC

The compression function takes two information as input; previous chaining
variable and message. For block-cipher based compression functions including
the MD4-family, these correspond to the key input and plaintext input. Matyas-
Meyer-Oseas (MMO) mode [46, Algorithm 9.41] takes the previous chaining vari-
able as the key input and Davies-Meyer (DM) mode [46, Algorithm 9.42] takes it
as the message input. The main difference between HMAC and Sandwich-MAC
is the structure of the finalization (computation after M is processed by the MD
structure). HMAC adopts the MMO mode while Sandwich-MAC adopts the
Davies-Meyer DM mode. Our attack shows that the (outer-)key can be recov-
ered if both modes in the MD structure and the finalization are the DM-mode
and a differential characteristic (ΔHi �= 0,ΔM = 0,ΔHi+1 = 0) exists in h. The
attack can also work if both modes are the MMO-mode. In summary, to mini-
mize the risk, using different modes for the MD structure and the finalization is
preferable. On the other hand, Okeya showed that, among 12 secure PGV modes
[47], using the MMO-mode in the finalization is the only choice to protect the
outer-key from the side-channel analysis [48,49]. Taking into account our results,
Okeya’s results, and the fact that most of hash functions in practice adopt the
DM-mode, we can learn that the HMAC construction is best.

The padding rule can impact the attack complexity. If the MD-strengthening
is adopted as pad2 of Sandwich-MAC, the number of attacker’s controlling bits
decreases. This prevents the IV Bridge and makes the attack less efficient.

There are some gaps between the hardness of the attack and the provable
security. From the provable security viewpoint, the choice of the padding scheme
and the choice of HMAC, Sandwich-MAC Basic, variant B, and extended B are
not very different. However, once the assumption for the proof (PRF of h) is
broken, these choices make a significant difference. Hence, this is a trade-off
between security and performance depending on how the assumption is trusted.
These differences should be taken into account when a system is designed. We
never conclude that Sandwich-MAC extended B is a bad idea. Reducing the
amount of meaningless padding bits is very nice especially for tree hashing,
where the hash value is computed with several hash function calls and thus the
amount of the padding bits is bigger than the sequential hashing. Our point is
that the damage of the scheme when the assumption is broken is usually not
discussed, but it deserves the careful attention because industry continues using
broken hash functions such as MD5 for long time.

In general, the impact of a differential attack on h for applications is unclear.
Wang et al. showed the characteristic with Pr[h(Hi,M) = h(H ′

i,M)] > 2n/2

can mount the distinguishing-H attack against HMAC [32]. We extend it to the
key-recovery on Sandwich-MAC. Finding such a conversion is an open problem.

6 Applications to MD5-MAC

MD5-MAC is an instantiation of the message authentication code MDx-MAC
proposed by Preneel and van Oorschot [4] based on the hash function MD5.
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MD5-MAC takes a single 128-bit key K as input, which is expanded to three
128-bit subkeys K0, K1 and K2 as Ki = MD5(K‖Ui‖K), 0 ≤ i ≤ 2; where
MD5 is the MD5 algorithm without the padding, and Ui with 0 ≤ i ≤ 2 is
a public constant. K0 is used to replace the public initial value (IV) of MD5,
and transforms the public function MD5(IV,M) into a keyed hash function
MD5(K0,M). K1 is used inside the MD5 compression function. More precisely,
K1 is split into four 32-bit substrings K1[i] (0 ≤ i ≤ 3), and K1[i] is added
to the constants used in round i of the MD5 compression function in modulo
232. We denote MD5 with K1 inside the compression function and without the
padding by MD5K1 . Then K2 is expanded to a full block K2, namely 512-bit
long, as K2 = K2‖(K2 ⊕ T0)‖(K2 ⊕ T1)‖(K2 ⊕ T2) where Ti with 0 ≤ i ≤ 2 is a
public constant. Let M be an input message and pad be the padding algorithm
of MD5. Then, MD5-MAC is computed as below:

MD5-MACK(M) = MD5K1(K0, pad(M)‖K2).

Previous Attacks. Wang et al. proposed a partial key-recovery attack on MD5-
MAC [32], which recovers a 128-bit key K1 with about 297 MAC queries and
261.58 offline computations. Their attack [32] is divided into three phases.

1. Generate 3 dBB-collisions of the form (M0‖M1) and (M ′
0‖M1).

2. Recover 95 bits of Q1, Q2, Q3, Q4, Q5 and 90 bits of Q6, Q7, Q8, Q9, Q10 with
the method proposed by Contini and Yin [26].

3. Recover K1[0]. Then recover K1[1],K1[2], and K1[3].

The first phase requires 297 queries. The second phase requires (95 + 90) · 247 ≈
254.53 queries. To recover K1[0] in the third phase, the step function equation
is solved by guessing unknown 65 bits of (Q1, Q2, Q3, Q4, Q5). For each guess,
the following 5 steps are computed and check the match with already recovered
90 bits of (Q6, Q7, Q8, Q9, Q10). Hence, this requires 265 · 6/64 ≈ 261.58 MD5
computations. K1[1],K1[2], and K1[3] are recovered with the divide-and-conquer
approach. Hence the cost to recover each key is several iterations of 232 guesses.
Overall, the dominant part of the attack is finding dBB-collisions. Note that the
attack cannot recover any information about K0 and K2.

Improved Key Recovery for K1. Because the dominant part of the attack is
finding 3 dBB-collisions, the attack can be improved with our improved proce-
dure on HMAC-MD5 in Sect. 3. The application is straight-forward and thus we
omit the details. The attack cost becomes 289.09 queries and 289 table lookups.

Extended Key Recovery for K2. Once K1 is recovered, the MAC compu-
tation structure becomes essentially the same as the one for Sandwich-MAC
Basic with MD5. Because our attack on Sandwich-MAC-MD5 can recover 512-
bit secret information of the last message block faster than 2128 queries and
computations, a 512-bit key K2 can be recovered with exactly the same proce-
dure as the one for Sandwich-MAC-MD5. The bottleneck of the attack is still
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finding dBB-collisions, which requires 289.04 queries and 289 table lookups. We
emphasize that this is the first result which can recover K2 of MD5-MAC.

7 Concluding Remarks

In this paper, we first improved the distinguishing-H attacks on HMAC-MD5.
We then proposed the key-recovery attack on Sandwich-MAC-MD5 by combin-
ing various techniques. In particular, we generalized the key-recovery technique
exploiting the conditional key-dependent distributions. As a result, we achieved
the first results that can recover the original-key against a hybrid MAC with
an appropriate padding. Our results also improved the previous key-recovery
attack on MD5-MAC, and extended the recovered key to both of K1 and K2.
We believe our results lead to a better understanding of the MAC construction.

A Testing Conditional Key-Dependent Distributions

We implemented the key recovery procedure with the conditional key-dependent
distributions. The first experiment verifies the key recovery procedure for κ31 and
κ30. The second experiment verifies the key recovery procedure for κ29 to κ0.

To recover κ31 and κ30, we first observe whether the simulated value of κ31

is always the same or not for the group with β30 = 0. We then observe the
same thing for the group with β30 = 1. If κ30 = 0 (resp. κ30 = 1), two values
are returned from the group with β30 = 0 (resp. β30 = 1) and only one value
is returned from the group with β30 = 1 (β30 = 0). κ30 is recovered after two
values are returned from one of two groups. If the number of data is small, the
simulation may return only one value. This occurs probabilistically.

Let D be the number of available data. In our experiment, we first fix the
value of κ. We then choose α D times from a uniformly distributed space, and
compute β = κ + α for each α. Then, we run the key recovery algorithm and
check κ30 is recovered or not i.e., one group returns two values. Finally, we iterate
this procedure 100,000 times and count how many times κ30 is recovered. The
results are shown in Table 2. From Table 2, collecting 210 data seems enough to
recover κ31 and κ30 with a high probability. Because our attack generates 232

dBB-near-collisions, recovering κ30 and κ31 succeeds with probability almost 1.
To recover κ29 to κ0, we search for a data satisfying all conditions. Because

the recovery procedure is almost the same for different bit positions, we do the
experiment only for recovering the 8 bits, κ29 to κ22. The experiment success-
fully recovers the key as long as sufficient data is available. We performed the
key recovery procedure 1,000 times by changing the number of data D. The
number of successes is listed in Table 3. Underlined values show the data for
the theoretical evaluation. We can see that the theoretical evaluation has a low
success probability. In our attack, we generate 232 data for recovering κ0, which
is a double of the theoretical evaluation. From Table 3, the probability that κ0

is successfully recovered is expected to be about 55 %. Moreover, the success
probability of recovering κ1 is about 75 %, κ2 is about 87 %, κ3 is about 94 %,
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Table 2. Experiment for the recovery procedure of κ31 and κ30.

D #Success Success prob. (%)

2 8368 8.4
4 28673 28.7
8 56067 56.1
16 76510 76.5
32 87970 88.0
64 93743 93.7
128 96955 97.0
256 98465 98.5
512 99216 99.2

Table 3. Experiment for the recovery procedure of κ29 to κ22.

Target D
bit 2 4 8 16 32 64 128 256 512 1024

κ29 238 378 598 768 891 928 975 978 989 995
κ28 116 202 374 559 751 886 953 973 989 987
κ27 58 122 214 360 539 721 878 935 969 980
κ26 15 58 101 195 361 587 731 871 952 969
κ25 10 28 50 118 212 381 557 774 862 944
κ24 4 20 36 70 122 208 370 566 760 875
κ23 2 7 10 28 64 119 199 380 552 752
κ22 4 2 8 12 31 60 104 211 373 573

and so on. If the expected value is calculated, 2.25 candidates, which is about
21.18, candidates of κ will remain after the analysis of 232 pairs. We can use
the exhaustive search to reduce these space. At phase 5 of the procedure, the
analysis with 232 data is iterated 16 times, and thus the remaining space will be
21.18∗16 = 218.88. Of course, by generating more pairs than 232 at phases 2 and
3, the success probability of recovering κ can be close to 1.
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