
Two Attacks on a White-Box AES
Implementation

Tancrède Lepoint1,2, Matthieu Rivain1, Yoni De Mulder3(B),
Peter Roelse4, and Bart Preneel3

1 CryptoExperts, Paris, France
{tancrede.lepoint,matthieu.rivain}@cryptoexperts.com

2 École Normale Supérieure, Paris, France
3 KU Leuven and iMinds, Heverlee, Belgium

{yoni.demulder,bart.preneel}@esat.kuleuven.be
4 Irdeto B.V., Hoofddorp, The Netherlands

peter.roelse@irdeto.com

Abstract. White-box cryptography aims to protect the secret key of a
cipher in an environment in which an adversary has full access to the
implementation of the cipher and its execution environment. In 2002,
Chow, Eisen, Johnson and van Oorschot proposed a white-box imple-
mentation of AES. In 2004, Billet, Gilbert and Ech-Chatbi presented an
efficient attack (referred to as the BGE attack) on this implementation,
extracts extracting its embedded AES key with a work factor of 230. In
2012, Tolhuizen presented an improvement of the most time-consuming
phase of the BGE attack. The present paper includes three contribu-
tions. First we describe several improvements of the BGE attack. We
show that the overall work factor of the BGE attack is reduced to 222

when all improvements are implemented. This paper also presents a new
attack on the initial white-box implementation of Chow et al. This attack
exploits collisions occurring on internal variables of the implementation
and it achieves a work factor of 222. Eventually, we address the white-
box AES implementation presented by Karroumi in 2010 which aims to
withstand the BGE attack. We show that the implementations of Kar-
roumi and Chow et al. are the same, making them both vulnerable to
the same attacks.

Keywords: White-box cryptography · AES implementation · Dual
cipher · Cryptanalysis

1 Introduction

In 2002, Chow et al. introduced the concept of white-box cryptography by pre-
senting a white-box implementation of AES [5]. White-box cryptography aims to

The present paper is a merged abstract of two independent but overlapping works: a
paper by De Mulder, Roelse and Preneel [11] and a paper by Lepoint and Rivain [7].

T. Lange, K. Lauter, and P. Lisoněk (Eds.): SAC 2013, LNCS 8282, pp. 265–285, 2014.
DOI: 10.1007/978-3-662-43414-7 14, c© Springer-Verlag Berlin Heidelberg 2014



266 T. Lepoint et al.

protect the confidentiality of the secret key of a cipher in a white-box model, i.e.,
where an adversary is assumed to have full access to the implementation of the
cipher and its execution environment. For example, in a white-box context the
adversary can use tools such as decompilers and debuggers to reverse engineer
the implementation of the cipher, and to read and alter values of intermediate
results of the cipher during its execution. A typical example of an application
in which a cipher is implemented in a white-box environment is a content pro-
tection system in which a client is executed on the main processor of a PC, a
tablet, a mobile device, or a set-top box.

In 2004, Billet et al. [3] presented an attack on the white-box AES implemen-
tation of Chow et al.. The BGE attack assumes that the order of the bytes of the
intermediate AES results is randomized in the white-box implementation, and
extracts its embedded AES key with a work factor of 230. In 2012, Tolhuizen [12]
proposed an improvement to the most time-consuming phase of the BGE attack,
reducing the work factor of this phase to 219. If the improvement of Tolhuizen
is implemented, then the work factor of the BGE attack is dominated by the
other phases of the BGE attack, and equals 229. This paper presents several
improvements to the other phases of the BGE attack, and shows that the work
factor of the BGE attack is reduced to 222 when Tolhuizen’s improvement and
the improvements presented in this paper are implemented.

This paper also presents a new attack on the white-box implementation of
Chow et al. The key idea is to exploit collisions in output of the first round in
order to construct sparse linear systems. Solving these systems then reveals the
byte encodings and secret key byte(s) involved in some target look-up tables.
Applied to the original scheme, we get an attack of complexity 222.

The BGE attack triggered the design of new white-box AES implementations,
such as the ones proposed by Xiao and Lai in 2009 [13] and by Karroumi in
2010 [6]. In [10], De Mulder, Roelse and Preneel presented a cryptanalysis of Xiao
and Lai’s white-box AES implementation, showing that this implementation is
insecure.

In [6], Karroumi uses the concept of dual ciphers [1,2,4] and the white-
box techniques of Chow et al. to design a new white-box AES implementation.
In [6], Karroumi argues that the additional secrecy introduced by the dual cipher
increases the work factor of the BGE attack to 293. This paper shows that the
white-box AES implementations of Chow et al. and Karroumi are the same. As a
direct consequence, Karroumi’s white-box AES implementation is vulnerable to
the same attacks, including the original BGE attack and the attacks presented
in this paper.

Paper organization. Section 2 describes aspects of AES, the white-box AES
implementation of Chow et al., and the BGE attack that are relevant to this
paper. The improvements of the BGE attack and their work factor are pre-
sented in Sect. 3. The new attack based on collisions is presented in Sect. 4. The
insecurity of Karroumi’s scheme is shown in Sect. 5. Finally, concluding remarks
are provided in Sect. 6



Two Attacks on a White-Box AES Implementation 267

2 Preliminaries

2.1 AES

AES [8] is a key-iterated block cipher operating on 16-byte blocks. This paper
assumes throughout and without loss of generality that the AES variant in [8]
with a 128-bit key is used. AES consists of 10 rounds and has 11 round keys which
are derived from the secret key using a key scheduling process. Each AES round
and the operations within a round update a 16-byte state; the initial and final
state are the AES plaintext and ciphertext, respectively. AES can be described
elegantly by interpreting the bytes of the state as elements of the finite field
F256, and by defining AES operations as mappings over this field (see also [8]).
As the final round is not relevant for the discussion in this paper, only the first
9 rounds are considered in the following text. Each round r with 1 ≤ r ≤ 9
comprises four operations:

ShiftRows: a permutation on the indices of the 16 bytes of the state;
AddRoundKey: a byte-wise addition of 16 round key bytes k

(r,j)
i (0 ≤ i, j ≤ 3)

and the 16-byte state;
SubBytes: applies the AES S-box, denoted by S, to every byte of the 16-byte

state;
MixColumns: a linear operation on F16

256. The MixColumns operation is repre-
sented by a 4×4 matrix MC over F256; the linear operation applies 4 instances
of this matrix in parallel to the 16-byte state. The 16 coefficients of MC are
denoted by mcij for 0 ≤ i, j ≤ 3.

In literature, the boundaries between rounds are defined in different ways. In
this paper, ShiftRows and MixColumns are the first and final operations within
a round, respectively. That is, the order of the operations within a round is
identical to the order used to describe the operations above. For details about
AES, refer to [8].

AES Subrounds. The mappings in the following definition will be used to
describe the white-box AES implementations and the attacks on the implemen-
tations. In the following text, the finite field representation as defined in [8]
is referred to as the AES polynomial representation, and ⊕ and ⊗ denote the
addition and multiplication operations in this representation, respectively.

Definition 1. Let xi, yi ∈ F256 for 0 ≤ i ≤ 3 be represented using the AES
polynomial representation. The mapping AES(r,j) : F4

256 → F4
256 for 1 ≤ r ≤

9 and 0 ≤ j ≤ 3, called an AES subround, is defined by (y0, y1, y2, y3) =
AES(r,j)(x0, x1, x2, x3) with

yi = mci0 ⊗ S
(
x0 ⊕ k

(r,j)
0

)
⊕ mci1 ⊗ S

(
x1 ⊕ k

(r,j)
1

)
⊕

mci2 ⊗ S
(
x2 ⊕ k

(r,j)
2

)
⊕ mci3 ⊗ S

(
x3 ⊕ k

(r,j)
3

)
,

for 0 ≤ i ≤ 3.



268 T. Lepoint et al.

Observe that an AES subround consists of the key additions, the S-box opera-
tions and the MixColumns operations in an AES round that are associated with
a single MixColumns matrix operation, and that one AES round comprises four
AES subrounds. The subrounds are indexed by j in Definition 1, and this paper
assumes throughout that the four subrounds in a round are numbered left to
right. The bytes k

(r,j)
i for 0 ≤ i, j ≤ 3 are the 16 bytes of the AES round key of

round r.

2.2 Chow et al.’s White-Box AES Implementation and the BGE
Attack

This section describes aspects of Chow et al.’s white-box AES implementation [5]
and the BGE attack [3] that are relevant to this paper. For an in-depth tutorial
on how Chow et al.’s white-box AES implementation is constructed, refer to [9].

Encoded AES Subrounds. In the following text, P
(r,j)
i and Q

(r,j)
i for 0 ≤

i ≤ 3 denote bijective mappings on the vector space F8
2, referred to as encod-

ings in white-box cryptography. The encodings are generated randomly and are
kept secret in a white-box implementation (for details about encodings, refer
to [5,9]). A vector of four mappings, such as

(
P

(r,j)
0 , P

(r,j)
1 , P

(r,j)
2 , P

(r,j)
3

)
or

(
Q

(r,j)
0 , Q

(r,j)
1 , Q

(r,j)
2 , Q

(r,j)
3

)
, denotes the mapping defined by applying the i-th

element of the vector to its i-th input byte for 0 ≤ i ≤ 3. For a ∈ Fn
2 the mapping

⊕a : Fn
2 → Fn

2 denotes the addition with a. With slight abuse of notation, an
input to AES(r,j) is considered to be an element of F4

256 using the AES poly-
nomial representation in the following definition, and an output of AES(r,j) is
considered to be an element of (F8

2)
4.

Definition 2. The mapping AES
(r,j)
enc : (F8

2)
4 → (F8

2)
4 for 1 ≤ r ≤ 9 and 0 ≤

j ≤ 3, called an encoded AES subround, is defined by

AES(r,j)
enc = (Q(r,j)

0 , Q
(r,j)
1 , Q

(r,j)
2 , Q

(r,j)
3 ) ◦
AES(r,j) ◦ (P (r,j)

0 , P
(r,j)
1 , P

(r,j)
2 , P

(r,j)
3 ) .

In Chow et al.’s white-box AES implementation, the output encodings
Q

(r−1,j)
i and input encodings P

(r,j)
i for 0 ≤ i, j ≤ 3 of successive AES rounds are

pairwise annihilating to maintain the functionality of AES. The data-flow of the
white-box implementation between successive AES rounds r−1 and r determines
the 16 pairs of output/input encodings which are pairwise annihilating.

Remark 1. Although not explicitly mentioned by Chow et al. [5], one can use
a randomization of the order of the subrounds in an AES round and in the
order of the bytes within each subround to add confusion to the implementation.
This can be implemented without increasing the size and without decreasing the
performance of the white-box implementation. We capture such a randomization



Two Attacks on a White-Box AES Implementation 269

in the next definition of encoded subround where permutations Π
(r,j)
i : (F8

2)
4 →

(F8
2)

4 (i = 1, 2) for 1 ≤ r ≤ 9 and 0 ≤ j ≤ 3 are added to randomize the order of
the input bytes and output bytes of an AES subround. Moreover, permutations
π(r) : {0, 1, 2, 3} → {0, 1, 2, 3} for 1 ≤ r ≤ 9 randomize the order of the four AES
subrounds within an AES round. These permutations are randomly chosen and
kept secret in a white-box implementation.

Definition 3. The mapping AES
(r,j)

enc : (F8
2)

4 → (F8
2)

4 for 1 ≤ r ≤ 9 and 0 ≤
j ≤ 3, called an encoded AES subround with byte permutations, is defined by

AES
(r,j)

enc = (Q(r,j)
0 , Q

(r,j)
1 , Q

(r,j)
2 , Q

(r,j)
3 ) ◦

AES
(r,j) ◦ (P (r,j)

0 , P
(r,j)
1 , P

(r,j)
2 , P

(r,j)
3 ) ,

where the mapping AES
(r,j)

is defined by

Π
(r,j)
2 ◦ AES(r,π(r)(j)) ◦ Π

(r,j)
1 = MC(r,j) ◦ (S, S, S, S) ◦ ⊕

[k̄
(r,j)
i ]0≤i≤3

,

with [k̄(r,j)
i ]0≤i≤3 = (Π(r,j)

1 )−1
(
[k(r,π(r)(j))

i ]0≤i≤3

)

and MC(r,j) = Π
(r,j)
2 ◦ MC ◦ Π

(r,j)
1 .

In [3], Billet et al. described a cryptanalysis of Chow et al.’s white-box AES
implementation [5] with byte permutations and subround permutations. The
starting point of their attack is that for rounds 1 ≤ r ≤ 9, it is possible to
compose certain white-box look-up tables in such a way that an adversary has
access to the encoded AES subrounds of each round.

BGE Attack. As indicated above, the adversary has access to the encoded
AES subrounds AES

(r,j)

enc for 1 ≤ r ≤ 9 and 0 ≤ j ≤ 3. Next, the BGE attack [3]
comprises the following three phases: Phases 1 and 2 retrieve the bytes of the
AES round key associated with round r for some r with 2 ≤ r ≤ 9, and Phase 3
determines the correct order of the round key bytes and extracts the AES key.

Phase 1 retrieves the encodings Q
(r,j)
i (0 ≤ i ≤ 3) up to an affine part for each

encoded AES subround j (0 ≤ j ≤ 3). Because of the pairwise annihilating
property of the encodings between successive rounds, the encodings P

(r,j)
i (0 ≤

i, j ≤ 3) can be retrieved up to an affine part by applying the same technique to
the encoded AES subrounds of the previous round.

Phase 2 assumes that all encodings of an encoded AES round are affine mappings
(as the other parts have been retrieved in Phase 1). Phase 2 first retrieves the
affine encodings Q

(r,j)
i (0 ≤ i ≤ 3) for each encoded AES subround j (0 ≤ j ≤ 3).

During this process, the key-dependent affine mappings P̃
(r,j)
i (x) = P

(r,j)
i (x) ⊕

k̄
(r,j)
i (0 ≤ i, j ≤ 3) are obtained as well. As in Phase 1, the affine encodings

P
(r,j)
i (0 ≤ i, j ≤ 3) are retrieved by applying the same technique to the encoded



270 T. Lepoint et al.

AES subrounds of the previous round. This enables the adversary to compute
the round key bytes k̄

(r,j)
i = P̃

(r,j)
i (0) ⊕ P

(r,j)
i (0) for 0 ≤ i, j ≤ 3.

Phase 3 retrieves the round key bytes of round r+1 as discussed above in Phases
1 and 2, and uses the fact that the round key bytes of rounds r and r + 1 are
related to each other via both the data-flow of the white-box implementation
and the AES key scheduling algorithm to retrieve the AES round key. Finally,
assuming that the AES variant with a 128-bit key is used, the adversary can
use the property of the AES key scheduling algorithm that the AES key can be
computed if one of the round keys is known.

Work factor of the BGE attack. In [3], the authors claim that the work factor
associated with the three phases of the BGE attack is around 230. As a result,
the white-box AES implementation of Chow et al. is insecure. For detailed infor-
mation about the BGE attack, refer to [3].

3 Reducing the Work Factor of the BGE Attack

In this section, an encoded AES subround is defined as in Definition 3. In 2012,
Tolhuizen [12] presented an improvement of the first phase of the BGE attack.
If the improvement of Tolhuizen is implemented, then the work factor of the
BGE attack is dominated by the second phase. In this section we present several
improvements to the other phases of the BGE attack:

1. A method to reduce the expected work factor of Phase 2 of the BGE attack;
2. An efficient method to retrieve the round key bytes of round r + 1 after the

round key bytes of round r are extracted;
3. An efficient method to determine the correct order of the round key bytes,

given the round key bytes of two consecutive rounds.

As the work factors of Phases 1 and 2 of the BGE attack are reduced by Tol-
huizen’s improvement and the first improvement above, respectively, it is now
important to have an efficient method for Phase 3 of the BGE attack as well, as
otherwise the work factor of this phase could dominate the overall work factor.
The second and third improvements above comprise such a method for Phase 3.
It will be shown that Tolhuizen’s improvement to Phase 1 of the BGE attack and
the above improvements to the other phases reduce the work factor of the BGE
attack to 222. The improved BGE attack comprises the following four (instead
of three) phases:

Phases 1 and 2: Retrieve the Round Key Bytes k̄
(r,j)
i (0 ≤ i, j ≤ 3)

Associated with Round r (2 ≤ r ≤ 8)

The first two phases are the ones of the BGE attack [3] using Tolhuizen’s
improvement, and retrieve the round key bytes k̄

(r,j)
i for 0 ≤ i, j ≤ 3 associ-

ated with round r for some r with 2 ≤ r ≤ 8.



Two Attacks on a White-Box AES Implementation 271

Work factor of Phase 1. Tolhuizen’s improvement [12] reduces the work factor
of Phase 1 to around 2 · 4 · 4 · (35 · 28) < 219. The first three factors (i.e., 2 · 4 · 4)
denote the number of encodings involved in Phase 1, i.e., four encodings for each
of the four subrounds for each of the two consecutive rounds. The fourth factor
(i.e., 35 · 28) denotes the work factor required to retrieve one encoding up to an
affine part using Tolhuizen’s method.

Work factor of Phase 2. The expected work factor F of the second phase as
described in [3] equals approximately 2 · 4 · 4 · 215 · 28 = 228, and is measured in
the number of evaluations of mappings on F8

2. The evaluations are required to
determine if a mapping on F8

2 is affine. The mappings f that need to be tested
for being affine are listed in [3, Proposition 3]. Each f is associated with a secret
encoding P

(r,j)
i (0 ≤ i, j ≤ 3) of a round r. As Phase 2 needs to be applied to two

consecutive rounds, this involves a total of 2 · 4 · 4 mappings (which corresponds
to the first three factors in F ). The mappings f are permutations on F8

2 and
have the structure

f = S−1 ◦ Q−1
(c,d) ◦ Q ◦ S ◦ ⊕k ◦ P , (1)

where S denotes the AES S-box mapping (viewed as a permutation on F8
2), k

denotes a key byte, P and Q denote bijective affine mappings on F8
2, and Q−1

(c,d)

denotes a bijective affine mapping on F8
2 for each pair (c, d) ∈ F2

256. Furthermore,
Q−1

(c,d) = Q−1 for one specific pair (c, d) ∈ F2
256. An affine-test is performed for

each possible pair (c, d) ∈ F2
256 until the corresponding mapping f is affine. The

expected number of pairs for which the test is performed equals approximately
215, which is the fourth factor in F . The fifth factor in F , i.e., 28, is associated
with the test used in [3].

Instead of the test used in [3], which requires 2n evaluations to determine if
f : Fn

2 → Fn
2 is affine, we use the following algorithm to reduce the expected

number of evaluations. If ei (1 ≤ i ≤ n) denotes the i-th unit vector in Fn
2 , then

the algorithm first verifies if the equation

f(e1 ⊕ e2) = f(0) ⊕ f(e1) ⊕ f(e2) (2)

holds true. If this equation does not hold true, then the algorithm terminates
with “f is not affine”. Observe that the algorithm requires 4 evaluations of f in
this case. If Eq. 2 holds true, then the algorithm applies the method used in [3]
to determine if f is affine (with the only difference that f is not re-evaluated for
the four input values 0, e1, e2 and e1 ⊕ e2). In this case 2n evaluations of f are
required.

To show the correctness of this algorithm, it is sufficient to show that an
affine mapping always satisfies Eq. 2. If f is affine, then f(x) = A(x) ⊕ b for
some A ∈ Fn×n

2 and some b ∈ Fn
2 . It follows that f(0) ⊕ f(e1) ⊕ f(e2) =

b ⊕ A(e1) ⊕ b ⊕ A(e2) ⊕ b = A(e1 ⊕ e2) ⊕ b = f(e1 ⊕ e2).

Lemma 1. If f is a random permutation on Fn
2 and if E(n) denotes the expected

number of evaluations of f required by the algorithm described above, then
E(n) < 5.



272 T. Lepoint et al.

Proof. Let p(n) denote the probability that Eq. 2 holds true for a random per-
mutation. To determine p(n), note that f(0), f(e1), f(e2) and f(e1 ⊕ e2) are
four distinct elements of Fn

2 if f is a permutation. From this it follows that
f(0)⊕f(e1)⊕f(e2) and f(e1⊕e2) are both elements of Fn

2 \{f(0), f(e1), f(e2)}.
Further, as f is a random permutation, f(e1 ⊕ e2) is a random element of
this set. Hence, p(n) = 1/(2n − 3) and E(n) = 4(1 − p) + 2np = 4 + (2n −
4)/(2n − 3) < 5. �	

Under the assumption that f in Eq. 1 behaves as a random permutation on
F8

2 for every incorrect guess for (c, d), the expected work factor of the affine-test
is reduced from 28 to approximately 5 evaluations if f is not affine and the work
factor is 28 if f is affine. This implies that the fifth factor in F is reduced to
approximately 5. That is, the expected work factor of Phase 2 of the BGE attack
is now approximately 2 · 4 · 4 · 215 · 5 ≈ 222.

Phase 3: Retrieve the Round Key Bytes k̄
(r+1,j)
i (0 ≤ i, j ≤ 3)

Associated with Round r + 1

As mentioned in the description of the BGE attack in Sect. 2.2, [3] obtains the
round key bytes of round r + 1 by applying Phases 1 and 2 to round r + 1 as
well. Here, we present a more efficient method based on the affine-test described
above. The method comprises the following three steps for each encoded AES
subround j (0 ≤ j ≤ 3) associated with round r + 1 to retrieve the round key
bytes k̄

(r+1,j)
i (0 ≤ i, j ≤ 3):

Step 1 applies Phase 1 (using Tolhuizen’s improvement) to round r + 1 in order

to retrieve the encodings Q
(r+1,j)
i (0 ≤ i ≤ 3) up to an affine part.

Step 2 first removes the non-affine part of the output encodings as recovered
in Step 1 from the encoded AES subround. Next, Step 2 removes the input
encodings P

(r+1,j)
i (0 ≤ i ≤ 3) from the encoded AES subround (observe that

the inverses of these input encodings were obtained in Phases 1 and 2). The
resulting mapping f (r+1,j) : (F8

2)
4 → (F8

2)
4 is given by

f (r+1,j) =
(
Q̂

(r+1,j)
0 , Q̂

(r+1,j)
1 , Q̂

(r+1,j)
2 , Q̂

(r+1,j)
3

)
◦ AES

(r+1,j)
,

where Q̂
(r+1,j)
i (0 ≤ i ≤ 3) are affine output encodings.

Step 3 retrieves the round key bytes k̄
(r+1,j)
i (0 ≤ i ≤ 3). To find a key byte, say

k̄
(r+1,j)
0 , fix the other three input bytes to f (r+1,j) (e.g., to zero), search over all

possible 28 values of the key byte k and verify if

gk(x) = f (r+1,j)
(
k ⊕ S−1(x), 0, 0, 0

)

is affine using the test described above. In case gk(x) is affine, then k̄
(r+1,j)
0 = k.

Repeat this for k̄
(r+1,j)
i (i = 1, 2, 3).



Two Attacks on a White-Box AES Implementation 273

The correctness of Step 3 uses the fact that the mapping S
(
c ⊕ S−1(x)

)
is

non-affine for all non-zero values of c. This has already been proven in [3, proof
of Proposition 3].

Work factor of Phase 3. The work factor of Step 3 equals 4 ·4 ·27 ·5 ≈ 213, where
4 · 4 denotes the number of round key bytes, 27 denotes the expected number
of key values for which the affine-test is performed and 5 denotes the expected
number of evaluations of the affine-test if gk is not affine. The work factor of
Step 1 is 4 · 4 · (35 · 28) < 218, where the first two factors denote the number of
output encodings involved in Step 1. As a result, the work factor of Phase 3 is
dominated by Step 1 and is less than 218.

Phase 4: Determine the Correct Order of the Round Key Bytes and
Extract the Secret AES Key

After Phases 1–3, the values of the round key bytes of two consecutive rounds r
and r + 1 are known. However, for each round, the order of the round key bytes
of each subround and the order of the four subrounds are still unknown. Notice
that there are still (4!)5 ≈ 223 possibilities for the round key if only the bytes
of that round key are considered. In [3], it is indicated how the correct order
can be determined given the “shuffled” round key bytes of rounds r and r + 1.
However, [3] does not contain an explicit description of such a method. As the
work factor of the first three phases equals 222, it is desirable to have a method
to determine the correct order of the round key bytes with a work factor that is
less than 222. Below we present such a method, comprising the following three
steps:

Step 1 retrieves MC(r,j) associated with each subround j (0 ≤ j ≤ 3) of round r.

Recall that the encodings P
(r,j)
i and Q

(r,j)
i (0 ≤ i, j ≤ 3) were obtained in Phases

1 and 2. Together with the knowledge of the round key bytes k̄
(r,j)
i (0 ≤ i, j ≤ 3),

compute

MC(r,j) =
(
Q

(r,j)
0 ,Q

(r,j)
1 , Q

(r,j)
2 , Q

(r,j)
3

)−1 ◦ AES
(r,j)

enc ◦
(
P

(r,j)
0 , P

(r,j)
1 , P

(r,j)
2 , P

(r,j)
3

)−1 ◦ ⊕
[k̄

(r,j)
i ]0≤i≤3

◦ (S, S, S, S)−1 ,

for j = 0, 1, 2, 3.

Step 2 computes for each MC(r,j) (0 ≤ j ≤ 3) the permutations Π1,Π2 : (F8
2)

4 →
(F8

2)
4 such that

MC(r,j) = Π2 ◦ MC ◦ Π1 . (3)

Let (Π(1),Π(2)) denote the pairs of permutations for which MC remains invariant,
i.e., MC = Π(2) ◦ MC ◦ Π(1). It is easily verified that there are exactly four such
pairs. The four permutations Π(1) are the four different circular shifts on the
indices of a 4-byte vector, and Π(2) = (Π(1))−1 for each of these pairs. This
implies that there are also exactly four different pairs of permutations satisfying
Eq. 3, given by



274 T. Lepoint et al.

(
Π(1) ◦ Π1 , Π2 ◦ Π(2)

)
. (4)

As a consequence, finding one pair of permutation matrices satisfying Eq. 3 suf-
fices to find the remaining three as well. Notice that exactly one of these four
pairs of permutations equals the pair (Π(r,j)

1 ,Π
(r,j)
2 ) of the encoded subround

(see also Definition 3); in other words, one of these pairs is the correct pair.
After this, the order of the round key bytes associated with each subround

is known up to an uncertainty of four possibilities (circular shifts). Observe that
the order of the four subrounds is still unknown.

Step 3 determines the correct order of the round key bytes. For each of the
possible orderings of the four AES subrounds of round r and the round key
bytes within these subrounds (as determined in Step 2), obtain a candidate
for the (r + 1)th round key using the following two methods: (i) the AES key
scheduling algorithm and (ii) the data-flow of the white-box AES implementation
between the encoded subrounds of rounds r and r+1. Notice that once an order
of the round key bytes of round r is selected, the order of the round key bytes
of round r + 1 can be determined using the corresponding pair of permutations
of each of the subrounds of round r (see also Eq. 4) and the data-flow of the
white-box implementation. With overwhelming probability, only one ordering of
round key bytes of round r results in the same (r +1)th round key; this ordering
corresponds to the correct round key of round r. Finally, use the property of the
AES key scheduling algorithm that the AES key can be computed if one of the
round keys is known.

Work factor of Phase 4. A naive approach yields an expected work factor of
(4!)2 ≈ 29 for Step 2 by searching over all possible pairs of permutations. Step 2
reduces the number of possible orderings of the round key bytes from 223 to
44 · 4! < 213 (where the first and second factor denote the possible orderings of
round key bytes within each subround and of the four subrounds, respectively),
which equals the work factor of Step 3. As a result, the overall work factor of
Phase 4 is dominated by the work factor of Step 3 and hence is less than 213.

3.1 Conclusion

The work factor of the improved BGE attack is dominated by the work factor
of the second phase and equals 222.

Note that the uncertainty in the order of the round key bytes results in
the need to retrieve key bytes of two consecutive rounds. This affects the work
factor of the original BGE attack. In the improved BGE attack this is no longer
the case, as the work factors of the phases that determine the correct order
(i.e. Phases 3 and 4) are negligible compared to the work factor of Phase 2. A
consequence of Tolhuizen’s improvement is that the use of non-affine white-box
encodings has a negligible impact on the overall work factor of the improved
BGE attack.



Two Attacks on a White-Box AES Implementation 275

4 A New Attack Exploiting Internal Collisions

In this section we propose a new attack on the initial Chow et al. implementa-
tion exploiting collisions in output of the first AES round. Note that unlike the
BGE attack, the description below only considers the basic implementation, i.e.,
without byte permutations. In this section, an encoded AES subround is defined
as in Definition 2.

According to Sect. 2, applying a set of successive look-up tables, one can
compute the first encoded AES subround AES

(1,0)
enc , which is denoted by f ′ in

the following for the sake of clarity (and in accordance to notations in [7]):

f ′ = (Q(1,0)
0 , Q

(1,0)
1 , Q

(1,0)
2 , Q

(1,0)
3 )◦AES(1,0) ◦ (P (1,0)

0 , P
(1,0)
1 , P

(1,0)
2 , P

(1,0)
3 ) . (5)

Let us denote by f ′
� the coordinate functions of f ′ such that f ′ = (f ′

0, f
′
1, f

′
2, f

′
3).

Let us further denote by Si the function defined as

Si(·) = S(k(1,0)
i ⊕ (P (1,0)

i )(·)) , (6)

for 0 ≤ i ≤ 3.

4.1 Recovering the Si Functions

Our attack consists in finding collisions in output of the coordinate functions f ′
�

in order to recover functions S0, S1, S2 and S3 and associated key bytes. For
the sake of clarity, we drop all the surperscripts (1, 0) in the following. We start
with the recovery of S0 and S1 by looking for collision of the form

f ′
0(α, 0, 0, 0) = f ′

0(0, β, 0, 0) . (7)

By definition of the MixColumns transformation, the above equation can be
rewritten as

Q0

(
02 ⊗ S0(α) ⊕ 03 ⊗ S1(0) ⊕ c

)
= Q0

(
02 ⊗ S0(0) ⊕ 03 ⊗ S1(β) ⊕ c

)

where c = S2(0) ⊕ S3(0), implying

02 ⊗ S0(α) ⊕ 03 ⊗ S1(0) = 02 ⊗ S0(0) ⊕ 03 ⊗ S1(β) . (8)

Collecting several such equations, we can construct a linear system to recover
S0 and S1. Let u0, u1, . . . , u255 and v0, v1, . . . , v255 denote the unknowns
associated to the outputs of S0 and S1 (i.e. ui = S0(i) and vi = S1(i)). Then
(8) can be rewritten as

02 ⊗ (u0 ⊕ uα) ⊕ 03 ⊗ (v0 ⊕ vβ) = 0 . (9)

Then we can easily obtain a system involving all the ui and all the vi. Indeed,
the functions α �→ f ′

0(α, 0, 0, 0) and β �→ f ′
0(0, β, 0, 0) are bijections, so we get

exactly 256 collisions between f ′
0(α, 0, 0, 0) and f ′

0(0, β, 0, 0) while α and β vary



276 T. Lepoint et al.

over F256. Discarding the irrelevant collision for (α, β) = (0, 0), we get 255 pairs
(α, β) satisfying f ′

0(α, 0, 0, 0) = f ′
0(0, β, 0, 0) and providing an equation of the

form of (9). Moreover, every unknown uα and vβ appears once for α, β > 0
and the unknowns u0 and v0 appear in each equation. We proceed similarly
for coordinates f ′

� with � ∈ {1, 2, 3}, for which the collisions give rise to similar
equations but with different pairs of coefficients in {01, 02, 03}. For instance a
collision f ′

1(α, 0, 0, 0) = f ′
1(0, 0, β, 0) yields an equation

01 ⊗ (u0 ⊕ uα) ⊕ 02 ⊗ (v0 ⊕ vβ) = 0 .

We hence get 4 × 255 linear equations involving all the 512 unknowns. How-
ever, this system is not of full rank. Consider the 2× 255 unknowns u′

i = u0 ⊕ui

and v′
i = v0 ⊕ vi for i ∈ {1, 2, . . . , 255}. Every equation of the form of (9) can be

rewritten as
02 ⊗ u′

α ⊕ 03 ⊗ v′
β = 0 .

This shows that the system can be rewritten in terms of 510 unknowns and
is hence of rank at most 510. But the system has still at least one degree of
freedom left, since more than one solution is still possible. For instance, the
system is solved by u′

i = 0 and v′
i = 0 for every i, and it is also solved by the

solution we are looking for (i.e. u′
i = S0(0)⊕S0(i) and v′

i = S1(0)⊕S1(i)), which
is such that u′

i �= 0 and v′
i �= 0 by bijectivity of S0 and S1. The obtained system

is hence of rank at most 509.
In all our experiments, the 4 × 255 available linear equations always yielded

a system of rank 509. From such a system, all the unknowns can be expressed in
function of one unknown, say u′

1. And since all the unknowns are linearly linked,
there exist coefficients ai and bi such that u′

i = ai ⊗ u′
1 and v′

i = bi ⊗ u′
1. These

coefficients can be easily recovered by solving the system for u′
1 = 1. We then get

ui = ai ⊗ (u0 ⊕ u1) ⊕ u0 , (10)

and
vi = bi ⊗ (u0 ⊕ u1) ⊕ v0 . (11)

From the ai coefficients and from Equation (10), we can recover the overall
function S0 by exhaustive search on the pair (u0, u1). In order to determine the
good solution, we use the particular structure of the function S0. Specifically, we
use the relation

S−1 ◦ S0(·) = P0(·) ⊕ k0 .

By definition of P0, the above function has algebraic degree at most 4. We then
use the following lemma.

Lemma 2. Let g be a function from {0, 1}8 to itself with algebraic degree at
most 4. The map

ϕ : x �→
15⊕

α=0

g(x ⊕ α) ,

is the null function x �→ 0.



Two Attacks on a White-Box AES Implementation 277

Proof. The map ϕ is a 4th-order derivative of the function g (specifically ϕ =
D1D2D4D8(g)) and since g has algebraic degree at most 4, all its 4th-order
derivatives are null. �	

Remark 2. For a wrong pair (u0, u1), the candidate function Ŝ0 obtained from
(10) is affine equivalent to S0. Namely there exist a and b such that Ŝ0(·) =
a ⊗ S0(·) ⊕ b, with a �= 0 and (a, b) �= (0, 1). The function S−1 ◦ Ŝ0 then satisfies

S−1 ◦ Ŝ0(·) = S−1
(
a ⊗ S(k0 ⊕ P0(·)) ⊕ b

)
,

and it has an algebraic degree greater than 4 with overwhelming probability.1

According to Lemma 2 and the above remark, we can easily determine the
good pair (u0, u1) by computing the 4th-order derivative ϕ̂ of the associated
function ĝ = S−1 ◦ Ŝ0, which satisfies

ϕ̂(x) =
15⊕

α=0

S−1(ax⊕α ⊗ (u0 ⊕ u1) ⊕ u0) .

For the sake of efficiency, we first compute ϕ̂(0) and check whether it equals 0
or not. If we get ϕ̂(0) = 0, we step forwards and compute ϕ̂(x) for another x.
Note that we only need to compute ϕ̂ for 16 inputs at most since for every x
we have ϕ̂(x) = ϕ̂(x ⊕ 01) = · · · = ϕ̂(x ⊕ 15). Getting ϕ̂(x) = 0 for a wrong
pair (u0, u1) should roughly occur with probability 1/256, so wrong guesses are
quickly discarded.

Once S0 has been recovered, we can recover S1 from (11) by exhaustive search
on v0. Here again, the good solution is determined using Lemma 2 and the above
approach. The remaining functions S2 and S3 are recovered similarly by solving
the linear systems arising from collisions of the form f ′

�(α, 0, 0, 0) = f ′
�(0, 0, β, 0)

and f ′
�(α, 0, 0, 0) = f ′

�(0, 0, 0, β). Since S0 is already known, we get the same
situation as for the recovery of S1. Namely, all the elements of S2 (resp. S3)
can be expressed as affine functions of S2(0) (resp. S3(0)), and we can recover
the overall function by exhaustive search on this value and with the selection
criterion of Lemma 2.

4.2 Recovering the Secret Key

Once the Si functions have been recovered, one can easily recover the byte-
encodings Qi in output of the first round. For instance evaluating f ′

0(α, 0, 0, 0)
one gets the value Q0

(
ψ(α)

)
where

ψ : α �→ 02 ⊗ S0(α) ⊕ 03 ⊗ S1(0) ⊕ S2(0) ⊕ S3(0)

is a bijective function. We hence get Q0(·) = f ′
0(ψ

−1(·), 0, 0, 0) which enables to
fully retrieve Q0 by looping on the 256 input values. Each byte-encoding Q

(1,j)
i

in output of the first round can be recovered in a similar way.
1 We ran a few million tests and never obtained a function with algebraic degree 4

or less.



278 T. Lepoint et al.

Since the output byte-encodings of the first round are the inverse of the
input byte-decodings of the second round, we now show how to retrieve the
key bytes in the second round from that knowledge. In what follows, we shall
slightly change the definition of f ′ and the Si’s given in (5) and (6). Namely,
f ′ shall denote the first encoded subround of the second round (rather that of
the first round), and Si the associated functions, that is f ′ = AES

(2,0)
enc and

Si(·) = S(k(2,0)
i ⊕ (P (2,0)

i )(·)) for 0 ≤ i ≤ 3. As in the previous section, we shall
further drop all the surperscripts (2, 0) for the sake of clarity.

For the recovery of k0, we use the following distinguisher. Consider the func-
tion g associated to k0 and defined as:

g = f ′
0(P

−1
0 (S−1(·) ⊕ k0), 0, 0, 0) .

This function satisfies

g(x) = Q0(02 ⊗ x ⊕ c) where c = 03 ⊗ S1(0) ⊕ S2(0) ⊕ S3(0) ,

and it has algebraic degree at most 4 by definition of Q0 (since multiplying and
adding constant coefficients are linear). Therefore, according to Lemma 2, the
4th-order derivative ϕ : x �→

⊕15
α=0 g(x ⊕ α) equals the null function. On the

other hand, consider the function ĝ associated to a wrong guess k̂0 �= k0, that is

ĝ(x) = f ′
0(P

−1
0 (S−1(x) ⊕ k̂0), 0, 0, 0) = Q0(02 ⊗ S(S−1(x) ⊕ k̂0 ⊕ k0) ⊕ c) .

This function has algebraic degree greater than 4 with overwhelming probabil-
ity.2 This way, we can easily recover k0 by exhaustive search while testing for
every candidate whether the function ĝ is of algebraic degree 4 or not. Namely,
for every guess k̂0, we test whether the function

ϕ̂(x) =
15⊕

α=0

f ′
0(P

−1
0 (S−1(x) ⊕ k̂0), 0, 0, 0)

equals the null function x �→ 0, or not. As for the previous recovery of the
Si functions, this is done at most for 16 different values of x since we have
ϕ̂(x) = ϕ̂(x ⊕ 01) = · · · = ϕ̂(x ⊕ 15). Moreover, as for the recovery of the Si,
we only need to compute ϕ̂ for 16 inputs at most since for every x we have
ϕ̂(x) = ϕ̂(x ⊕ 01) = · · · = ϕ̂(x ⊕ 15). Moreover getting ϕ̂(x) = 0 for a wrong
guess k̂0 roughly occur with probability 1/256, so wrong guesses are quickly
discarded.

The key bytes k1, k2 and k3 can be retrieved similarly; only the definition
of the function g shall change. For instance, g is defined as f ′

0(0, P−1
1 (S−1(·) ⊕

k1), 0, 0) for k1, and so on for k2 and k3. And the other key bytes k
(2,j)
i for j ≥ 1

can be recovered in the exact same way. Eventually, from the second round key,
one can easily recover the full AES secret key by inverting the key schedule
process.
2 Here again, we ran a few million tests and never obtained a function with algebraic

degree 4 or less.



Two Attacks on a White-Box AES Implementation 279

4.3 Attack Complexity

The bottleneck of our attack is the exhaustive search to recover the functions Si

in the first round. Indeed, the previous system to solve for the recovery of the
ai and bi coefficients is very sparse and it can hence be solved with Gaussian
elimination in linear complexity (i.e. in 512 times a few operations). To recover
S0, one loops on the 216 candidate values for (u0, u1), and for each value test
whether ϕ̂(x) = 0 (which is a XOR over 16 elements) for at most 16 values x. We
use laziness, namely we test whether ϕ̂(0) = 0 first, if false we stop and if true
we step forwards to the next x, and so on and so forth. Now getting ϕ̂(x) = 0
for a wrong pair (u0, u1) roughly occurs with probability 1/256, therefore the
expected number of tests is 1+1/256+ · · · +1/(25615) ≤ 1.004. The complexity
of the recovery of S0 is hence of

216 · 1.004 · 24 ≈ 220 .

Then the recovery of S1 (resp. S2, S3) from S0 only requires an exhaustive search
on v0, which makes a complexity of 28 ·1.004·24 ≈ 212. We hence get a complexity
of 220 + 3 · 212 ≈ 220 for the recovery of S0, S1, S2 and S3. This computation
must be performed for each subround of the first AES round, which makes a
total complexity of 4 × 220 = 222.

The recovery of the key bytes has a negligible complexity compared to the
recovery of the Si functions in the first round. Indeed, according to the above
analysis, the recovery of one key byte is roughly of 28 · 1.004 · 24 ≈ 212. This
must be done 16 times, yielding a complexity of 16 · 212 � 222.

5 Karroumi’s White-Box AES Implementation

Karroumi’s method to generate a white-box AES implementation [6] can be
divided into two phases; Phase 1 generates a dual AES cipher from a key-
instantiated AES cipher, and Phase 2 applies the white-box techniques presented
by Chow et al. to the dual AES cipher. Below, aspects of these phases that are
relevant to this paper are described.

Phase 1: Dual AES Cipher

In this section we give a description of the set of dual AES ciphers used by
Karroumi in [6]. First, we define a dual AES subround. The following notation
is used: mα : F256 → F256 with α ∈ F∗

256 is defined by mα(x) = α ⊗ x, and
ft : F256 → F256 defined by ft(x) = x2t for 0 ≤ t ≤ 7 are the automorphisms of
F256 over F2. Further, Rl : F256 → F256 are the isomorphisms mapping elements
in the AES polynomial representation to field elements in one of the polynomial
representations of F256. There are 30 irreducible polynomials of degree 8 over F2,
each one resulting in a unique polynomial representation of F256 (one of these
representations being the AES polynomial representation), hence in total there
are 30 distinct isomorphisms Rl (1 ≤ l ≤ 30). The addition and multiplication



280 T. Lepoint et al.

operations in the polynomial representation associated with Rl are denoted by
⊕l and ⊗l, respectively (⊕l and ⊗l being equal to ⊕ and ⊗ for exactly one value
of l with 1 ≤ l ≤ 30). Finally, the definition of a dual AES subround uses a set
of mappings, denoted by T , and defined by

T = {Rl ◦ mα ◦ ft | 1 ≤ l ≤ 30, α ∈ F∗
256 and 0 ≤ t ≤ 7} .

Observe that an element of T maps elements in the AES polynomial represen-
tation to elements in one of the 30 polynomial representations of F256.

Definition 4. Let Δr,j ∈ T with Δr,j = Rl ◦ mα ◦ ft for some triple (l, α, t)
with 1 ≤ l ≤ 30, α ∈ F∗

256 and 0 ≤ t ≤ 7, and let δr,j = Rl ◦ ft. Further, let
vi, wi ∈ F256 for 0 ≤ i ≤ 3 be represented using the polynomial representation
associated with Rl. The mapping AES(r,j,Δr,j) : F4

256 → F4
256 for 1 ≤ r ≤ 9

and 0 ≤ j ≤ 3, called a dual AES subround, is defined by (w0, w1, w2, w3) =
AES(r,j,Δr,j)(v0, v1, v2, v3) with

wi = δr,j(mci0) ⊗l Δr,j ◦ S ◦ Δ−1
r,j

(
v0 ⊕l Δr,j(k

(r,j)
0 )

)

⊕l δr,j(mci1) ⊗l Δr,j ◦ S ◦ Δ−1
r,j

(
v1 ⊕l Δr,j(k

(r,j)
1 )

)

⊕l δr,j(mci2) ⊗l Δr,j ◦ S ◦ Δ−1
r,j

(
v2 ⊕l Δr,j(k

(r,j)
2 )

)

⊕l δr,j(mci3) ⊗l Δr,j ◦ S ◦ Δ−1
r,j

(
v3 ⊕l Δr,j(k

(r,j)
3 )

)
,

for 0 ≤ i ≤ 3.

The following lemma presents a property that is required to show that a dual
AES cipher maintains the functionality of AES. As the lemma is also used in
the cryptanalysis in this paper, and as a formal proof of this property is omitted
in [4] and [6], we include a proof as well.

Lemma 3. If Δr,j ∈ T , then

AES(r,j,Δr,j) ◦ (Δr,j ,Δr,j ,Δr,j ,Δr,j) = (Δr,j ,Δr,j ,Δr,j ,Δr,j) ◦ AES(r,j) ,

for 1 ≤ r ≤ 9 and 0 ≤ j ≤ 3.

Proof. Let xi for 0 ≤ i ≤ 3 be elements of F256 using the AES polynomial
representation, let wi for 0 ≤ i ≤ 3 be elements of F256 using the polynomial
representation associated with Rl (assuming that Δr,j = Rl ◦ mα ◦ ft), and let

(w0, w1, w2, w3) = AES(r,j,Δr,j) ◦ (Δr,j ,Δr,j ,Δr,j ,Δr,j)(x0, x1, x2, x3) .

Substituting vi = Δr,j(xi) for 0 ≤ i ≤ 3 in the equation in Definition 4 yields

wi =
3⊕

z=0

δr,j(mciz) ⊗l Δr,j ◦ S ◦ Δ−1
r,j

(
Δr,j(xz) ⊕l Δr,j(k(r,j)

z )
)

,

for 0 ≤ i ≤ 3. Next, observe that Δr,j(a)⊕l Δr,j(b) = Rl ◦mα ◦ft(a)⊕l Rl ◦mα ◦
ft(b) = Rl(mα ◦ ft(a) ⊕ mα ◦ ft(b)) = Rl(mα(ft(a) ⊕ ft(b)) = Rl(mα(ft(a ⊕ b)))



Two Attacks on a White-Box AES Implementation 281

= Δr,j(a ⊕ b) for all a, b ∈ F256 and all α ∈ F∗
256; the second equality holds true

since Rl is an isomorphism, the third equality holds true as α(a⊕b) = α(a)⊕α(b)
for all a, b ∈ F256 and the fourth equality holds true since ft is an automorphism.
It follows that

wi =
3⊕

z=0

δr,j(mciz) ⊗l Δr,j ◦ S
(
xz ⊕ k(r,j)

z

)
,

for 0 ≤ i ≤ 3. Next, note that δr,j(a) ⊗l Δr,j(b) = Rl ◦ ft(a) ⊗l Rl ◦ mα ◦ ft(b) =
Rl(ft(a) ⊗ mα ◦ ft(b)) = Rl(mα(ft(a ⊗ b))) = Δr,j(a ⊗ b) for all a, b ∈ F256;
the second equality holds true since Rl is an isomorphism and the third equality
uses the fact that a2t ⊗ αb2

t

= α(ab)2
t

for all a, b ∈ F256 and all α ∈ F∗
256. It

follows that

wi =
3⊕

z=0

Δr,j

(
mciz ⊗ S

(
xz ⊕ k(r,j)

z

))
,

for 0 ≤ i ≤ 3. From this, Δr,j(a) ⊕l Δr,j(b) = Δr,j(a ⊕ b) for all a, b ∈ F256, and
the definition of yi in Definition 1, it follows that wi = Δr,j(yi) for 0 ≤ i ≤ 3. �	

Now, Karroumi [6] obtains a dual AES cipher as follows:

Step 1 assigns a randomly chosen Δr,j ∈ T to each AES subround AES(r,j)

(1 ≤ r ≤ 9 and 0 ≤ j ≤ 3). Based on Δr,j , the corresponding dual AES subround
AES(r,j,Δr,j) is implemented as specified by Definition 4. The mappings Δr,j and
δr,j (and the implementation of the dual cipher) are kept secret.

Step 2 ensures that the functionality of AES is maintained by including an
additional operation (referred to as ChangeDualState) between ShiftRows and
AddRoundKey operations of round r for 1 ≤ r ≤ 9. If the inverse ShiftRows oper-
ation is defined by the mapping sr(i, j) = (j+ i) mod 4 for 0 ≤ i, j ≤ 3, then the
ChangeDualState operation of round r applies the mapping C

(r,j)
i : F256 → F256

to the byte of the state associated with the i-th input byte of AES(r,j,Δr,j) for
0 ≤ i, j ≤ 3, defined by C

(1,j)
i = Δ1,j and C

(r,j)
i = Δr,j ◦Δ−1

r−1,sr(i,j) if 2 ≤ r ≤ 9.

Observe that for 2 ≤ r ≤ 9, C
(r,j)
i maps elements from F256 using the poly-

nomial representation associated with Δr−1,sr(i,j) to elements of F256 using the
polynomial representation associated with Δr,j .

Karroumi presents two different but equivalent methods (from a security
point of view) in [6] to perform the ChangeDualState operation, and specifies
the white-box AES implementation using one of these methods. In this paper
we use the specification as in [6]; the cryptanalysis can easily be adapted if the
other method is used.

Phase 2: Apply the Techniques of Chow et al.

The following description of Karroumi’s white-box AES implementation is equiv-
alent to the description in [6]:



282 T. Lepoint et al.

Step 1 applies the techniques of Chow et al. to write the dual AES cipher (with
a fixed key) obtained in Phase 1 as a series of lookup tables. In particular, the
dual AES key addition operations and the dual S-box operations are merged
into key-dependent bijective mappings T

(r,j,Δr,j)
i for 0 ≤ i, j ≤ 3 and 1 ≤ r ≤ 9.

These mappings are referred to as dual T-boxes and are defined by

T
(r,j,Δr,j)
i = Δr,j ◦ S ◦ Δ−1

r,j ◦ ⊕
Δr,j(k

(r,j)
i )

◦ C
(r,j)
i ,

where each dual T-box mapping is implemented as a table mapping 8 input bits
to 8 output bits. Recall that the mappings C

(r,j)
i define the ChangeDualState

operation. Next, write the other part of the dual AES cipher as a series of
lookup tables as indicated by Chow et al. in [5]. The number and types of tables
(including the tables representing the dual T-boxes) and the data-flow between
tables are the same as in the lookup table implementation of AES in [5]. The only
difference is that the values of the table entries of the dual AES implementation
are likely to be different from the values of the corresponding entries in the AES
implementation in [5] due to the dual version of the AES operations.

Step 2 applies the white-box encoding techniques of Chow et al. in [5] to this
lookup table implementation of dual AES. As these white-box encoding tech-
niques do not depend on the values of the table entries, the number and types
of white-box tables, and the data-flow of Karroumi’s white-box AES implemen-
tation are the same as in the white-box AES implementation of Chow et al.
in [5].

In [6], Karroumi argues that the secrecy of the mappings Δr,j , randomly
selected from the set T and used to generate the dual cipher, increases the work
factor of the BGE attack to 293.

5.1 Insecurity

This section shows that Karroumi’s white-box AES implementation [6] is inse-
cure. Recall that Karroumi’s white-box AES implementation uses the same num-
ber and types of white-box tables, and that the data-flow of the implementation
is the same as in Chow et al.’s white-box AES implementation in [5]. As a result,
the techniques of Billet et al. can be applied directly to compose lookup tables in
Karroumi’s implementation to obtain access to the encoded dual AES subrounds
(instead of the encoded AES subrounds in case of Chow et al.’s implementation)
for rounds 1 ≤ r ≤ 9. In the following definition, A

(r,j)
i and B

(r,j)
i for 0 ≤ i ≤ 3

denote bijective mappings (or encodings) on the vector space F8
2. Further, with

slight abuse of notation, an output of A
(r,j)
i is considered to be an element of F256

using the polynomial representation associated with the mapping Rl as defined
by Δr−1,sr(i′,j′), and an output of AES(r,j,Δr,j) is considered to be an element
of (F8

2)
4. In the following definition, Π

(r,j)
1 ,Π

(r,j)
2 and π(r) are the permutations

as used in Definition 3.



Two Attacks on a White-Box AES Implementation 283

Definition 5. The mapping AES
(r,j,Δr,j)

enc : (F8
2)

4 → (F8
2)

4 for 1 ≤ r ≤ 9 and
0 ≤ j ≤ 3, called an encoded dual AES subround, is defined by

AES
(r,j,Δr,j)

enc = (B(r,j)
0 , B

(r,j)
1 , B

(r,j)
2 , B

(r,j)
3 ) ◦ AES

(r,j,Δr,j) ◦ (12)

(A(r,j)
0 , A

(r,j)
1 , A

(r,j)
2 , A

(r,j)
3 ) ,

where the mapping AES
(r,j,Δr,j) is defined by

Π
(r,j)
2 ◦ AES(r,j′,Δr,j′ ) ◦ (C(r,j′)

0 , C
(r,j′)
1 , C

(r,j′)
2 , C

(r,j′)
3 ) ◦ Π

(r,j)
1 , (13)

with j′ = π(r)(j).

The next lemma shows that an encoded dual AES subround can be repre-
sented by an encoded AES subround using the same key bytes:

Lemma 4. An encoded dual AES subround AES
(r,j,Δr,j)

enc is an encoded AES
subround AES

(r,j)

enc as in Definition 3 with

P
(1,j)
i = A

(1,j)
i and P

(r,j)
i = Δ−1

r−1,sr(i′,j′) ◦ A
(r,j)
i if 2 ≤ r ≤ 9 ,

and
Q

(r,j)
i = B

(r,j)
i ◦ Δr,j′ ,

for 0 ≤ i, j ≤ 3 and 1 ≤ r ≤ 9, with i′ = (π(r,j)
1 )−1(i) and j′ = π(r)(j) where

(π(r,j)
1 )−1 denotes the permutation on the indices of a 4-byte vector as a result

of the application of
(
Π

(r,j)
1

)−1.

Proof. The proof is given for the case 2 ≤ r ≤ 9; similar reasoning applies to the
case r = 1. From the definition of the ChangeDualState operation (see Step 2
of Phase 1 of Karroumi’s implementation) it follows that

(C(r,j′)
0 ,C

(r,j′)
1 , C

(r,j′)
2 , C

(r,j′)
3 ) = (Δr,j′ ,Δr,j′ ,Δr,j′ ,Δr,j′) ◦

(Δ−1
r−1,sr(0,j′),Δ

−1
r−1,sr(1,j′),Δ

−1
r−1,sr(2,j′),Δ

−1
r−1,sr(3,j′)) if 2 ≤ r ≤ 9,

for 0 ≤ j ≤ 3. Substituting the above expression for the ChangeDualState
operation in Eq. 13 and applying Lemma 3 gives

AES
(r,j,Δr,j) = Π

(r,j)
2 ◦ (Δr,j′ ,Δr,j′ ,Δr,j′ ,Δr,j′) ◦ AES(r,j′) ◦

(Δ−1
r−1,sr(0,j′),Δ

−1
r−1,sr(1,j′),Δ

−1
r−1,sr(2,j′),Δ

−1
r−1,sr(3,j′)) ◦ Π

(r,j)
1 .

Observe that Π
(r,j)
2 and (Δr,j′ ,Δr,j′ ,Δr,j′ ,Δr,j′) commute and thus can be

swapped. By applying the equation

(Δ−1
r−1,sr(0,j′),Δ

−1
r−1,sr(1,j′),Δ

−1
r−1,sr(2,j′),Δ

−1
r−1,sr(3,j′)) ◦ Π

(r,j)
1 =

Π
(r,j)
1 ◦ (Δ−1

r−1,sr(0′,j′),Δ
−1
r−1,sr(1′,j′),Δ

−1
r−1,sr(2′,j′),Δ

−1
r−1,sr(3′,j′)) ,



284 T. Lepoint et al.

where i′ = (π(r,j)
1 )−1(i) for i = 0, 1, 2, 3 where (π(r,j)

1 )−1 denotes the permutation
on the indices of a 4-byte vector as a result of the application of

(
Π

(r,j)
1

)−1, one
gets the result of Lemma 4. �	

From the discussion above it follows that Karroumi’s white-box AES implemen-
tation and the white-box AES implementation of Chow et al. are the same. As
a consequence, Karroumi’s white-box AES implementation is vulnerable to the
original BGE attack and the attacks presented in this paper.

6 Conclusion

The BGE attack on the white-box AES implementation of Chow et al. extracts
the AES key from such an implementation with a work factor of 230. Taking
Tolhuizen’s improvement to the most time-consuming phase of the BGE attack
as the starting point, Sect. 3 presented several improvements to the other phases
of the BGE attack. It was shown that the overall work factor of the BGE attack
is reduced to 222 when all improvements are implemented. Unlike the original
BGE attack, the use of non-affine white-box encodings and the randomization
in the order of the bytes of the intermediate results in AES have a negligible
contribution to the overall work factor of the improved BGE attack.

Section 4 presented a new attack on the white-box implementation of Chow
et al. based on collisions occurring in the output bytes of an encoded AES round.
It was shown that the new attack also has a work factor of 222.

Karroumi’s white-box AES implementation was designed to withstand the
BGE attack. Section 5 showed that the white-box AES implementations of Chow
et al. and Karroumi are the same. As a result, the original BGE attack and the
attacks presented in this paper can be applied directly to extract the key from
Karroumi’s white-box AES implementation, implying that this implementation
is insecure.

Acknowledgments. This work was supported in part by the Research Council KU
Leuven: GOA TENSE (GOA/11/007). In addition, this work was supported by the
Flemish Government, FWO WET G.0213.11N and IWT GBO SEC SODA. Yoni De
Mulder was supported in part by a research grant of iMinds of the Flemish Government.

References

1. Barkan, E., Biham, E.: In how many ways can you write Rijndael? In: Zheng,
Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 160–175. Springer, Heidelberg
(2002)

2. Barkan, E., Biham, E.: The book of Rijndaels. IACR Cryptology ePrint Archive,
2002:158. http://eprint.iacr.org/2002/158 (2002)

3. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
227–240. Springer, Heidelberg (2004)

http://eprint.iacr.org/2002/158


Two Attacks on a White-Box AES Implementation 285

4. Biryukov, A., De Cannière, C., Braeken, A., Preneel, B.: A toolbox for cryptanaly-
sis: linear and affine equivalence algorithms. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 33–50. Springer, Heidelberg (2003)

5. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography
and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003)

6. Karroumi, M.: Protecting white-box AES with dual ciphers. In: Rhee, K.-H.,
Nyang, D. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 278–291. Springer, Heidelberg
(2011)

7. Lepoint, T., Rivain, M.: Another nail in the coffin of white-box AES implementa-
tions. Cryptology ePrint Archive, Report 2013/455. http://eprint.iacr.org/2013/
455.pdf (2013)

8. National Institute of Standards and Technology: Advanced encryption standard.
In: Federal Information Processing Standard (FIPS), Publication 197, U.S. Depart-
ment of Commerce, Washington, DC (November 2001). http://csrc.nist.gov/
publications/fips/fips197/fips-197.pdf

9. Muir, J.A.: A tutorial on white-box AES. In: Kranakis, E. (ed.) Advances in
Network Analysis and its Applications. Mathematics in Industry, pp. 209–229.
Springer, Heidelberg (2013). http://www.ccsl.carleton.ca/ jamuir/papers/wb-aes-
tutorial.pdf

10. De Mulder, Y., Roelse, P., Preneel, B.: Cryptanalysis of the Xiao - Lai white-box
AES implementation. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol.
7707, pp. 34–49. Springer, Heidelberg (2013)

11. De Mulder, Y., Roelse, P., Preneel, B.: Revisiting the BGE attack on a white-box
AES implementation. Cryptology ePrint Archive, Report 2013/450. http://eprint.
iacr.org/2013/450.pdf (2013)

12. Tolhuizen, L.: Improved cryptanalysis of an AES implementation. In: 33rd WIC
Symposium on Information Theory in the Benelux (2012)

13. Xiao, Y., Lai, X.: A secure implementation of white-box AES. In: 2nd International
Conference on Computer Science and its Applications (CSA 2009), pp. 1–6. IEEE
(2009)

http://eprint.iacr.org/2013/455.pdf
http://eprint.iacr.org/2013/455.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://eprint.iacr.org/2013/450.pdf
http://eprint.iacr.org/2013/450.pdf

	Two Attacks on a White-Box AES Implementation
	1 Introduction
	2 Preliminaries
	2.1 AES
	2.2 Chow et al.'s White-Box AES Implementation and the BGE Attack

	3 Reducing the Work Factor of the BGE Attack
	3.1 Conclusion

	4 A New Attack Exploiting Internal Collisions
	4.1 Recovering the Si Functions
	4.2 Recovering the Secret Key
	4.3 Attack Complexity

	5 Karroumi's White-Box AES Implementation
	5.1 Insecurity

	6 Conclusion
	References


