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2 LIP, ENS Lyon, Université de Lyon (UMR CNRS - INRIA 5668), Lyon, France

3 Dipartimento di Informatica, Università di Pisa, Pisa, Italy

Abstract. We present an encoding of (bound) CSP processes with repli-
cation into Petri nets with labelled transitions. Through the encoding,
the firing semantics of Petri nets models the standard operational se-
mantics of CSP processes, which is both preserved and reflected. This
correspondence allows for describing by net semantics the standard CSP
observational equivalences. Since the encoding is modular with respect to
process syntax, the paper puts on a firm ground the technology transfer
between the two formalisms, e.g. recasting into the CSP framework well-
established results like decidability of coverability for nets. This work
complements previous results concerning the encoding of asynchronous
interactions, thus witnessing the expressiveness of (open) labelled nets
in modelling process calculi with alternative communication patterns.

Keywords: Communicating sequential processes (CSP), labelled Petri
nets, net encoding of processes, synchronous interaction.

1 Introduction

Petri nets [17] are among the most widely used formalisms for the visual specifi-
cation of concurrent and distributed systems. Their appeal lies in the ease of use
as well as in the expressiveness. Indeed, their graphical presentation allows for a
simple description of possibly complex interaction patterns, in such a way that
both synchronous and asynchronous features are plainly represented. Also, in a
Petri net the behavioural relations between computational steps, such as causal
dependencies and nondeterministic choices, are explicit and easier to analyse.

These characteristics also favoured Petri nets as the target for the encoding of
many textual formalisms, such as different process calculi. This is partly due to
the availability of many tools and techniques for the analysis of net behavioural
properties, like coverability, boundedness, and deadlock-freedom, so that any
suitable encoding might offer the possibility of a fruitful technology transfer.
However, it is the same simple and immediate graphical presentation of nets
that attracted the attention of researchers, in the hope of clarifying the nature
of concurrency and distributivity in the formalism at hand. Indeed, there has
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been since a long time an interest for the encoding of synchronous calculi such
as Milner’s CCS. Intuitively, the handshaking communication pattern of CCS
and π-calculus can be implemented via nets in such a way that the operational
behaviour of a process is (at least) preserved by the encoding [10,7].

In a recent work we offered a further witness to the flexibility of nets by
providing an encoding for asynchronous CCS [1]. More precisely, our encoding
preserves the operational behaviour of processes as well as asynchronous bisim-
ilarity, captured by standard net bisimilarity. In order to model the intrinsic
reactivity of CCS processes, the encoding resorted to open Petri nets [2], i.e.,
nets extended with the possibility of interacting with the environment through
an interface. Specifically, the interface consists of a set of places designated as
open, where the environment can create and consume tokens. Interfaces were
also essential to define composition operations on nets, thus allowing for a mod-
ular definition of the encoding. The need of considering reactive extensions of
Petri nets in order to have a modular model, with compositional semantics,
have been felt by several authors, leading to the Box Calculus [3], the Petri net
components [13] and other open net models [15,4], just to mention a few.

This paper aims at further extending our results by moving back to syn-
chronous processes, yet taking into account the broadcast communication pat-
tern, as provided by Hoare’s CSP [12]. More precisely, we identify an expressive
fragment of CSP which can be mapped modularly into Petri nets via an encod-
ing that is preserving as well as reflecting the operational semantics. Since most
of CSP semantics are based on traces, the encoding is guaranteed to preserve
and reflect also the common observational equivalences for the calculus. This
allows some immediate technology transfer from nets to processes. For instance,
coverability, the maximal degree of parallelism of a process (given by the number
of its sub-processes occurring in parallel) and convergence (i.e., the possibility
of termination) can be proved to be decidable in the CSP setting. Some of these
decidability results seem to be the first of their kind for (bound) CSP processes.

The idea of mapping CSP processes into nets arose early on, see among oth-
ers [9,16,6]. Conceptually, all these encodings are syntax-driven: each process is
split into a family of sequential components, which represent the places of a net,
and a (possibly concurrent) semantics for the calculus is thus obtained. As of
more recent advances, we are aware of [14]. There, an on-the-fly algorithm is
devised for building (and optimising) a net from a CSP process by exploiting its
transition system. In our encoding we followed the spirit of the former proposals,
striving for modularity: the encoding itself has a denotational flavor, mapping
each operator of the calculus into an operator on nets, and as a consequence
preservation and reflection of CSP standard operational semantics are easily
stated and proved. We believe that such clarity is due to the identification of the
right CSP fragment. Indeed, it is noteworthy that in all the papers mentioned
above the recursion of nested parallel processes is not allowed “because the set
of places of the generated Petri net would be infinite” [14, p.111]. Our paper
lifts such a constraint: our chosen CSP fragment is not finite state, but rather it
bounds the number of parallel processes synchronising on the same channel.
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P ::= STOP inactive process

⊕n
i=1ai.Pi guarded alternative

P +Q nondeterministic choice

P |X Q parallel composition

P\X hiding

!a.P replication

Fig. 1. CSP processes

The paper is structured as follows. Section 2 recalls the syntax and the opera-
tional semantics of CSP, while Section 3 introduces labelled nets with interfaces,
as well as a suitable algebra for them. The core of the paper is Section 4, which
presents the modular encoding from (bound) CSP processes into labelled nets. In
Section 5 the encoding is proved to preserve and reflect the operational seman-
tics, and hence the standard observational equivalences of the calculus (such as
trace equivalence). The encoding is exploited in Section 6, which provides some
examples of its effects on the technology transfer between the two formalisms.
Finally, Section 7 discusses some expressiveness issues for the considered mod-
els, taking advantage from the encoding, and it draws some conclusions while
providing a few pointers to future works.

2 Communicating Sequential Processes

In this section we briefly review the calculus of Communicating Sequential Pro-
cesses (CSP) [12], presenting its syntax and operational semantics. We actually
focus on a fragment of the calculus, which will be used throughout the paper.

Definition 1 (CSP processes). Let Σ be the alphabet of communication
events, ranged over by a, b, c . . . The set of CSP processes P, ranged over by
P,Q,R, . . ., is generated by the grammar in Fig. 1, where X ⊆ Σ is a finite set
of events.

The process STOP cannot perform any event, i.e., it is a deadlocked process.
The guarded alternative ⊕n

i=1ai.Pi can perform any event ai, for i ∈ {1, . . . , n},
and then behave as Pi. For the sake of simplicity, we assume that ∀j, ∀z. aj �= az.
The nondeterministic choice P +Q can behave as either P or Q. The operators
⊕ and + differs for the fact that for ⊕ the choice is external, i.e., it is the
environment that determines the branch to be chosen, while for + the choice
is internal to the process. The process P |X Q is the parallel composition of P
and Q, where the events in X are forced to synchronise, while those in Σ \X
can be performed by P and Q independently. The hiding P\X behaves like P
except for the fact that the events in X are hidden to the environment, that is,
they become internal to the process. Finally, the replication !a.P can indefinitely
perform an event a and spawn a parallel copy of P .
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(Alt)
j ∈ {1, . . . , n}

⊕n
i=1ai.Pi

aj−→ Pj

(Cho1)
P +Q

τ−→ P
(Cho2)

P +Q
τ−→ Q

(Syn1)
P

μ−→ P ′ μ �∈ X

P |X Q
μ−→ P ′ |X Q

(Syn2)
Q

μ−→ Q′ μ �∈ X

P |X Q
μ−→ P |X Q′

(Syn3)
P

a−→ P ′ Q
a−→ Q′ a ∈ X

P |X Q
a−→ P ′ |X Q′

(Hid1)
P

μ−→ P ′ μ �∈ X

P\X μ−→ P ′\X (Hid2)
P

a−→ P ′ a ∈ X
P\X τ−→ P ′\X

(Repl)
!a.P

a−→ !a.P |∅ P

Fig. 2. CSP operational semantics

The guarded alternative is a specialisation of the external choice operator.
This restriction does not represent a serious limitation since, as explained in [18],
it is rare to find a usage of the external choice which cannot be expressed as a
guarded alternative. More interestingly, we consider guarded replication in place
of recursion. This will be important for ensuring the existence of a finite Petri
net encoding for the class of CSP processes considered (see Section 5).

The behaviour of CSP processes, intuitively described above, is formalised in
terms of a set of syntax directed rules which axiomatise a transition relation.

Definition 2 (operational semantics of CSP). The labelled transition sys-
tem (LTS) for CSP processes is the relation →⊆ P × (Σ � {τ})×P inductively

defined by the rules in Fig. 2, where we write P
μ−→ P ′ for 〈P, μ, P ′〉 ∈→.

We write P
s−→ ∗ P ′ for a sequence P = P1

μ1−→ P2
μ2−→ . . .

μn−1−−−→ P ′ with

s = μ1μ2 . . . μn−1. Moreover, we write P
s
=⇒ P ′ when P

s′−→∗ P ′ for some s′ such
that s is obtained from s′ by removing the τ ’s. We write simply P −→ P ′ and
P −→∗ P ′ instead of P

μ−→ P ′ and P
s−→∗ P ′, respectively, whenever we are not

interested in identifying the labels.

Definition 3 (bound processes). A CSP process P ∈ P is called bound if
parallel compositions |X occur under the scope of replications only with X = ∅.

In a bound process only pure parallel composition, without synchronisation,
is allowed under the scope of replications. This avoids the possibility of hav-
ing an unbounded number of parallel components synchronising on the same
event. Additionally, a synchronisation under a replication would possibly lead
to the generation of an unbounded number of conceptually different names as in
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!a.(b.b.STOP |{b} b.STOP ). As discussed in Section 4, this fact will be essential
for defining a finite encoding of bound CSP processes into Petri nets.

Relying on the LTS defined above several observational semantics can be
defined over CSP processes. In this paper, we will focus on the one based on
traces, i.e., sequences of visible transitions.

Definition 4 (traces). Let P ∈ P be a CSP process. We define traces(P ) =

{s ∈ Σ∗ : ∃Q.P
s
=⇒ Q}.

Traces are exploited to provide a behavioral equivalence for processes.

Definition 5 (trace equivalence). Let P,Q ∈ P be two CSP processes. They
are called trace equivalent, written P =T Q, if traces(P ) = traces(Q).

Example 1. Consider the processes P = a.(d.b.STOP\d)⊕ b.a.STOP and Q =
(c.a.STOP |{c} c.b.STOP )\c. It is easy to see that traces(P ) = traces(Q) =
{ε, a, ab, b, ba}. Hence they are trace equivalent.

3 Labelled Petri Nets with Interfaces

This section reviews labelled Petri nets, i.e., ordinary P/T nets with labelled
transitions [17]. Nets are also enriched with interfaces and endowed with com-
position operators in order to allow for an inductive encoding of CSP processes.

3.1 Labelled Petri Nets

Let X⊕ be the free commutative monoid over a set X . An element m ∈ X⊕, a
multiset over X , is often viewed as a function m : X → N (the set of natural
numbers) that associates a multiplicity with every element of X . We write m1 ⊆
m2 if ∀x ∈ X , m1(x) ≤ m2(x). The symbol 0 denotes the empty multiset. Given
f : X → Y we denote its extension to multisets by f⊕ : X⊕ → Y ⊕.

Hereafter Σ denotes a fixed set over which all nets are labelled. In the encoding
of processes into nets, Σ is the set of CSP communication events.

Definition 6 (labelled Petri net). A labelled Petri net is a tuple N =
(S, T, •(.), (.)•, λ) where S is the set of places, T is the set of transitions,
•(.), (.)• : T → S⊕ are functions mapping each transition to its pre- and post-set
and λ : T → Σ is the labelling of transitions.

The state of a net is given by a marking, i.e., a multiset of places m ∈ S⊕.
Hereafter, the components of a net N will be assumed S, T , •(.), (.)• and λ,
possibly with subscripts. We will often write •t and t• instead of •(t) and (t)

•
.

Definition 7 (net morphism). Let N1, N2 be two labelled nets. A net mor-
phism f : N1 → N2 is a pair of functions f = 〈fS , fT 〉 where fS : S1 → S2,
fT : T1 → T2 satisfy for any t ∈ T1:
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Fig. 3. Graphical representation of labelled nets, the rightmost with interfaces

1. f⊕
S (•t) ⊆ •fT (t) (reflection of pre-set)

2. f⊕
S (t•) ⊆ fT (t)

• (reflection of post-set)
3. λ1(t) = λ2(fT (t)) (preservation of labels).

Net morphisms roughly represent the insertion of a net into a context. As a
consequence the pre- and post-set of transitions can be larger in the target net.

Example 2. Fig. 3 (left) shows a labelled net. As usual, circles represent places
and rectangles transitions. Arrows represent pre- and post-sets of transitions.
Bullets in places, referred to as tokens, represent the current marking m of the
net. Transition labels are placed inside the corresponding rectangle. For the sake
of readability, also some places are provided with an identifier, yet positioned
outside of the corresponding circle.

3.2 Petri Nets with Interfaces

In order to define the encoding of CSP processes into Petri nets inductively,
we equip nets with “handles” for interacting with the environment and define
operations for composing them.

Definition 8 (Petri net with interfaces). A Petri net with interfaces is a tu-
ple N = 〈I, O,N, V 〉, where N is a labelled net, I and O are subsets of places, the
input and output places, and V is a subset of transitions, the visible transitions.

Hereafter, the components of a net with interfaces N will be assumed to be
I,N,O, and V , possibly with subscripts.

The standard operational semantics on Petri nets naturally induces a seman-
tics for nets with interfaces, where the firing of a transition that is not visible is
turned into a silent action τ . This is expressed by the rules in Fig. 4.

Graphically, a net with interfaces is depicted as a net with input interface on
the left and output interface on the right, marked with incoming and outgoing
dotted arrows, respectively. Places in the input and output interface are in blue
and red, respectively (grey if in b&w), while internal places are white. Moreover,
visible transitions are green (grey if in b&w) and hidden ones are white.
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(vis) m = •t⊕m′ t ∈ V

m
λ(t)−−→ t• ⊕m′

(hid)
m = •t⊕m′ t ∈ T \ V

m
τ−→ t• ⊕m′

Fig. 4. Operational semantics of nets with interfaces

Example 3. An example of net with interfaces is shown in Fig. 3 (right). The
input interface consists of the places α and β, while the output interface contains
the places η and σ. The white places γ and δ are internal, i.e., they do not
belong to the interfaces. The white transition labelled c is hidden, while those
labelled a and b are visible. Finally, in the current marking m0 of the net, the
places α and β are marked. By applying the (hid) rule in Fig. 4 we obtain

the firing m0
τ−→ m1 = {γ, δ}. By rule (vis), we get m1

a−→ m2 = {η, δ} and

m1
b−→ m3 = {γ, σ}. Finally, m2

b−→ m4 and m3
a−→ m4, with m4 = {η, σ}.

As in the case of CSP processes, we write m
s−→∗ m′ when there is a sequence

m = m1
μ1−→ m2

μ2−→ . . .
μn−1−−−→ m′ with s = μ1μ2 . . . μn−1. We also write m

s
=⇒ m′

when m
s′−→∗ m′ for some s′ such that s is obtained from s′ by removing the τ ’s.

We next define suitable composition operators on nets with interfaces.

Definition 9 (sequential composition). Let N1 and N2 be nets with inter-
faces such that O1 = I2 = S1∩S2 and T1∩T2 = ∅. Their sequential composition
is the net with interfaces N1◦N2 = 〈I1, O2, N, V1∪V2〉, where N is the pointwise
union N1 ∪N2, with the obvious pre-set, post-set and labelling functions.

Intuitively, the sequential composition N1 ◦ N2 is obtained by taking the
disjoint union of the nets underlying N1 and N2, and gluing the output places
of N1 with the corresponding input places of N2. For the sake of presentation,
it is convenient to assume that the two nets intersect only on the input/output
interfaces and take the plain union. This could require some alpha-renaming.

In the following, given a net with interfaces N and a set X ⊆ Σ, we denote
by V X = {t ∈ V : λ(t) ∈ X} the set of transitions labelled with an event in X .

Definition 10 (synchronised parallel composition). Let N1 and N2 be
nets with interfaces such that S1∩S2 = ∅ and T1∩T2 = ∅, and let X ⊆ Σ. Their
synchronised parallel composition on X is the net with interfaces N1 ⊗X N2 =
〈I1 ∪ I2, O1 ∪O2, N, V 〉, where the set of visible transitions is

V = V1 ⊗X V2 = {〈t1, t2〉 : t1 ∈ V X
1 ∧ t2 ∈ V X

2 ∧ λ1(t1) = λ2(t2)}
∪{〈t1, ∗〉 : t1 ∈ V X

1 ∧ V
λ1(t1)
2 = ∅}

∪{〈∗, t2〉 : t2 ∈ V X
2 ∧ V

λ2(t2)
1 = ∅}

∪{t : t ∈ Vi \ V X
i }

and N = (S, T, •(.), (.)•, λ) defined as follows

– S = S1 ∪ S2 � {p}
– T = (T1 \ V1) ∪ (T2 \ V2) ∪ V
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– •t =
{ •t if t ∈ Ti \ V X

i•t1 ⊕ •t2 if t = 〈t1, t2〉 with the convention •∗ = p

– t• =

{
t• if t ∈ Ti \ V X

i

t1
• ⊕ t2

• if t = 〈t1, t2〉,with the convention ∗• = 0

– λ(t) =

⎧⎨
⎩

λi(ti) if t ∈ Ti \ V X
i

λ1(t1) if t = 〈t1, t2〉 ∧ t1 �= ∗
λ2(t2) if t = 〈t1, t2〉 ∧ t2 �= ∗.

We write N1 ⊗N2 for N1 ⊗∅ N2. Intuitively, the synchronised parallel com-
position N1 ⊗X N2 is obtained by taking the disjoint union of the nets N1 and
N2, except for those visible transitions labelled with a symbol x ∈ X , which
are forced to fire synchronously. Concretely, for each pair of transitions t1 ∈ V1

and t2 ∈ V2, with identical label in X , a new transition 〈t1, t2〉 is inserted whose
pre- and post-set is obtained as the union of the pre- and post-set of t1 and t2.
If a transition t1 in N1 has no possibility of synchronising with a transition of

N2 since V2 does not include transitions with the same label (V
λ1(t1)
2 = ∅), it

will not be executable in the synchronised product. This is obtained by turning
transition t1 into 〈t1, ∗〉 and adding to its pre-set a new place p, which will never
be marked. The same happens for transitions in N2 that cannot synchronise with
any transition in N1. An alternative solution, equivalent from the point of view
of the behaviour, would be the removal of the dead transitions. We preferred
this solution since, when used for the encoding of CSP processes into nets, it
will ensure a closer structural correspondence between reducts of a process and
the markings of the net encoding. Finally, transitions which are labelled outside
X can fire asynchronously and thus are kept unchanged.

Lastly, we introduce an operation for restricting the set of visible transitions
of a net. It is called hiding as it has an obvious analogy with the corresponding
operation of CSP processes.

Definition 11 (hiding). Let N be a net with interfaces and let X ⊆ Σ. The
hiding of N with respect to X is the net N\X = 〈I, O,N, V ′〉 where V ′ = V \V X .

Given a net N, the restriction N \ X behaves exactly as N, but transitions
labelled in X , which were previously visible, are now hidden.

When a starting state is fixed, nets are called marked.

Definition 12 (marked nets). A marked net with interface N is a pair
〈N,m〉, where N is a net with interfaces and m ∈ S⊕ is the initial marking.

For marked nets we can consider the language of traces starting from the
initial marking and the corresponding equivalence.

Definition 13 (traces). Let N be a marked net with interfaces. Its set of traces

is traces(N) = {s ∈ Σ∗ : ∃n.m s
=⇒ n}. Two marked nets with interfaces N1 and

N2 are trace equivalent, written N1 =T N2, if traces(N1) = traces(N2).

After building the net encoding of a CSP process, we need to mark its input
places in order to fix the initial state. The following operation will then be used.
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p

(a) stop

p

p1

pn
a

(b) replaI

p

p11

p1m1

pn1

pnmn

a1

an

(c) ⊕n
i=1aiIi

p

p1

pn

q1

qm

σ

σ

(d) sumI1∪I2

Fig. 5. The constant nets stop, replaI , ⊕n
i=1aiIi

and sumI1∪I2

Definition 14 (closing). Let N be a net with interfaces. We denote by Cl(N)
the marked net with interfaces 〈〈∅, O,N, V 〉, I〉.

4 From Processes to Nets

This section introduces an encoding for CSP processes into nets with interfaces.
It is defined inductively by exploiting the composition operators for nets intro-
duced in Section 3. As anticipated, the encoding is restricted to bound processes.

The encoding relies on a set of constant nets, depicted in Fig. 5, which are
combined using the composition operators on nets. The net stop in Fig. 5(a)
consists of a single place. The net replaI in Fig. 5(b), where a ∈ Σ and I =
{p1, . . . , pn}, by repeated firing of transition a allows for an arbitrary number of
“parallel activations” of the net which follows. This will be used as a combinator
for replication. The set I is the set of input places of the encoding of the process
under the replication operator. The net ⊕n

i=1aiIi in Fig. 5(c), where ai ∈ Σ and
each Ii is a set of places, is intended to provide a combinator for the guarded
alternative. It consists of n transitions, labelled a1,. . . , an, all competing for the
token in their common pre-set. Each transition ai has Ii = {pi1, . . . , pimi} as
post-set, corresponding to the input places of the encoding of the continuation
of ai. Finally, the net sumI1∪I2 in Fig. 5(d) is a combinator for nondeterministic
(internal) choice. As above, I1 = {p1, . . . , pn} and I2 = {q1, . . . , qn} are sets
of places which are the input places of the encodings of the processes involved
in the choice. Note that the two transitions are hidden, so by definition of the
operational semantics they will be turned into silent actions τ . Hence the label
σ ∈ Σ, fixed for the hidden transitions of the internal choice, is totally irrelevant.

Definition 15 (encoding for processes). Let P be a bound process. The en-
coding of P , denoted by �P �, is defined as �P � = Cl(|P |), where |.| is given
inductively according to the rules in Fig. 6.

The encoding of a process P is obtained by composing the encoding of its
subprocesses and finally marking the input places. It therefore contains one place
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|STOP | = stop
|⊕n

i=1ai.Pi| = ⊕n
i=1aiI|Pi| ◦ (

⊗n
i=1 |Pi|)

|P +Q| = sumI|P |∪I|Q| ◦ (|P | ⊗ |Q|)
|!a.P | = replaI|P | ◦ |P |
|P\X| = |P | \X
|P |X Q| = |P | ⊗X |Q|

Fig. 6. Encoding for CSP processes

for each operator !, +, ⊕ and process STOP of P . Some additional places are
inserted by the synchronised parallel composition of nets in order to keep some
components inactive (see Definition 10). Note that, in the following examples, we
avoid to represent such places when they are isolated. Recall that whenever two
components are in a synchronised parallel composition a transition is inserted for
each possible synchronisation, i.e., for each pair of events with the same name.

Example 4 (prefix and parallel synchronised processes). Consider the process
P = (a.c.STOP ⊕ b.d.STOP ) |{d} c.d.STOP . Its encoding is depicted in Fig. 7
(right), where input and output interfaces are empty and all transitions are vis-
ible. It is obtained by closing the net |P |, the result of the parallel composition,
synchronised on d, of the encodings |a.c.STOP ⊕ b.d.STOP | and |c.d.STOP |,
in turn depicted in the left part of Fig. 7. More precisely, the net on the up-
per part illustrates |a.c.STOP ⊕ b.d.STOP |. The places ν and σ represent the
subnets encoding the STOP processes (those reached after the events c and d,
respectively). The subnet rooted at place δ is the encoding of the subprocess
c.STOP . Analogously, the subnet rooted γ is the encoding of the subprocess
d.STOP . The encoding of the subprocess a.c.STOP ⊕ b.d.STOP is obtained by
sequentially composing the net a.I{δ} ⊕ b.I{γ} with |c.STOP | ⊗ |d.STOP |. The
net in the lower part represents the encoding |c.d.STOP | of c.d.STOP .

Example 5 (bound processes). Consider the process Q = a.a.STOP |{a}
a.STOP . The encodings |a.a.STOP | and |a.STOP | are depicted in Fig. 8(a)
and (b). The encoding |Q| is obtained as their parallel composition, synchro-
nised on a, as shown in Fig. 8(c). Each transition labelled by a of |a.a.STOP |
is “combined” with any other transition labelled by a in |a.STOP |. Observe
that the second a-labelled transition in the encoding of Q cannot fire since af-
ter the firing of the first a-labelled transition, place δ is emptied and never
filled again. This is consistent with the operational semantics of CSP where
Q

a−→ a.STOP |{a} STOP , in such a way that the remaining occurrence of a
cannot be executed since it has no counterpart in the parallel subprocess.

Now consider the process R =!b.Q =!b.(a.a.STOP |{a} a.STOP ), that is the
process Q inserted in a replication. Observe that R is not bound as it contains
a non-trivial parallel synchronised product (where synchronisation is on a non-
empty set of events) under the scope of a replication.
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(c) �(a.c.STOP ⊕ b.d.STOP ) |{d} c.d.STOP �

Fig. 7. Some process encodings

The net �R� in Fig. 8 (d) is obtained by closing the net |R|, which in turn is the
sequential composition of replb{α,δ} with |Q|. Notice that the b-labelled transition
can fire any number of times, thus generating an unbounded number of tokens
in α and δ. Hence also the second a-labelled transition has the opportunity of
being fired, in a way which disagree with the semantics of the CSP process.

Roughly speaking, the above problem arises since tokens corresponding to
different occurrences of the replicated process are mixed in an improper way.
Solving the problem by a different encoding, where each occurrence of a process
involved in a replication corresponds to a different subnet in the encoding, would
lead to an infinite net for non-bound processes.

α β

γa a

δ

σa

(a) |a.a.STOP | (b) |a.STOP |

α

δ

β

γ

σ

a a

α′ α

β

γ

δ σ

a ab

(c)
∣
∣a.a.STOP |{a} a.STOP

∣
∣ (d)�!b.a.a.STOP |{a} a.STOP �

Fig. 8. Process encodings
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5 Relating CSP and Labelled Nets

In this section we show that any bound CSP process and its net encoding be-
have essentially in the same way. More precisely, the net encoding of processes
preserves and reflects process transitions, and, consequently, the standard be-
havioural CSP equivalences such as, for instance, trace equivalence.

In order to state these results, we first need to establish a correspondence
between the processes reachable from P , hereafter denoted by the set reach(P ) =
{Q : P −→∗ Q}, and the markings of �P �.

The encoding of a bound process P is inductively defined as the composition of
the encoding of its subprocesses. Note that, by definition of the CSP operational
semantics, whenever a process P performs a transition to P ′, the process P ′ is
obtained from P by replacing a subprocess with its reduct. Then, it is easy to
see that the encoding of those processes reachable from P can be mapped to
subnets of �P �.

Lemma 1 (reachable processes as subnets). Let P be a bound process and
let Q be a subprocess of P or a process reachable from P . Let NP and NQ be
the labelled nets underlying the encodings �P � and �Q�, respectively. Then, a net
morphism fQ,P : NQ → NP can by uniquely chosen.

The proof relies on the fact that given a subprocess Q of a process P , a
mapping between the net underlying the encoding �Q� into the one underlying
�P � can be obtained by the inductive definition of the encoding. Hence, each
subprocess of P corresponds to a subnet of �P �. Using this fact, it is not difficult
to prove that also the encoding of a process reachable from P can be mapped
to a subnet of �P �. In fact, the processes in reach(P ) consist of compositions of
reducts of subprocesses of P , where, due to replication, for some reducts we may
have several parallel copies. The encodings of these copies, since by definition
they do not synchronise on any event, can be mapped to the same subnet.

By using the lemma above, we can easily define a correspondence between the
processes belonging to reach(P ) and the markings of �P �.

Definition 16. Let P be a bound process. The function mP : reach(P ) → S⊕
�P �

maps any process Q ∈ reach(P ) into the marking f⊕
Q,P (m�Q�).

Once established that each process reachable from a bound process P identifies
a marking in the net �P �, we can state the two main correspondence results of
this section.

Theorem 1. Let P be a bound process and let Q ∈ reach(P ). Then

1. if Q
μ−→ R then mP (Q)

μ−→ mP (R) in �P �;

2. if mP (Q)
μ−→ m in �P � then Q

μ−→ R with m = mP (R).

The result establishes a bijection between the labelled transitions performed
by any process Q ∈ reach(P ) and the transition firings in the net �P � from the
marking mP (Q).
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α
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σ

ρ

b

a

a

d b

Fig. 9. Net encoding the process (d.a.b.STOP )\d⊕ b.a.STOP

Such a bijection can then be lifted to a fundamental correspondence between
the trace semantics of processes and of their encodings.

Theorem 2. Let P , Q be bound processes. Then

P =T Q if and only if �P � =T �Q�.

Example 6. Consider the processes P = a.(d.b.STOP\d)⊕ b.a.STOP and Q =
(c.a.STOP |{c} c.b.STOP )\c of Example 1. The encoding of P is in Fig. 9, while
the encoding of Q is the net in Fig. 3 (right), once the interfaces are removed.
Note that there is a correspondence between the labelled transitions of each
process and those of its encoding. For instance, P

a−→ d.b.STOP\d corresponds

to mP (P ) = {α} a−→ {γ} = mP (d.b.STOP\d). The transition d.b.STOP\d τ−→
b.STOP\d corresponds to mP (d.b.STOP\d) = {γ} τ−→ {σ} = mP (b.STOP\d)
and b.STOP\d b−→ STOP\d to mP (b.STOP\d) = {σ} b−→ {ρ} = mP (STOP\d).
Moreover, P

b−→ a.STOP corresponds to mP (P ) = {α} b−→ {δ} = mP (a.STOP ),

and finally a.STOP
a−→ STOP to mP (a.STOP ) = {δ} a−→ {ν} = mP (STOP ).

We have a correspondence also between the transitions of Q and those of its
net encoding. Therefore, it is easy to conclude that the nets are trace equivalent.

6 Some Hints about Technology Transfer

The encoding of bound CSP processes into labelled nets enables to transfer
results concerning expressiveness and tractability from one formalism to the
other, as it was the case for the net encoding of CCS in [1].

Observe that trace equivalence is obviously undecidable for both bound CSP
processes and Petri nets (since they include as a fragment the basic parallel
processes for which trace equivalence is known to be undecidable [11]). Still,
even though this does not give new insights, we note that by using the encoding,
the undecidability of trace equivalence for Petri nets can be also deduced directly
from the undecidability of trace equivalence for bound CSP.

Reachability, namely the possibility of reaching a given process Q via a se-
quence of transitions from a start process P , is not a particularly interesting
property for CSP. Since during process evolution the number of parallel compo-
nents can only increase, the property turns out to be decidable. Indeed, in order
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to establish whether Q is reachable it suffices to consider the fragment of the
LTS including the processes reachable from P having a number of parallel sub-
processes bounded by that of Q. It is instead more interesting the reachability
under the garbage collection of STOP : it breaks the monotonicity mentioned
above, and the removal itself is not trivial. In fact, P |X STOP is equivalent to
P only when X does not include channel names on which P can synchronise.
E.g., think of the process a.STOP which can perform an a-labelled transition
while a.STOP |{a} STOP is deadlocked.

Alternatively one can consider control state reachability, i.e., the reachability
of a configuration including a given subprocess. In this last case, it is sufficient to
consider net coverability. It is folklore that the control state reachability problem
is undecidable for full CSP, while the corresponding property of coverability is
known to be decidable for Petri nets [8]. By exploiting the encoding, decidability
of coverability can be transferred from Petri nets to bound processes.

Corollary 1 (reachability). Let P,Q be bound processes. The problem of es-
tablishing whether there exists bound process R such that P −→∗ R and Q is a
sub-process of R is decidable.

Thanks to the correspondence between processes reachable from a process P
and reachable markings in the net encoding of P , decidability of boundedness
in Petri nets [8] implies that it is possible to determine whether a CSP process
has a finite number of states.

Corollary 2 (finite state). Let P be a bound process. It is decidable whether
P has a finite number of reachable states.

Again, the property of being finite state can be more interesting for CSP pro-
cesses when working up to garbage collection of useless STOP parallel compo-
nents. It can be seen that this property is naturally captured by the boundedness
of the subset of places of �P � not corresponding to STOP processes.

Analogously, it is possible to identify an upper bound to the degree of par-
allelism of a bound CSP process, i.e., to the number of parallel subcomponents
of a process during its evolution. More precisely, define the structural degree
of a CSP process P as sdeg(P |X Q) = sdeg(P ) + sdeg(Q) and sdeg(P ) = 1
otherwise. Then the degree of P is deg(P ) = sup{sdeg(P ′) : P →∗ P ′}. The
close correspondence between deg(P ) and the maximal total number of tokens
in the reachable markings of �P � immediately leads to the following result.

Corollary 3 (parallelism). Let P be a bound process. The problem of deter-
mining whether deg(P ) is finite is decidable. Moreover, for any given k ∈ N, it
is decidable whether deg(P ) ≤ k.

A classical property in the analysis of the expressiveness of process calculi
is convergence, i.e., the existence of a terminating computation. We recall such
notion below, according to [5].

Definition 17 (convergence). A process P is called convergent if there exists
Q such that P −→∗ Q �→.
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Convergence of a bound process can be reduced to the existence of a deadlock
in its encoding, a property which is known to be decidable for Petri nets [8].

Corollary 4 (convergence). Convergence is decidable for bound processes.

7 Conclusions and Further Works

In this work we have identified a fragment of CSP, consisting of what we called
bound processes, that can be encoded into (labelled) Petri nets. The encod-
ing preserves and reflects the (strong) transitions of the process calculus and,
consequently, the whole spectrum of (both strong and weak) behavioural equiv-
alences definable on the transition system of CSP processes. Furthermore, the
encoding is syntax-driven, hence modular, mapping each process operator into
a suitable one for labelled nets with interfaces. As far as we know, this is a main
improvement with respect to former proposals.

Interfaces are in fact the key ingredient to achieve modularity: they are needed
in defining the net operators upon which our encoding lays its foundations. Re-
active extensions of Petri nets, endowed with means for interacting with the
environment [3,13,2,4], naturally arise as extensions of nets allowing for com-
positional reasoning. This feature plays a key role for modelling various brands
of process calculi. Indeed, in [1] they were pivotal in the encoding of an asyn-
chronous fragment of CCS into open nets. Interestingly enough, asynchronous
interactions are captured by a form of composition where net components inter-
act only over places, while in this paper the synchronous interaction is realised
by letting net components interact over an interface consisting of transitions.
This should have been intuitively expected, since in Petri nets the token flow is
eminently asynchronous, while transitions synchronise different token flows.

Therefore, our results confirm that (open) Petri nets can accommodate both
asynchronous message passing and barrier synchronisation. In principle, this
leaves space for a calculus combining both characteristics, endowed with a direct
encoding into nets. This would take us back in full circle, since this calculus would
trace its roots on some early proposals for net encoding of processes [16].

Acknowledgements. We are grateful to the referees for their insightful sug-
gestions on the submitted version of the paper, and, in particular, for pointing
out the relevance of control state reachability in the analysis of CSP processes.
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