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lntroduction 

During the past few decades, our understanding of why, where, and when allergic con­
tact dermatitis (ACD) might develop has rapidly increased. Critica! discoveries in­
clude the identification of T cells as mediators of cell-mediated immunity, their 
thymic origin and recirculation patterns, and the molecular hasis of their specificity 
to just one or few allergens out of the thousands of allergens known. Progress has also 
resulted from the identification of genes that determine T-cell function, and the de­
velopment of monoclonal antihodies that recognize their products. Moreover, the hio­
industrial production of large amounts of these products, e.g. cytokines, and the 
hreeding of mice with disruptions in distinct genes (knock-out mice) or provided 
with additional genes of interest (transgenic mice), have aliowed in-depth analysis of 
skin-inflammatory processes, such as those taking place in ACD. 

Although humoral antihody-mediated reactions can he a factor, ACD depends pri­
marily on the activation of aliergen-specific T celis [1, 2], and is regarded as a proto­
type of delayed hypersensitivity, as classified hy Turk [3) and Geli and Coomhs 
(type IV hypersensitivity) [4] . Evolutionarily, celi-mediated immunity has developed 
in vertehrates to facilitate eradication of microorganisms and toxins. Elicitation of 
ACD hy usually non-toxic doses of small molecular-weight aliergens indicates that the 
T -celi repertoire is often slightly hroader than o ne might wish. Thus, ACD can he con­
sidered to reflect an untoward side effect of a weli-functioning immune system. 

Suhtle differences can he noted in macroscopic appearance, time course, and 
histopathology of aliergic contact reactions in various vertehrates, including rodents 
and man. Nevertheless, essentialiy ali hasic features are shared. Sin ce hoth mouse and 
guinea-pig models, next to clinica! studies, have greatly contrihuted to our present 
knowledge of ACD, hoth data sets provide the hasis for this chapter. 

In ACD, a distinction should he made hetween induction (sensitization) and effec­
tor (elicitation) phases [5] (Fig. 2.1). The induction phase includes the events foliow­
ing a first contact with the aliergen and is complete when the individual is sensitized 
and capahle of giving a positive ACD reaction. The effector phase hegins upon elicita­
tion ( challenge) and results in ciini cal manifestation of ACD. The entire process of the 
induction phase requires at least 3 days to severa! weeks, whereas the effector phase 
reaction is fuliy developed within 1-2 days. Main episodes in the induction phase 
(steps 1-5) and effector phase (step 6) are: 

1. Bind ing of allergen to skin components. The allergen penetrating the skin readily as­
sociates with ali kinds of skin components, including major histocompatihility com­
plex (MHC) proteins. These molecules, in humans encoded for hy histocompatihility 
antigen (HLA) genes, are ahundantly present on epidermal Langerhans celis (LC). 

2. Hapten-induced activation of allergen-presenting cells. Allergen-carrying LC hecome 
activated and travel via the afferent lymphatics to the regionallymph nodes, where 
they settle as so-called interdigitating celis (IDC) in the paracortical T-celi areas. 

3. Recognition of allergen-modified LC by specific T cells. In non-sensitized individu­
als the frequency of T celis with certain specificities is usualiy far helow 1 per mil­
lion. Within the paracortical areas, conditions are optimal for aliergen-carrying 
IDC to encounter naive T celis that specificaliy recognize the aliergen-MHC mole­
cule complexes. The dendritic morphology of these aliergen-presenting celis 
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sensitilation elicitation 

Fig. 2.1. Immunological events in allergic contact dermatitis (ACD). During the induction phase 
(left), skin contact with a hapten triggers migration of epidermal Langerhans cells (LC) via the 
afferent lymphatic vessels to the skin-draining Iymph nodes. Haptenized LC home into the 
T cell-rich paracortical areas. Here, conditions are optimal for encountering naive T cells that 
specifically recognize allergen- MHC molecule complexes. Hapten-specific T cells now expand 
abundantly and generate effector and memory cells, which are released via the efferent lym­
phatics into the circulation. With their newly acquired homing receptors, these cells can easily 
extravasate peripheral tissues. Renewed allergen contact sparks off the effector phase (right). 
Due to their lowered activation threshold, hapten -specific effector T ce Ils are triggered by vari­
ous haptenized cells, including LC and keratinocytes (KC), to produce proinflammatory cy­
tokines and chemokines. Thereby, more inflammatory cells are recruited further amplifying lo­
cal inflammatory mediator release. This leads to a gradually developing eczematous reaction, 
reaching a maximum within 18- 48 h, after which reactivity successively declines 

strongly facilitates multiple cell contacts, leading to binding and activation of al­
lergen-specific T cells. 

4. Proliferation of specific T cells in draining lymph nodes. Supported by interleukin 
(IL)-1, released by the allergen-presenting cells, activated T cells start producing 
several growth factors, including IL-2. A partly autocrine cascade follows since at 
the same time receptors for IL-2 are upregulated in these cells, resulting in vigor­
ous blast formation and proliferation within a few days. 

5. Systemic propagation of the specific T-cell progeny. The expanded progeny is subse­
quently released via the efferent lymphatics into the blood flow and begins to re­
circulate. Thus, the frequency of specific effector T cells in the blood may rise to as 
high as one in a thousand, whereas most of these cells display receptor molecules 
facilitating their migration into peripheral tissues. In the absence of further aHer­
gen contacts, their frequency gradually decreases in subsequent weeks or months, 
but does not return to the low levels found in nai:ve individuals. 
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6. Effector phase. By renewed allergen contact, the effector phase is initiated, which 
depends not only on the increased frequency of specific T cells, and their altered 
migratory capacities, but also on their low activation threshold. Thus, within the 
skin, allergen-presenting cells and specific T cells can meet, and lead to plentifullo­
cal cytokine and chemokine release. The release of these mediators, many of which 
have a pro-inflammatory action, causes the arrival of more T cells, thus further am­
plifying local mediator release. This leads to a gradually developing eczematous re­
action that reaches its maximum after 18-48 h and then declines. 

In the following sections, we will discuss these six main episodes of the ACD reaction 
in more detail. Furthermore, we will discuss local hyperreactivity, such as flare-up and 
retest reactivity, and hyporeactivity, i.e. upon desensitization or tolerance induction. 

Binding of Contact Allergens to Skin Components 

Chemical Nature of Contact Allergens. Most contact allergens are small, chemically re­
active molecules with a molecular weight less than 400 Da. Since these molecules are too 
small to be antigenic themselves, contact sensitizers are generally referred to as haptens. 
Upon penetration through the epidermal horny layer, haptens readily conjugate to epi­
dermal and dermal molecules. Sensitizing organic compounds may covalently bind to 
protein nucleophilic groups, such as thiol, amino, and hydroxyl groups, as is the case 
with poison oak!ivy allergens (reviewed in [6]). Metal ions, e.g. nickel cations, instead 
form stable metal-protein chelate complexes by co-ordination bonds [7, 8]. 

Hapten Presentation by LC. Sensitization is critically dependent on direct association of 
haptens with epidermal LC-bound MHC molecules, or peptides present in the groove of 
these molecules. Both MHC class I and class II molecules may be altered this way, and 
thus give rise to allergen-specific CD8+ and CD4+ T cells, respectively. Distinct differ­
ences between allergens can, however, arise from differences in chemical reactivity and 
lipophilicity (Fig. 2.2), since association with MHC molecules may also result from inter­
nalization of the haptens, followed by their intracellular processing as free hapten mole­
cules or hapten-carrier complexes. Lipophilic haptens can directly penetrate into LC, 
conjugate with cytoplasmic proteins and be processed along the 'endogenous' processing 
route, thus favouring association with MH C class I molecules [ 9]. In contrast, hydrophilic 
allergens such as nickel ions may, after conjugation with skin proteins, be processed 
along the 'exogenous' route of antigen processing and thus favour the generation of al­
tered MHC class II molecules. Thus, the chemical nature of the haptens can determine to 
what extent allergen-specific CD8+ and/ or CD4+ T cells will be activated [10-12]. 

Prohaptens. Whereas most allergens can form hapten-carrier complexes spontaneous­
ly, some act as prohaptens and may need activation, e.g. by light- or enzyme-induced 
metabolic conversion, or oxidation [ 13]. A prototype prohapten is p-phenylenediamine, 
which needs tobe oxidized to a reactive metabolite, known as Bandrowski's base [14]. 
Tetrachlorosalicylanilide is a typical photoallergen, which undergoes photochemical 
dechlorination with UV irradiation, ultimately leading to photoadducts with skin pro­
teins [15]. Reduced enzyme activity in certain individuals, related to genetic enzyme 
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Fig. 2.2. Hapten presentation by epidermal Langerhans cells. Allergen penetrating into the epi­
dermis readily associates with ali kinds of skin components, including major histocompatibility 
complex (MHC) proteins, abundantly present on epidermal Langerhans cells (LC). Both MHC 
class I and class II molecules may be altered directly or via intracellular hapten processing and, 
subsequently, be recognized by allergen-specific CD8+ and CD4+ T cells 

polymorphisms, explains the reduced risk of sensitization to prohaptens that need 
enzymatic activation [16]. Subsequent chapters of this book will present in extensive 
detail the numerous groups of molecules that have earned disrepute for causing ACD. 

Conclusions. Allergenicity depends on several factors determined by the very physic­
ochemical nature of the molecules themselves, i.e. their capacity to penetrate the 
horny layer, lipophilicity, and chemical reactivity. The sensitizing property of the ma­
jority of contact allergens could be predicted from these characteristics [17, 18]. Two 
other factors, however, further contribute to the allergenicity of chemicals, viz their 
pro-inflammatory activity and capacity to induce maturation of LC. These issues will 
be dealt with in more detail in the following sections. 

Hapten-lnduced Activation 
of Allergen-Presenting Cells 

Physiology of Langerhans Cells. LC are 'professional' antigen-presenting dendritic 
cells (DC) in the skin [19]. They forma contiguous network within the epidermis and 
represent 2%-5% of the total epidermal cell population [20]. Their principal func­
tions are internalization, processing, transport, and presentation of skin-encountered 
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antigens [ 20-22]. As such, LC play a pivotal ro le in the induction of cutaneous immune 
responses to infectious agents as well as to contact sensitizers [23-25]. LC originate 
from CD34+ bone marrow progenitors, entering the epidermis via the blood stream 
(26]. Their continuous presence in the epidermis is also assured by local proliferation 
(21, 27, 28]. They reside as relatively immature DC, characterized by a high capacity to 
gather antigens by macropinocytosis, whereas their capacity to stimulate nai:ve T cells 
is still underdeveloped at this stage [22, 29]. Their prominent dendritic morphology 
and the presence of distinctive Birbeck granules were observed long ago [30-32]. In 
the last decade, their pivotal function in the induction of skin immune responses was 
explained by high expression of molecules mediating antigen-presentation ( e.g. MHC 
class 1 and Il, CD1), as well as of cellular adhesion and costimulatory molecules (e.g. 
CD54, CD80, CD86, and cutaneous lymphocyte antigen [CLAJ) [33-35]. 

Hapten-Induced LC Activation. Upon topical exposure to contact sensitizers, or other 
appropriate stimuli (e.g. trauma, irradiation), up to 40% of the local LC become acti­
vated [36, 37], leave the epidermis, and migrate, via afferent lymphatic vessels, to the 
draining lymph nodes [23, 38] (Fig. 2.3). This process ofLC migration results from sev­
era! factors, including contact allergen-induced production of cytokines favouring LC 
survival [39-41] and loosening from surrounding keratinocytes [42-44]. Thus, within 
15 min after exposure to a contact sensitizer, production of IL-1 ~ mRNA and rele ase of 
IL-1 ~ protein from LC is induced [ 45, 46] . In turn, IL-1 ~ stimulates rele ase of tumour 
necrosis factor (TNF)-a and granulocyte-macrophage colony-stimulating factor (GM­
CSF) from keratinocytes [ 46, 47]. Together, these three cytokines facilitate migration of 
LC from the epidermis towards the lymph nodes [48]. IL-1~ and TNF-a downregulate 
membrane-bound E-cadherin expression and thus cause disentanglement of LC from 
surrounding keratinocytes (Fig. 2.3) [ 44, 49, 50]. Simultaneously, adhesion molecules 
are increasingly expressed that promote LC migration by mediating interactions with 
the extracellular matrix and dermal cells, such as CD54, a 6 integrin, and CD44 variants 
[51-55]. Also, production of the epidermal basement membrane degrading enzyme 
metalloproteinase-9 is upregulated in activated LC [56]. Recently, it has been found that 
the transmembrane transporter molecule P-glycoprotein is essential for LC migration, 
which might relate to the putative ro le of P-glycoprotein in IL-1 ~ rele ase ( 57]. 

Next, LC migration is directed by hapten-induced alterations in chemokine receptor 
levels [58]. Upon maturation, LC downregulate expression of receptors for inflamma­
tory chemokines (e.g. CCR1, 2, 5, and 6), whereas others (including CCR4, 7, and CXCR4) 
are upregulated (Fig. 2.3) (reviewed by [59] and (60-62]). Notably,CCR7 may guide ma­
turing LC into the draining lymphatics and the lymph node paracortical areas, since one 
of its ligands (secondary lymphoid tissue chemokine, SLC) is produced by both lym­
phatic and high endothelial cells ( 63-65]. Notably, the same receptor-ligand interactions 
cause nai:ve T cells, which also express CCR7, to accumulate within the paracortical ar­
eas (66] . Final positioning of the LC within the paracortical T-cell areas may be due to 
another CCR7 ligand, EBil-ligand chemokine (ELC), produced by resident mature DC 
(67]. Along with their migration and settling within the draining lymph nodes, hapt­
enized LC further mature, as characterized by their increased expression of costimula­
tory and antigen-presentation molecules [68, 69]. In addition, they adopt a strongly 
veiled, interdigitating appearance, thus maximizing the chances of productive encoun­
ters with nai:ve T lymphocytes, recognizing altered self [ 4 7, 70, 71]. 
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Fig. 2.3. Hapten-induced migration of Langerhans cells. a In a resting state, epidermal Langer­
hans cells (LC) reside in suprabasal cell layers, tightly bound to surrounding keratinocytes 
(KC), e.g. by E-cadherin. b Early after epidermal hapten exposure, LC produce IL-1~, which in­
duces the release of TNF-a and GM-CSF from keratinocytes. Together, these three cytokines fa­
cilitate migration of LC from the epidermis towards the lymph nodes 

Recognition of Allergen-Modified 
Langerhans Cells by Specific T Cells 

Homing ofNai"ve T Cells Into Lymph Nodes. More than 90o/o of naive lymphocytes pres­
ent within the paracortical T-cell areas have entered the lymph nodes by high endothe­
lial venules (HEV) [72]. These cells are characterized not only by CCR7 but also by the 
presence of a high molecular weight isoform of CD45 (CD45RA) [72, 73]. Entering the 
lymph nodes via HEV is established by the lymphocyte adhesion molecule L-selectin 
(CD62L), which allows rolling interaction along the vessel walls by binding to peripheral 
node addressins {PNAd), such as GlyCAM-1 or CD34 [74- 76]. Next, firm adhesion is 
mediated by the interaction of CD11a/CD18 with endothelial CD54, resulting in subse­
quent endothelial transmigration. Extravasation and migration of naive T cells to the 
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Fig. 2.3. c Emigration of LC starts with cytokine-induced disentanglement from surrounding 
keratinocytes (e.g. by downregulation of E-cadherin) and production of factors facilitating 
penetration of the basal membrane (e.g. matrix metalloproteinases) and interactions with ex­
tracellular matrix and dermal cells (e.g. integrins and integrin ligands). d Once in the dermis, 
LC migration is directed towards the draining afferent lymphatic vessels, guided by local pro­
duction of chemokines (e.g. secondary lymphoid tissue chemokine, SLC) acting on newly ex­
pressed chemokine receptors, such as CCR7, on activated LC. Along their journey, haptenized 
LC further mature as characterized by their increased dendritic morphology and expression of 
costimulatory and antigen-presentation molecules 

paracortical T-cell areas is supported by chemokines such as DC-CK-1, SLC, and ELC 
produced locally by HEV and by hapten-loaded and resident DC [65, 77-79]. In non­
sensitized individuals, frequencies of contact -allergen specific T cells are very low, and 
estimates vary from 1 per 109 to maximally 1 per 106 [72, 80]. Nevertheless, the prefer­
ential homing of naive T cells into the lymph node paracortical areas, and the large sur­
face area of interdigitating cells, make allergen-specific T-cell activation likely with only 
few dendritic cells exposing adequate densities of haptenized-MHC molecules [81, 82]. 

Activation of Hapten-Specific T Cells. As outlined in "Binding of Contact Allergens to 
Skin Components", the chemical nature of the hapten determines its eventual cytoplas­
mic routing in antigen-presenting cells (APC}, and thus whether presentation will be 
predominantly in context of MHC class 1 or II molecules (Fig. 2.2). T cells, expressing 
CD8 or CD4 molecules can recognize the hapten-MHC class 1 or Il complex, which in 
turn stabilizes MHC membrane expression [83, 84]. Chances of productive interactions 
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with T cells are high since each MHC-allergen complex can trigger a high number ofT­
cell receptor (TCR) molecules ('serial triggering') [85] . Moreover, after contacting spe­
cific CD4+ T cells, hapten-presenting DC may reach a stable super-activated state, al­
lowing for efficient activation of subsequently encountered specific CD8+ T cells [86]. 
The actual T-cell activation is executed by TCRI;;-chain mediated signal transduction, 
followed by an intracellular cascade of biochemical events, including protein phospho­
rylation, inositol phospholipid hydrolysis, increase in cytosolic Ca2+ [87, 88], and acti­
vation of transcription factors, ultimately leading to gene activation (Fig. 2.4) [89]. 

For activation and proliferation, TCR triggering ('signal 1 ') is insufficient, but 
hapten-presenting APC also provide the required co-stimulation ('signal 2'; Fig. 2.4) 
[90, 91]. The costimulatory signals may involve secreted molecules, such as cytokines 
(IL-1), or sets of cellular adhesion molecules (CAMs) and their counter-structures 
present on the outer cellular membranes of APC and T cells (summarized in Fig. 2.5). 
Expression levels of most of these CAMs vary with their activational status, and thus 
can provide positive stimulatory feedback-loops. For example, as mentioned above, 
after specific TCR binding and ligation of CD40L (CD154) on T cells with CD40 mol­
ecules, APC reach a super activated state, characterized by overexpression of severa! 
CAMs, including CD80 and CD86 (Fig. 2.4) [92, 93]. In turn, these molecules bind to 
and increase expression of CD28 on T cells. This interaction stabilizes CD154 expres­
sion, causing amplified CD154-CD40 signalling [93, 94]. 

The activational cascade is, as illustrated above, characterized by mutual activation 
of both hapten-presenting APC and hapten-reactive T cells. Whereas this activation 
protects the APC from apoptotic death and prolongs their life to increase the chance 
of activating their cognate T cells, only the latter capitalize on these interactions by 
giving rise to progeny. As discussed below, to promote T -cell growth, cellular adhesion 
stimuli need to be complimented by a broth of cytokines, many of which are released 
by the same APC. Together, elevated expression levels of ( co-)stimulatory molecules 
on APC and local abundance of cytokines overcome the relatively high activation 
threshold of naive T cells [95]. 

Conclusions. The intricate structure of lymph node paracortical areas, the differential 
expression of chemokines and their receptors, the characteristic membrane ruffling of 
IDC, and the predominant circulation of naive T lymphocytes through these lymph 

Fig. 2.4. Activation of hapten-specific T cells. T-cell receptor (TCR) triggering by hapten-major 
histocompatibility complex (MHC) complexes ('signall ') is insufficient forT -cel! activation. But 
'professional' antigen-presenting cells (APC), such as Langerhans cells, can provide the required 
costimulation ('signal2'), involving secreted molecules, such as cytokines, or sets of cellular ad­
hesion molecules present on the o uter cellular membranes of APC and T cells. T cells, stimulated 
in this way, activate nuclear responder elements (e.g. CD28RE). Together with nuclear tran­
scription factors (NF), produced upon TCR triggering, these nuclear responder elements enable 
transcription of T-cell growth factors, e.g. IL-2. APC-T cel! interaction gives rise to mutual acti­
vation ('amplification'): on APC, ligation of CD40 with CD 154 molecules on T cells induces over­
expression of severa! costimulatory molecules, including CDSO and CD86. In turn, these mole­
cules bind to and increase expression of CD28 on T cells. This interaction stabilizes CD154 ex­
pression, causing amplified CD154-CD40 signalling, and preserves strong IL-2 production, 
finally resulting in abundant T-cell expansion 
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node areas provide optimal conditions forT ceH-receptor binding, i.e. the first signal 

for induction of T-cell activation [96] . Intima te DC-T cell contacts are further 

strengthened by secondary signals, provided for by sets of cellular adhesion mole­

cules, and growth-promoting cytokines (reviewed in [97, 98]). 
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Fig. 2.5. Antigen-presenting cell and T-cell interaction molecules. On the outer cellular mem­
branes of antigen-presenting cells (APC) and T cells, respectively, sets of interaction molecules 
are expressed. They include antigen presentation (like MHC class 1 and II) and recognition (such 
as T-cell receptor, TCR/CD8, and CD4 complexes, respectively) and various adhesion molecules 

Proliferation and Differentiation 
of Specific T Cells 

T-Cell Proliferation. When activated, naive allergen-specific T cells start producing 
severa! cytokines, including IL-2, which is a highly potent T-cell growth factor 
[99-101]. Within 30 min after stimulation, IL-2 mRNA can already be detected [99, 
102]. In particular, ligation of T cell-bound CD28 receptors augments and prolongs 
IL-2 production for severa! days [103]. Simultaneously, the IL-2 receptor a-chain gets 
upregulated, allowing for the assembly of up to approximately 104 high affinity IL-2 
receptor molecules per T cell after 3-6 days [101]. This allows appropriately stimu­
lated T cells to start proliferating abundantly. This process can be visible as an im­
pressive, sometimes painfullymph node swelling. 

T-Cell Differentiation. Whereas their allergen specificity remains strictly conserved 
along with their proliferation, the T-cell progeny differentiates within a few days into 
effector cells with distinct cytokine profiles [104, 105]. While naive T cells release only 
small amounts of a limited number of cytokines, e.g. IL-2, activated T cells secrete a 
broad array of cytokines which, besides IL-2, include IL-4, IL-10, IFN-y, and TNF-~ 
('type-0' cytokine profile) [ 106-1 08]. Within a few days, however, T -cell cytokine pro­
duction can polarize towards one of the three major cytokine profiles, referred to as 
'type 1' (characterized by a predominant release of IFN-y and TNF-~), 'type 2' (IL-4 
and/or IL-10), or 'type 3' [transforming growth factor (TGF)-~; Fig. 2.6] [109-111]. 
Evolutionarily, based on requirements for combating different exogenous microbial 
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Fig. 2.6. Generation and cross-regulation of different types of T cells. Depending on the im­

munological microenvironment, activated naive T cells, which only release low amounts of few 

cytokines (e.g. IL-2), can differentiate into type-0 cells, secreting a broad array of cytokines, or 

the more polarized T-cell types 1, 2, or 3, with their characteristic cytokine proflles. By secreting 

mutually inhibitory cytokines, the latter cel! types can interactively regulate their activation and, 

thereby, control the type of immune response. IL, interleukin; IFN, interferon; TGF, transform­

ing growth factor; LT, lymphotoxin 

infections, these polarized cytokine profiles promote inflammation and cytotoxic ef­

fector cell functions (type 1), antibody production (type 2), or anti-inflammatory ac­

tivities in conjunction with production of IgA (type 3) [112]. The latter excretory an­

tibody excludes microbial entry, e.g. along mucosal surfaces [ 113]. As outlined above, 

both CD4+ and CD8+ allergen-specific T cells may become involved in contact sensi­

tization, and it is now clear that both subsets can display these polarized cytokine pro­

files and, thereby, play distinct effector and regulatory roles in ACD [114-116]. 

Polarization of cytokine production depends on severa! factors, including (1) the 

site and cytokine environment of first allergenic contact, (2) the molecular nature and 

concentrations of the allergen, and (3) the neuroendocrine factors. 

Cytokine Environment. In the skin-draining lymph nodes, allergen-activated LC and 

macrophages rapidly produce large amounts of IL-12, switching off IL-4 gene expression, 

thus promoting the differentiation of type-1 T cells [106, 117, 118]. Notably, this process 
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is reversible, and type-1 T cells retain high IL-4R expression throughout, leaving these 
sensitive for IL-4 as a growth factor [119]. On the other hand, functional IL-12R expres­
sion remains restricted to type-0 and type-1 cells [120]. Type-2 T cells, e.g. developing in 
mucosa-draining lymph nodes, lose the genes encoding the IL-12-R ~2 chain and thus, 
type-2 differentiation is irreversible [120]. Early differentiation of type-1 T cells is co­
promoted by IL-12 induced secondary cytokines, e.g. IFN-y, released by non-specific 'by­
stander' lymphocytes, including NK cells, within the lymph nodes [121, 122]. Next, cell 
contact-mediated signals provided by APC during priming of naYve T cells constitute a 
critically important factor in skewing T-cell differentiation [123]: type-1 differentiation 
ofT cells is strongly stimulated by CD 154 triggering through CD40 on APC [ 124]. In con­
trast, ligation of CD 134L (gp 34; on APC) by CD 134 ( OX40; on T cells) promotes the dif­
ferentiation of type-2 T cells [125]. Also, CD86 expression on APC contributes to prefer­
ential differentiation of naYve T cells towards a type-2 cytokine profile [126-129]. 

After a few days type-1, but not type-2, T cells lose functional IFN-yR expression 
[130, 131] and thus become refractory to the growth inhibitory effects of IFN-y [132]. 
Once established, the type-1-differentiated T cells produce IFN-y and IL-18, thereby fur­
ther suppressing development of type-2 T cells [133]. Thus, considering that contact al­
lergens will mainly enter via the skin, type-1 pro-inflammatory T cells are thought to 
represent the primary effector cells in ACD. Nevertheless, in sensitized individuals, type-
2 T cells also play a role, as shown by both IL-4 production and allergen-specific type-2 
T cells in the blood and at ACD reaction sites (see "The Effector Phase of Allergic Con­
tact Dermatitis") [134-136]. Their role may increase along with the longevity of sensiti­
zation, since several factors contribute to shifting type-1 to type-2 responses, including 
reversibility of the former and not of the latter T cells, as mentioned above [137]. 

After mucosal contacts with contact allergens, type-2 T cell responses are most 
prominent. In the mucosal (cytokine) environment, DC release only small quantities 
of IL-12, whereas IL-4 and IL-6 production by cells of the mast cell/basophillineages, 
macrophages and NK(T) cells is relatively high [ 138-140], abundantly present within 
the mucosallayers. Moreover, these tissues, as compared to the skin, contain high fre­
quencies of B cells, which, when presenting antigen, favour type-2 responses through 
the abundant release of IL-10 [141, 142]. IL-10 is known to inhibit type-1 differentia­
tion,just as IFN-y and IL-18 interfere with type-2 T-cell differentiation [105, 143, 144]. 
Along the mucosal surfaces, T cells may also develop exhibiting the third 'type-3' 
T cell-cytokine profile, characterized by TGF-~ production (reviewed by [ 145]). Since 
these cells play critica! regulatory ro les in ACD, they will be described further in "Hy­
poreactivity: Tolerance and Desensitization". 

Nature of the Allergen. A second factor in determining T-cell cytokine-production 
profiles, although still poorly understood, is the molecular character of the contact al­
lergen itself, and the resulting extent of TCR triggering [105, 146, 147]. For both pro­
tein and peptide antigens, high doses of antigen might favour type-2 responses, 
whereas intermediate/low doses would induce type-1 T -cell responses [ 105, 148]. To 
what extent this translates to contact allergens is still unclear. Certainly, endogenous 
capacities of contact allergens to induce IL-12 by LC, vs IL-4 by mast cells, basophils, 
or NK(T) cells, will affect the outcome. In this respect, some contact allergens are no­
torious for inducing type-2 responses, even if their primary contact is by the skin 
route, e.g. trimellitic acid, which is also known as a respiratory sensitizer [149, 150]. 



Mechan.isms in Allergic Contact Dermatitis 27 

Neuroendocrine Factors. Diverse neuroendocrine factors codetermine T-cell differen­
tiation [151-153]. An important link has been established between nutritional depri­
vation and decreased T cell-mediated allergic contact reactions [154]. Apparently, 
adipocyte-derived leptin, a hormone released by adequately nourished and function­
ing fat cells, is required for type-1 T-cell differentiation. Administration of leptin to 
mice restored ACD reactivity in mice during starvation [154]. Also, androgen hor­
mones and adrenal cortex-derived steroid hormones, e.g. dehydroepiandrosterone 
(DHEA), promote type-1 T-cell and ACD reactivity. DHEA, like testosterone, may 
favour differentiation of type-1 T cells by promoting IFN -y and suppressing IL-4 re­
lease ([155, 156]; Giltay, personal communication). In contrast, the female sex hor­
mone progesterone furthers the development of type-2 CD4+ T cells and even induces, 
at least transient, IL-4 production and CD30 expression in established type-1 T cells 
[157]. Type-2 T-cell polarization is also facilitated by adrenocorticotrophic hormone 
(ACTH) and glucocorticosteroids [158], and by prostaglandin (PG)E2 [159]. PGE2, re­
leased from mononuclear phagocytes, augments intracellular cAMP levels, resulting 
in inhibition of pro-inflammatory cytokine, like IFN-y and TNF-a, production 
[160-163] and thus can influence the development of effector T cells in ACD. 

Conclusions. In healthy individuals, primary skin contacts with most contact allergens 
lead to differentiation and expansion of allergen-specific effector T cells displaying 
the type-1 cytokine proflle. The same allergens, if encountered along mucosal sur­
faces, favour the development of type-2 and/or type-3 effector T cells. Factors skewing 
towards the latter profile are still unknown, despite their critica! importance for un­
derstanding mucosal tolerance induction (see "Hyporeactivity: Tolerance and Desen­
sitization"). For most, if not ali allergens, prolonged allergenic contacts, also along the 
skin route, ultimately lead to a predominance of type-2 allergen-specific T cells which 
may take over the role of type-1 T cells in causing contact allergic hypersensitivity. 

Systemic Propagation of the Specific T -Ce li Progeny 

T-Cell Recirculation. From the skin-draining lymphoid tissue, the progeny of primed 
T cells are released via the efferent lymphatic vessels and the thoracic duct into the 
blood where they circulate for sever al minutes, up to 1 h (Fig. 2. 7) [ 164]. Like their nai've 
precursors, these effector/memory T cells can still enter lymphoid tissues upon adher­
ing to HEV within the paracortical areas, because they continue to express L-selectin 
molecules (see "Recognition of Allergen-Modified Langerhans Cells by Specific T 
Cells") [165-167]. However, their lymph node entry via the afferent lymphatics in­
creases as a consequence of their higher capacity to enter peripheral tissues [168]. The 
latter capacity relates to higher surface densities of adhesion molecules, such as VLA-4, 
facilitating migration through non-activated, flat endothelia, e.g. in the skin. Notably, 
vascular adhesion within peripheral tissues is strongly augmented when expression of 
vascular adhesion molecules, such as vascular cell adhesion molecule (VCAM), are up­
regulated, e.g. through cytokines released at inflammatory sites. Similarly, other ligand­
counter structure pairs contribute to migration into peripheral tissues. Cutaneous lym­
phocyte-associated antigen and the P-selectin glycoprotein ligand (PSGL-1; CD162) are 
overexpressed on effector/memory T cells, and mediate binding to venules in the upper 
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skin 

Fig. 2.7. Systemic propagation of hapten-specific T cells. From the skin-draining lymphoid tis­
sue, the progeny of primed T cells is released via the efferent lymphatic vessels and the thoracic 
duct (DI) into the blood and becomes part of the circulation. Like their naive precursors, these 
effector/memory T cells can still enter lymphoid tissues by binding to peripheral node ad­
dressins (PNAd). But increased expression of skin-homing molecules, e.g. cutaneous lympho­
cyte antigen ( CLA), facilitates their migration in the skin. Via the afferent lymphatic vessels, cells 
re-enter draining nodes and the recirculating lymphocyte pool 

dermis through the sugar-binding counter-structures CD62 E (E-selectin) and CD62P 
(P-selectin) [169-171]. Vascular expression of the latter molecules is also greatly in­
creased by local inflammatory reactions [ 172-17 4]. Notably, expression of the lympho­
cyte-bound ligands is highest only for short periods after activation, thus endowing re­
cently activated T cells with unique capacities to enter skin sites and exert effector func­
tions. Upon repeated allergenic contacts, therefore, in particular within a few weeks after 
sensitization, recently activated effector T cells will give rise to allergic hypersensitivity 
reactions, as outlined below. However, within lymph nodes draining inflamed skin ar­
eas, they can also contribute to further expansion of the allergen-specific T-cell pool. 

Different Homing Patterns. Effector/memory T cells show different recirculation pat­
terns depending on their sites of original priming, e.g. within skin- or mucosa-drain­
ing lymphoid tissues [ 175, 176]. These differences are mediated by distinct vascular ad­
hesion molecules and by the involvement of different chemokine-receptor pairs. First, 
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mucosallymphoid tissue venules express yet another L-selectin binding molecule, the 
mucosal addressin MAdCAM-1. The latter molecule mediates preferential binding of 
lymphoid cells generated within the mucosallymphoid tissues, showing overexpres­
sion of a4~7, a MAdCAM-1 binding integrin. Thus, along the gut, Peyer's patches and 
lamina propria attract T lymphocyte progeny generated within other mucosal tissues, 
rather than contact allergen-specific cells derived from skin-draining lymph nodes. As 
outlined above, the latter are characterized by their high expression of CLA, facilitating 
preferential homing to the skin through its ligand CD62 E [ 177 -179]. Second, T cells bi­
ased towards production of type-1 cytokines may show a higher propensity to enter 
skin sites, as compared to mucosal tissues. In mice, the early influx of type-1 T cells into 
delayed-type hypersensitivity (DTH) reactions was found to be more efficient than 
that of type-2 T cells, although both cell types expressed CLA. Here, CD162, highly ex­
pressed by type-1 T cells, was found to be important for this preferential homing [ 172, 
180, 181]. Moreover, type-1 T cells express distinct chemokine receptors, notably CCR5 
and CXCR3, contributing to skin entry [ 59, 182, 183]. In contrast, recirculation through 
mucosal tissues preferentially involves CCR3 and CCR4 [66, 184]. The latter chemokine 
receptors are not only overexpressed on type-2 cytokine-producing T cells, but also on 
basophils and eosinophils. Together, these cells contribute strongly to local immediate 
allergic hyperresponsiveness. Results obtained thus far favour the view that type-1 
T cells enter skin sites most readily [180, 185]. Their primary function may be in the 
early control of antigenic pressure, e.g. through amplification of macrophage effector 
functions. However, subset recirculation patterns are not rigid, and, given the fact that 
type-1 cells can shift cytokine production towards a type-2 profile, allergic contact skin 
inflammatory lesions may rapidly be dominated by type-2 allergen-specific T cells (see 
"Proliferation and Differentiation of Specific T Cells"). 

Allergen-Specific T-Cell Recirculation: Options for In Vitro Testing. The dissemination 
and recirculation of primed, allergen-specific T cells through the body suggests that 
blood represents a most useful and accessible source for T cell-based in vitro assays 
for ACD. A major advantage of in vitro testing would be the non-interference with the 
patient's immune system, thus eliminating any potential risk of primary sensitization 
by in vivo skin testing. Although such tests have found severa! applications in funda­
mental research, e.g. on recognition of restriction elements, cross-reactivities and cy­
tokine-profile analyses, their use for routine diagnostic purposes is limited. Even in 
highly sensitized individuals, frequencies of contact allergen-specific memory/effec­
tor cells may still be below 1 per 103 [116, 186]. Given the relatively small samples of 
blood obtainable by venepuncture ( at only o ne or a few time points ), numbers of spe­
cific T cells in any culture well used for subsequent in vitro testing would typically be 
below 100 cells/well. For comparison, in vivo skin test reactions recruit at least 1000 
times more specific T cells from circulating lymphocytes passing by for the period of 
testing, i.e. at least 24 h [164, 187]. The sensitivities required, therefore, for direct in 
vitro read-out assays, e.g. allergen-induced proliferation or cytokine production, may 
often exceed the lowest detection limits. However, the observation that in vivo signal 
amplification may allow for the detection of a single memory/effector T cell [188, 189] 
suggests that it may be possible to solve sensitivity problems. 

Appropriate allergen presentation, however, is a major hurdle for in vitro testing, 
with a broad range of requirements for different allergens with unique solubilities, tox-
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icities, and reactivity profiles. Moreover, in the absence of LC, monocytes are the major 
source of APC, though their numbers in peripheral blood may vary substantially within 
and between donors. Of note, optimal APC function is particularly critica} for recircu­
lating resting/memory T cells to respond. In the absence of repeated allergenic contacts, 
most CD45RO memory cells may finally revert to the naive CD45RA phenotype, with a 
higher threshold for triggering [190, 191]. Supplementing in vitro test cultures with an 
appropriate mix of cytokines may, however, compensate for this effect [ 186]. 

Conclusions. After antigenic activation the progeny of primed T cells, i.e. effector/ 
memory cells, are released via the efferent lymphatics into the bloodstream. Like their 
nai:ve precursors, they can again leave the circulation into lymphoid organs anywhere 
in the body, thus rapidly ensuring systemic memory. They differ, however, from naive 
T cells in many ways, including increased surface exposure of ligands facilitating entry 
into the peripheral tissues, such as the skin. On the vascular side, distinct exit patterns 
from the circulation are determined by tissue-dependent expression of vascular ad­
dressins and other adhesion molecules, and locally released chemoattractant mole­
cules, i.e. chemokines. Once insi de the tissues, these chemokines and stromal adhesion 
molecules determine the transit times before recirculating T cells eventually re-enter 
the blood stream. Thus, peripheral blood provides a good source for in vitro studies in 
ACD but, besides budgetary and logistical reasons, theoretical considerations argue 
against wide-scale applicability of in vitro assays for routine diagnostic purposes. 

The Effector Phase of Allergic Contact Dermatitis 

Elicitation of ACD. Once sensitized, individuals can develop ACD upon re-exposure to 
the contact allergen. Positive patch test reactions mimic this process of allergen-spe­
cific skin hyperreactivity. Thus, skin contacts induce an inflammatory reaction that, in 
general, is maxima} within 2-3 days and, without further allergen supply, declines 
thereafter (Fig. 2.8). Looked at superficially, the mechanism of this type of skin hy­
perreactivity is straightforward: allergen elicitation or challenge leads to the (epi)der­
mal accumulation of contact allergen-specific memory/effector T lymphocytes which, 
upon encountering allergen-presenting cells, are reactivated to release pro-inflamma­
tory cytokines. These, in turn, spark the inflammatory process, resulting in macro­
scopically detectable erythema and induration. As compared to immediate allergic re­
actions, developing within a few minutes after mast-cell degranulation, ACD reactions 
show a delayed time course, since both the migration of allergen-specific T cells from 
the dermal vessels and local cytokine production need severa} hours to become fully 
effective. Still, the picture of the rise and fall of ACD reactions is far from clear. Some 
persistent issues are discussed below, notably: (1) irritant properties of allergens, (2) 
role of early-phase reactivity, (3) T-cell patrol and specificity, (4) effector T-cell phe­
notypes, and (5) downregulatory processes. 

Irritant Properties of Allergens. Within a few hours after allergenic skin contact, im­
munohistopathological changes can be observed, including vasodilatation, upregula­
tion of endothelial adhesion molecules [192, 193], mast-cell degranulation [194, 195], 
keratinocyte cytokine and chemokine production [196], influx of leucocytes [197, 
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198], and LC migration towards the dermis [52, 199, 200] . These pro-inflammatory 
phenomena, which are also observed in non-sensitized individuals [201] and in T ceH­
deficient nude mice [202], strongly contribute to aHergenicity [5] . Clearly most, if not 
aH, of these effects can also be caused by irritants and, therefore, do not unambigu­
ously discriminate between irritants and contact aHergens [203-205]. Probably, true 
differences between these types of compounds depend on whether or not aHergen­
specific T ceHs become involved. Thus, only after specific T-ceH triggering might dis­
tinctive features be observed, e.g. local release of certa in chemokines, such as CXCLl O 
(IP-10} and CXCL11 (1-TAC/IP-9) [206). The latter chemokines are produced by IFN­
y-activated keratinocytes and T lymphocytes [207] . 

Certainly, pro-inflammatory effects of contact allergens in crease, in many ways, the 
chance of aHergen-specific T ceHs meeting their targets. The first ceHs affected by skin 
contact, i.e. keratinocytes and LC, are thought to represent major sources of pivotal 
mediators such as IL-1P and TNF-a [45, 208). First, as described in "Hapten-Induced 
Activation of AHergen-Presenting CeHs", these cytokines cause hapten-bearing LC to 
mature and migrate towards the dermis [33, 47]. But, these cytokines also cause 
( over )expression of adhesion molecules on dermal postcapillary endothelial ceHs, and 
loosen interceHular junctions. Thereby, extravasation of leucocytes, including aHer­
gen-specific T ceHs, is strongly promoted [ 208-211]. Moreover, haptens can stimulate 
nitric oxide (NO) production of the inducible NO-synthase (iNOS) of LC and ker­
atinocytes [212-214], which contributes to local oedema, vasodilatation, and ceH ex­
travasation [212, 214]. 

Histopathological analyses support the view that the major causative events take 
place in the papillary dermis, close to the site of entry of aHergen-specific T ceHs, for 
instance at hair follicles, where haptens easily penetrate and blood capillaries are 
nearby [215]. Here, perivascular mononuclear ceH infiltrates develop, giving the high­
est chance of encounters between aHergen-presenting ceHs and specific T ceHs. Once 
triggered, extravasated T ceHs will readily enter the lower epidermallayers, in which 
haptenized keratinocytes produce lymphocyte-attracting chemokines, like CXCLlO 
(IP-10) [206] . Subsequently, since memory T ceHs can also be triggered by 'non-pro­
fessional' APC, including KC, fibroblasts, and infiltrating mononuclear ceHs, ACD re­
activity is amplified in the epidermis [95, 97, 201). Together, these events result in the 
characteristic epidermal damage seen in ACD, such as spongiosis and hyperplasia. 
Notably, in ongoing ACD reactions, the production of chemokines attracting lympho­
cytes and monocytes/macrophages, in addition to the production of cytokines, adds 
to the non-specific recruitment and activation of leucocytes [59, 216, 217). Thus, like 
the very early events in the effector phase reaction, the final response to a contact al­
lergen is antigen-non-specific. It is therefore not surprising that aHergic and irritant 
reactions are histologically alike. 

Early Phase Reactivity. The role of an antibody-mediated early phase reaction in the 
development of ACD is still unclear in man, although Askenase and his coHeagues 
have generated robust data to support this view in murine models [218-221]. Hapten­
specific IgM, produced upon immunization by distant hapten-activated B-1 ceHs [222, 
223), can bind antigen early after chaHenge [222, 224) and activate complement [225]. 
The resulting C5a causes the release of serotonin and TNF-a from local mast ceHs and 
platelets, leading to vascular dilatation and permeabilization, detectable as an early 
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ear swelling peaking at 2 h [221, 226, 227]. Furthermore, C5a and TNF-a induce the 
upregulation of adhesion molecules on local endothelial cells [228, 229], thereby con­
tributing to the recruitment of T cells in hapten challenge sites [ 221, 229]. In addition, 
human T cells were recently found to express the C5a receptor and are chemoattracted 
to endothelium-bound C5a [230] . However, antibodies against most contact allergens, 
including nickel, are only occasionally detectable in man, arguing against humoral 
mechanisms playing more than a minor role in clinica! ACD [231, 232). In addition to 
an auxiliary role of humoral immunity, similar effects may be mediated by allergen­
specific T cells with an unusual phenotype (CD3-CD4-CD8-Thy1+), which recognize 
the hapten and, within 2 h of hapten application were found to elicit an early-phase 
response [220]. Also, y8 T cells might contribute in a non-antigen-specific, probably 
non-MHC-restricted manner, to (early) elicitation responses [233-236]. 

T-Cell Patrol and Specificity ofT-Cell Infiltrates. Whereas early non-specific skin reac­
tivity to contact allergens is pivotal for both sensitization and elicitation, full-scale de­
velopment of ACD, of course, depends on allergen-specific T cells within the (epi)der­
mal infiltrates. In healthy skin there is a constant flow of memory T cells from the der­
mis towards the draining lymph nodes: about 200 T cells/h/cm2 skin [55]. Since one 
single antigen-specific T cell can already trigger visible skin inflammation [189), ran­
domly skin-patrolling memory/effector T cells might account for the initiation of the 
allergen-specific effector phase. However, since frequencies ofhapten-specific T cells in 
sensitized individuals may still remain below 1 in 1000, this does not seem tobe a re­
alistic scenario. Thus, augmented random and/or specific T-cell infiltration accompa­
nies the development of ACD. Apparently, local chemokine release is pivotal in this re­
spect [237). The question concerning the specificity of ACD T-cell infiltrates has so far 
received little attention. In a guinea-pig model, preferential entry of dinitrochloroben­
zene (DNCB)-specific T cells was observed within 18 h after elicitation of skin tests 
with DNCB, as compared to non-related compounds [238] . Probably, extravasation of 
hapten-specific T cells benefits from T cell receptor-mediated interactions with en­
dothelial MHC molecules, presenting hapten penetrated from the skin. Within minutes 
after epicutaneous application, hapten can indeed be found in dermal tissues and on 
endothelial cells [192, 239, 240). Interestingly, whereas preferential entry may already 
contribute to extraordinarily high frequencies of allergen-specific T cells (within 48 h 
up to 10%) [135, 187), at later stages, when the ACD reaction fades away, the local fre­
quency of allergen-specific T cells may increase even further, due to allergen-induced 
proliferation and rescue from apoptosis. Thus, at former skin reaction sites these cells 
can generate 'local skin memory' (see "Flare-up and Retest Reactivity"). 

Effector T-Cell Phenotypes. The de bate on phenotypes of effector T cells in ACD is still 
ongoing, although recent studies have shed light on longstanding issues. This certainly 
holds true for expression of membrane molecules determining lymphocyte-migra­
tion patterns. Once released from reactive skin-draining lymph nodes to the blood, ef­
fector T cells express increased levels of molecules mediat ing adhesion to peripheral 
vascular endothelia, e.g. the cutaneous lymphocyte antigen CLA [241-243]. Notably, 
the same molecule is used by precursor LC to find their way to the skin [244]. To what 
extent other cellular adhesion molecules, associated with T-cell differentiation and 
maturation, in particular the low-molecular-weight CD45 isoforms, contribute to mi-
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gration into skin-inflammatory foci is still unclear [245, 246]. Tissue-bound ligand 
molecules clearly involved in lymphocyte extravasation and extravascular migration 
in the skin are fibronectin and collagens [247-250]. 

Since cutaneous infiltrates show a clear preponderance of CD4+ T cells, it is not 
surprising that these cells have most often been held responsible for mediating ACD. 
Nevertheless, as discussed in "Recognition of Allergen-Modified Langerhans Cells by 
Specific T Cells", infiltrates contain both allergen-specific CD4+ and CD8+ T cells [251, 
252]. The latter might mediate skin inflammation through killing of hapten-bearing 
target cells. Indeed, it has become clear that both CD4+ and CD8+ T cells can act as ef­
fector cells in DTH and ACD reactions [253-256] . Thus, neither of these subsets can 
be regarded simply as regulatory or suppressor cells, although both of these subsets 
may,depending on the allergen models and read-out assays, play such roles [115, 257] . 

An essentially similar conclusion holds true for T-cell subsets (whether CD4+ or 
CD8+), releasing type-1 or type-2 cytokines, or both (type O). Whereas type-1 cy­
tokines, in particular IFN-y, display well-established pro-inflammatory effects [132, 
258], IL-4, a hallmark type-2 cytokine, can cause erythema and induration, when re­
leased in the skin [259, 260]. Indeed, blockage of IL-4 can interfere with ACD [260]. 
Furthermore, analyses of skin test biopsies demonstrate the presence of not only type-
1 T cells, but also allergen-specific type-2 and type-0 T cells [116, 134, 135]. Entry of 
type-1 T cells into skin-inflammatory sites is facilitated by their expression of CCR1, 
5, and CXCR3 receptors for IFN-y-induced chemokines such as MIP-1a, MIP-1~, and 
IP-10 [59, 261, 262]. Type-2 T cells overexpress a partially different set of chemokine 
receptors, including, similar to eosinophils and basophils, CCR3, 4, and 8 [66, 263]. 
This would explain why local release of mediators commonly associated with imme­
diate allergic reactions, such as eotaxins, preferentially involve type-2 T cells. Thus, a 
picture emerges in which ACD reactions can be caused both by allergen-specific type-
1 or type-2 T cells [116, 264]. In retrospect, the downregulatory effects ofiL-4 on ACD 
reactions observed earlier in some mouse models [265] might be ascribed to acceler­
ated allergen-clearance rather than to blunt suppression. Still, both with time and re­
peated allergen-pressure, type-2 responsiveness may rapidly take over [266]. Allergen­
specific T cells isolated from skin test sites of sensitized individuals, as compared to 
blood, showed a strong bias towards type-2 cytokine profiles [134]. Additionallocal 
IFN-y release seems, however, indispensable, since for a broad panel of contact aller­
gens, clinical ACD reactions were characterized by increased expression of mRNA en­
coding IFN-y-inducible chemokines [206] . In addition, transgenic mice expressing 
IFN-y in the epidermis showed strongly increased ACD reactivity [267]. 

Downregulatory Processes. Resolution of ACD reactions and risk factors for the de­
velopment of chronicity are not yet fully understood. Of course, if the allergen source 
is limited, as with skin testing, local concentrations of allergen usually rapidly de­
crease, thus taking away the critica! trigger of the ACD reaction cascade. Since even 
ACD reactions due to chronic exposure to allergen seldom result in permanent tissue 
destruction and scarification, immunoregulatory factors most likely contribute to 
prevention of excessive cytotoxicity and fatal destruction of the basal membrane. 
Both IL-1 and heparinase, secreted from activated keratinocytes and T cells, protect 
keratinocytes from TNF-a-induced apoptosis [268, 269]. Moreover, activated effector 
T cells can undergo activation-induced cell death (AICD) during the resolution phase 
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[270]. Notably, pro-inflammatory type-1 T cells, expressing high levels of Fas-ligand 
and low amounts of apoptosis-protecting FAP-1 protein, are more susceptible to AICD 
than type-2 cells [271]. This may partly explain the shift towards type-2 reactivity that 
is observed upon prolonged allergen exposure [266]. Moreover, during the late phase 
of ACD, keratinocytes, infiltrated macrophages and T cells start producing IL-10 
[272-274], which has many anti-inflammatory activities, including suppression of 
antigen-presenting cell and macrophage functions [110, 275]. In addition, the release 
of factors, such as PGE2 and TGF-~, derived from activated keratinocytes and infil­
trated leucocytes, e.g. type-3 T cells, contribute to dampening of the immune response 
[276, 277]. Release of PGE2, on the one hand, inhibits production of pro-inflammatory 
cytokines [163, 278] and, on the other hand, activates basophils [279]. These may con­
stitute up to 5%-15% of infiltrating cells in late phase ACD reactions [280] and are 
also believed to contribute to downregulation of the inflammatory response [281, 
282]. TGF-~ silences activated T cells and inhibits further infiltration by downregu­
lating the expression of adhesion molecules on both endothelial and skin cells [109]. 
Regulatory cells producing these suppressive mediators might even predominate in 
skin sites, frequently exposed to the same allergen, and known to show local (allergen­
specific) hypo-responsiveness [283]. 

Conclusions. ACD reactions can certainly be mediated by classical effector cells, i.e. al­
lergen-specific CD4+ type-1 T cells which, upon triggering by allergen-presenting 
cells, produce IFN-y to activate non-specific inflammatory cells like macrophages. 
However, CD8+ T cells, and other cytokines, including IL-4, can also play major roles 
in ACD. The conspicuous difference with DTH reactions induced by intradermal ad­
ministration of protein antigens, i.e. the epidermal infiltrate, can largely be attributed 
to hapten-induced chemokine release by keratinocytes. 

Flare-up and Retest Reactivity 

Flare-up Phenomena. Flare-up reactivity of former ACD and patch test reaction sites 
is sometimes observed [284-286]. From the basic mechanisms of ACD, it can be in­
ferred that allergen-specific flare-up reactions depend either on local allergen or T­
cell retention at these skin sites. Flare-up reactions due to locally persisting allergen 
can readily be observed in man, when from about 1 week after primary sensitization, 
sufficient effector T cells have entered the circulation to react with residual allergen at 
the sensitization site [287]. Pre-existing allergic reactivity and, thus, positive reactiv­
ity to formaldehyde apparently potentiated primary sensitization to penicillin, caus­
ing the other, previously negative, penicillin patch test sites to fiare up from about 
1 week after skin testing. Local allergen retention, however, is usually of short dura­
tion only. In experimental guinea-pig studies using DNCB, chromium and penicillin 
allergens for sensitization, and skin testing at different days before or after sensitiza­
tion, we never observed allergen retention in the skin to mediate flare-up reactions for 
periods exceeding 2 weeks (Scheper et al., unpublished results). 

Local Skin Memory. In contrast, allergen-specific T cells may persist for at least sev­
eral months in the skin (Fig. 2.9) [288]. Thus, locally increased allergen-specific hy-
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Fig. 2.9. Local skin memory. In former allergic contact dermatitis sites a few hapten-specific 
T cells can remain, mainly close to dermal dendritic cells (DC). Retest reaction: renewed hapten 
contact can induce a rapid onset of an erythematous reaction, sparked off by the residual hap­
ten-specific T cells. KC, keratinocyte; LC, Langerhans cell 

perreactivity, detectable through either accelerated 'retest' reactivity (after repeated 
allergenic contacts at the same skin site) or flare-up reactivity (after repeated allergen 
entry from the circulation, e.g. derived from food), may be observed for long periods 
of time at former skin reaction sites [289-292). Typically, the erythematous reactions 
peak between 2 h and 6 h after contact with the allergen. Histological examination of 
such previous skin reaction sites shows that only a few T cells remain present during 
such periods. The remarkable flare-up reactivity at such sites can be understood by 
considering that just one specific effector T cell can be sufficient to generate macro­
scopic reactivity [ 189] . Moreover, a very high frequency of the residual T cells may be 
specific for the allergen, as discussed in "The Effector Phase of Allergic Contact Der­
matitis". Notably, with higher allergen doses, in highly sensitized individuals, unre­
lated skin test sites may show flare-up reactions [288] and even generalized erythe­
matous macular eruptions can be observed [293] . The latter reactivities are probably 
a corollary of the fact that recently activated T cells show strong expression of adhe­
sion and homing molecules, e.g. CLA and chemokine receptors, such as CCRS, facili­
tating migration into peripheral tissues and thus allergen-specific T cell patrol in the 
skin [243, 262, 294] . Upon allergen entry from the circulation, these allergen-specific 
T cells could mediate generalized erythematous reactions. 

Recently, we have explored the possibilities of exploiting the specific retest/'skin 
memory' phenomenon in both guinea-pig models and man, to differentiate between 
concomitant sensitization and cross-reactivity [295-298]. We hypothesized that, with 
preferentiallocal retention of T cells reactive to the first allergen used for skin test-



38 THOMAS RuSTEMEYER et al. 

ing, no accelerated retest reactivity would be observed with a second, non-cross-re­
active allergen, even should the individual also be allergic to the latter allergen. How­
ever, if retests were ma de with a second allergen, cross-reactive with the same T ce lis, 
an accelerated erythematous reaction would again be observed. Indeed, this hypoth­
esis was confirmed for severa! different combinations of contact allergens, in both 
guinea pigs and man. Thus, retesting guinea pigs previously sensitized to both 
methyl methacrylate (MMA) and DNCB, and skin tested with both allergens, showed 
accelerated retest reactivities with four different methacrylate congeners on the for­
mer MMA, but not DNCB, patch test sites [295, 296]. This retest model can also be 
readily applied in clinica! practice to discriminate between cross-reactivity and con­
comitant sensitization. Matura et al. [297] confirmed positive cross-retest reactions 
for cloprednol and tixocortol pivalate, both belonging to group A, and budesonide, 
amcinonide, and triamcinolone, ali belonging to group B corticosteroids [297]. In an­
other recent study with this model, true cross-reactivity to Disperse Blue 106 and 124 
was established by Seidenari et al. [299] (see also [300]). 

Hyporeactivity: Tolerance and Desensitization 

Of course, uncontrolled development and expression of T cell-mediated immune 
function would be detrimental to the host. During evolution, severa! mechanisms de­
veloped to curtaillymph node hyperplasia or to prevent excessive skin damage upon 
persisting antigen exposure. 

Regulation of Immune Responses. First, allergen contacts, e.g. by oral or intravenous 
administration, may lead to large-scale presentation of allergen by cells other than 
skin DC (Fig. 2.10). In the absence of appropriate co-stimulatory signals (as de­
scribed in "Recognition of Allergen-Modified Langerhans Cells") naive T cells may 
be anergized, i.e. turned into an unresponsive state, eventually leading to their death 
by apoptosis (Fig. 2.11) [299-302]. With increasing density of MHC-antigen com­
plexes on the surface of APC, multiple levels of T-cell tolerance might be induced, 
with the characteristic stages called ignorance, anergy, and deletion [303-306]. Un­
responsiveness of T cells, induced by allergenic contacts at skin sites where LC/DC 
functions have been damaged, e.g. by UV irradiation, or are naturally absent, e.g. in 
the tai! skin of mice, may be ascribed to T-cell anergy, frequently associated with 
TCR/CD4 or CD8 downregulation [307-309]. Whereas such anergy reflects 'passive' 
unresponsiveness, tol eran ce by 'active' suppression may also be induced under simi­
lar circumstances [306]. Actually, even regular epicutaneous allergenic contacts not 
only induce effector T cells but also lymphocytes regulating T-cell proliferation (af­
ferently acting regulatory cells) or, with frequent skin contacts, causing decreased 
skin reactivity (regulatory cells of effector phase). Apparently, allergic contact hyper­
sensitivity is the resultant of a delicate balance between effector and regulatory 
mechanisms [283]. 

Cellular Basis of Active Tolerance. Upon preferential stimulation of regulatory cells, 
e.g. by feeding non-primed, naive individuals with contact allergens, strong and stable 
allergen-specific, active tolerance may develop [310-313]. The concept of active regu-
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Fig. 2.10. Induction of oral tolerance. Hapten ingestion, prior to potential sensitizing skin con­

tact(s), can induce hapten-specific tolerance 

latory ('suppressor') cells controlling ACD is based on the fact that, in experimental 

animal models, such allergen-specific tolerance can be transferred by lymphoid cells 

from tolerant to naive animals [236, 314]. Active suppression, as revealed by these 

adoptive cell transfers, is a critica! event in regulating T-cell responses to contact sen­

sitizers, and to ali possible peptide/protein antigens, including bacterial, autoimmune, 

and graft rejection antigens [315- 317]. 
Like effector T cells in ACD, regulatory cells are not a single subpopulation of cells. 

As outlined above, depending among other things on the nature of the allergen and 

route of exposure, ACD can be mediated by both CD4+ and CDS+ T cells, either or 

both releasing type-1 or type-2 cytokines. Probably, given a predominant effector 

phenotype for a particular allergen, each of the other phenotypes can act as regula­

tory cells [318]. Nevertheless, earlier data suggested that type-2 cytokine producing 

cells may be most prominent regulatory cells in ACD, since allergic contact hyper­

sensitivity was found to be enhanced, and tolerance reversed, by appropriately timed 

treatment with cytostatic drugs, including cyclophosphamide [319-321], preferen­

tially affecting type-2 T cells [322]. Interferons and IL-12, both impairing type-2 and 

-3 cells, were also shown to inhibit regulatory cells and to stimulate effector-cell func­

tions in mouse models [323-325]. On the other hand, in particular after mucosal al­

lergen contact stimulation, T cells predominantly producing TGF-~ (type-3 cytokine 

profile) may act as regulatory cells [326, 327]. These T cells promote anti-inflamma­

tory immunity, e.g. by switching antibody production to IgA, which mediates secre­

tory immunity and thus contributes to antigen exclusion in the lumen, e.g. of the gas-
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Fig. 2.11. The character of the APC-T cell interaction determines the immunological outcome. 
Sensitization: Naive T cells, activated by antigen-presenting cells (APC) providing both hapten­
specific ('signal l') and appropriate costimulatory ('signal 2') signals, develop into effector 
T cells, characterized by type-0, -1, and -2 cytokine secretion profiles. Tolerance: In the absence 
of appropriate costimulatory signals, immunological tolerance may develop. With increasing 
density of MH C-hapten complexes on the surface of APC, activating 'signal 1' T -ceH pathways, 
multiple levels of T -cell tolerance might be induced 

tro-intestinal tract [328, 329]. Of note, TGF-~ strongly suppresses development of 
both type-1 and -2 effector T cells, and can silence T cells in a semi-nai:ve state [109]. 
Whether these type-3 T cells, or their precursors, are more sensitive to cytostatic 
drugs is not known. 

Regulatory Mechanisms of the Effector Phase. A critica! feature of the regulatory prin­
ciples involving mutual regulation of T-cell subpopulations by type-l and -2 cy­
tokines, and both of these in turn by TGF-~-producing T cells, is that their function is 
observed foremost in primary immune responses (Fig. 2.6). Regulation may also per­
tain to the actual ACD reactions, i.e. the effector phase. Several 'suppressive' pathways 
could lead to decreased allergic skin reactivity, including hapten removal by increased 
blood flow and metabolism by cells of the inflammatory infiltrate. Other regulatory 
mechanisms can also be involved, such as CD8+ T cells, acting either as suppressor 
( CD28-CD 11 b+) or cytotoxic ( CD28+CD 11 b-) T cells [ 330, 331], which may downreg­
ulate skin reactivity by focusing on allergen-presenting DC as their targets [331]. 

Redundancy ofTolerance Mechanisms. Besides these types of regulatory T cells, pro­
ducing different cytokines, or exerting distinct cytotoxicities, other mechanisms may 
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also contribute to immune regulation and tol eran ce. Apparently, the risk of excessive 
immune reactivity should be very low. These mechanisms involve allergen-specific 
T cells shedding truncated T-cell receptors, acting as antagonists and blocking aHer­
gen presentation [332], and high-dose allergen-induced anergic T cells [306]. Possi­
bly, the latter cells, by actively suppressing DC functions, can function as 'active' sup­
pressor cells [306, 333] . Interestingly, DC, becoming suppressive by this mechanism 
[306] or by suppressive cytokines like IL-10 and PGE2 [163, 334, 335] , can, in turn, act 
themselves as suppressor cells by conferring antigen-specific anergy to subsequently 
encountered T cells [336-338]. Although, at present, consensus has been reached 
about a critical role of regulatory/suppressor cells in the development and expression 
of ACD, the relative contributions of each of the various mechanisms are still far from 
clear. Potential therapeutic applications of regulatory cells in various disorders, such 
as allergic contact dermatitis and autoimmune diseases, are currently under investi­
gation. 

Induction of Lasting Tolerance Only in Nai"ve Individuals. Both clinical and experi­
mental findings indicate that full and persistent tol eran ce can only be induced prior 
to any sensitizing allergen contacts [311, 339, 340]. Upon primary allergenic con­
tacts, naive T cells differentiate to produce polarized cytokine profiles (Fig. 2.6). 
Once polarized, however, T -cell profiles are irreversible, due to loss of cytokine 
(receptor) genes, or at least very stable, due to the mutually suppressive activities of 
T -cell cytokines. An important corollary of the latter concept of active suppression 
is the bystander effect, in which the response to any antigen can be downregulated 
by immunosuppressive cytokines acting at a very local tolerogenic microenviron­
ment [341]. The latter was observed for both protein antigens [342, 343] and 
methacrylate contact allergens [314]. The concept may also explain why even non­
sensitizing doses of nickel applied to the skin prevented subsequent tolerance in­
duction by feeding the metal allergen [344]. This may have contributed to incom­
plete tolerance induction in earlier clinical studies when feeding with poison ivy­
/oak-derived allergens [345]. Apparently, the progeny of naive allergen-specific 
cells, once 'on the stage', have been triggered to a 'subclinical' degree towards effec­
tor cells and become refractory to regulatory cell action. Indeed, to our knowledge, 
permanent reversal of existing ACD in healthy individuals has, as yet, never been 
achieved. Nevertheless, as described above, effector cells still seem susceptible, 
though transiently, to the downregulation of allergen reactivity, as was observed in 
desensitization procedures [344, 346]. 

Transient Desensitization in Primed Individuals. For dermatologists, methods by 
which patients might be desensitized for existing ACD would be a welcome addition 
to the currently prevailing symptomatic therapies, and investigators have made a wide 
variety of attempts to achieve this goal. Unfortunately, therapeutic protocols involving 
ingestion of poison ivy allergen, penicillin, or nickel sulphate were of only transient 
benefit to the patients [345-349] . Similarly in animal models, only a limited and tran­
sient degree of hyposensitization was obtained by Chase [350] when feeding DNCB­
contact-sensitized guinea pigs with the allergen, whereas, for achieving persistent 
chromium-unresponsiveness in presensitized animals, Polak and Turk [351] needed a 
rigorous protocol involving up to lethal doses of the allergen. As outlined above, 
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mechanisms underlying specific desensitization in ACD probably depend on direct 
interference of allergen with effector T-cell function, by blocking or downregulating 
T-cell receptors, leading to anergy [352]. As the onset of desensitization is immediate, 
no suppressor mechanisms may initially be involved. Apparently in the absence of LC, 
MHC class 11-positive keratinocytes can serve as APC and are very effective in ren­
dering allergen-specific effector cells anergic [353]. Moreover, at later stages active 
suppression may come into play resulting from secondary inactivation of DC function 
by anergized T cells [306]. Nevertheless, major problems with in vivo desensitization 
procedures relate to the refractoriness of effector T cells to regulatory cell functions, 
and the rapid replacement of anergized effector cells by naive T cells from relatively 
protected peripherallymphoid tissues, which can be the source of a new generation of 
effector cells upon sensitizing allergen contacts. The same conclusions can be drawn 
from attempts to achieve local desensitization. It was found that local desensitization 
by repeatedly applying allergen at the same skin site did not result from local skin 
hardening or LC inactivation, as local reactivity to an unrelated allergen at the site was 
unimpaired [283] . Persistence of cellular infiltrates, in the absence of erythematous 
reactivity, at a desensitized skin site could reflect local anergy, but also locally active 
regulatory cells. Upon discontinuation of allergen exposure, however, local unrespon­
siveness was rapidly (within 1 week) lost. Collectively, this data illustrates the prob­
lems encountered in attempting to eradicate established effector-T-cell function, not 
only in ACD but also in autoimmune diseases [315]. 

Summary and Conclusions 

Extensive research has led to a better understanding of the mechanisms of ACD. The 
basic immunology of ACD is now well-defined, including T-cell migratory patterns, 
recognition of distinct allergens, interactions with other inflammatory cells to gener­
ate inflammation, and cytokine profiles. But new complexities have emerged. For in­
stance, in contrast to earlier belief, many of the currently known T -cell subpopulations 
can act either or both as effector and regulatory cells, depending on the nature of the 
allergen, the route of entry, frequency of exposure, and many other, still ill-defined 
factors. In particular, the poor understanding of regulatory mechanisms in ACD still 
hampers further therapeutic progress. So far, no methods of permanent desensitiza­
tion have been devised. 

Nevertheless, recently defined cellular interaction molecules and mediators pro­
vide promising targets for anti-inflammatory drugs, some of which have already en­
tered clinica! trials. Clearly, drugs found tobe effective in preventing severe T-cell-me­
diated conditions, e.g. rejection of a vital organ graft, should be very safe before their 
use in ACD would seem appropriate. To date, prudence favours alternative measures 
to prevent ACD, be it through legal action to outlaw the use of certain materials or 
through avoiding personal contact with these materials. In the meantime, for difficult­
to-avoid allergens, further studies on the potential value of tolerogenic treatments 
prior to possible sensitization seem warranted. 
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