
4 Transverse Beam Emittance Measurement
and Control

The beam emittance εxyz represents the volume of the beam occupied in the
six dimensional phase space (x, x′, y, y′, φ, δ), where x and y are the trans-
verse positions, x′ and y′ are the transverse angles, φ is the time-like variable
representing the relative phase of the beam, and δ is the relative beam mo-
mentum error. Using the notation of the beam matrix Σbeam introduced in
Chap. 1, the 6-dimensional emittance is

εxyz = det Σ
xyz
beam . (4.1)

Considering now only the horizontal plane, the corresponding 2-dimensional
horizontal emittance is obtained from

εx =

√
〈x2〉〈x′2〉 − 〈xx′〉2 , (4.2)

where the first moments have been subtracted, and the average (〈. . .〉) is
taken over the distribution function of the beam; recall also (1.27–1.29). An
analoguous expression holds for the vertical plane. For a coupled system, the
general form of (4.1) must be taken.
Control of the beam emittance and prevention of emittance dilutions are

mandatory for achieving high brilliance in light sources and high luminosity in
colliding beam accelerators. Some sources of emittance dilution, e.g., beam-gas
scattering, are inevitable and can be reduced only via hardware improvements.
In the same vane, processes involving space-charge dilutions, which constitute
a predominant limitation for low-energy ion or proton beams, have after-the-
observation been treated by fundamental changes in the acceleration optics, as
illustrated, e.g., by the FNAL linac upgrade, and a new booster ring at BNL.
Another class of dilutions involving man-made sources, e.g., component vibra-
tion, ground motion, power supply regulation, etc., may be curable using so-
phisticated measurement devices and feedback or feedforward schemes. In this
case, the crucial ingredient leading to improved performance is the detection
of the offending presence, e.g., using model-independent analysis, as discussed
in Chap. 2, or more commonly analyses in the frequency domain.
An interesting example of the latter case is shown in Fig. 4.1. Plotted is

the Fourier transform of pulse-by-pulse BPM measurements from the SLC
linac. The data evidence a strong component at about 1 Hz which seemed
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100 4 Transverse Beam Emittance Measurement and Control

to partly explain the 1 Hz ‘wave’ in the backgrounds recorded by the SLD
detector. However, at this time, the data acquisition was limited to 30 Hz
(with a beam repetition frequency of 120 Hz). As a result, the sampled data
were aliased; that is, the Fourier line appearing at 1 Hz corresponded actually
to 59 Hz as verified later with a faster (120 Hz) data acquisition speed. The
source of these excitations was eventually traced back to asynchronous (to the
beam) operation of the cooling water pumps for the linac quadrupoles. Once
the disturbance was identified1, corresponding measures were implemented
– in this case, damping of the vibrations resulting from the turbulent water
flow and modifications to the pump impellers – and the impact on the beam
was correspondingly reduced. Identification of the error sources evidenced by
the remaining peaks in Fig. 4.1 was also partially successful [1].

Fig. 4.1. Frequency spectrum of beam motion in the SLC linac, revealing the
contribution of water pumps operating at 59 Hz [1]

Other common situations which lead to emittance dilutions arise from
poor setting of the accelerator including poor “matching” between acceler-
ator subsystems, residual betatron coupling (which may also be caused by
unknown field errors), or spurious dispersion which arises either directly from
magnet misalignments or from imperfect attempts to correct for alignment
errors by one-to-one steering. The latter may arise from insufficient knowledge
of the accelerator optics (as limited by the BPM resolution, for example) or

1 which proved difficult since in fact there actually was at that time a 1 Hz com-
ponent on the beam introduced incorrectly by the orbit feedback loops as these
also reacted on the aliased frequency
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may arise intrinsically from the alignment procedure itself (as is the case,
e.g., of using the one-to-one steering algorithm).
Finally, there are processes which are in practice hard to predict that

also lead to emittance dilutions. Such processes, predominant especially with
high beam intensities, include, at high single-bunch charge both transverse
and longitudinal wakefields effects leading to beam instabilities in circular
accelerators and to beam centroid excursions in linear accelerators, and at
high single-bunch charge and high total current also beam instabilities arising
from ions or electron clouds.
In all the above cases, the diagnosis is precedented by an accurate meas-

urement of the beam emittance. In this chapter, standard emittance meas-
urement techniques will be outlined in a step-by-step manner. Then some
methods used to minimize the beam emittance by changing the underlying
accelerator optics will be reviewed.

4.1 Beam Emittance Measurements

In this section we describe not single particle transport, but transport of
the beam as a whole. The beam quality will be characterized by the beam
emittance which is often measured with reference to a particular plane of
interest; i.e., the horizontal, vertical, or longitudinal emittance. Methods for
measuring the beam emittance and for parametrizing the degree of mismatch
will be outlined.
We note that many novel measurement techniques have recently been de-

veloped for measuring very small beam sizes including interferometric meth-
ods, applied in the beamline at the SLAC final focus test facility [2] or in
the ATF damping ring [3], or tomographic phase space reconstruction ap-
plied at the TTF linac [4]. A recent review of similar topics is given in [5]. In
this section we restrict the discussion to emittance measurement techniques,
which are based on commonly used and relatively simple hardware. For illus-
tration we describe measurements and present experimental data obtained
using wire scanners although the measurement principles have been similarly
applied with the use of fluorescent screens.

4.1.1 Single Wire Measurement

The beam emittance can be measured by varying the field strength of a
quadrupole located upstream of a single wire or screen. In general this will
lead to trajectory and beam-size changes downstream, and, hence, is referred
to as an “invasive” measurement. The measurement could be made less inva-
sive by simultaneously adjusting another quadrupole downstream of the wire
scanner, so as to compensate for the change in the beta function induced by
the first quadrupole. This has been rarely done in the past, but is a proposed
scheme for future linear colliders.
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The total transfer matrix of interest here is R = SQ, where S denotes the
known transfer matrix between the quadrupole and the wire, and Q is the
transfer matrix of the quadrupole:

Q =

(
1 0
K 1

)
, (4.3)

where we have invoked the thin-lens approximation, which is valid if the
length of the quadrupole is short compared to its focal length f = 1/K.
After matrix multiplication, one obtains

R =

(
S11 +KS12 S12
S21 +KS22 S22

)
, (4.4)

where the coefficients Sij are the components of the matrix S. Expanding
the matrix product for the 2× 2 beam matrix Σxbeam = (SQ)Σ

x
beam,0(SQ)

T

and equating the (1,1) elements on both sides, the square of the horizontal
beam size follows as

Σ11(= 〈x
2〉) = (S11

2Σ110 + 2S11S12Σ120 + S12
2Σ220)

+ (2S11S12Σ110 + 2S12
2Σ120)K + S12

2Σ11K
2 , (4.5)

which is quadratic in the field parameter K.
To make use of these results in an emittance measurement, the following

procedure is often employed:
1. For each value of quadrupole field strength K, the wire is scanned and the
amplitude of the response measured by a detector is obtained as a function
of wire position.
2. For each wire scan at fixed K, the distribution is fitted with a Gaussian
of the form

f(x) = f0 + fmaxe
− (x−〈x〉)

2

2〈x2〉 , (4.6)

where f0 is the baseline level offset and fmax is the peak value of the Gaussian
distribution.
3. The fitted beam size 〈x2〉 is plotted as a function of K.
4. The result is fitted with a parabola. One parametrization for the fit [6] is

Σ11 = A(K −B)
2 + C

= AK2 − 2ABK + (C +AB2) . (4.7)

5. The Σ matrix is reconstructed by equating coefficients of (4.5) and (4.7):

A = S212Σ11 , (4.8)

−2AB = 2S11S12Σ11 + 2S
2
12Σ12 , (4.9)

C +AB2 = S11
2Σ11 + 2S11S12Σ12 + S12

2Σ22 , (4.10)
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and solving for Σ11, Σ12 (= Σ21), and Σ22. The results are

Σ11 = A/S12
2 , (4.11)

Σ12 = −
A

S12
2

(
B +

S11
S12

)
, (4.12)

Σ22 =
1

S12
2

[
(AB2 + C) + 2AB

(
S11
S12

)
+A

(
S11
S12

)2]
. (4.13)

6. The beam emittance is then calculated from the determinant of the beam
matrix εx =

√
det Σxbeam and the errors are propagated:

det Σxbeam = Σ11Σ22 −Σ12
2 (4.14)

= AC/S412 , (4.15)

so that
εx =

√
AC/S212 . (4.16)

Fig. 4.2. Example transverse beam
emittance measurements from the
SLC prior to injection into the main
linac using a single wire. The fit pa-
rameters for the horizontal emittance
(top) were A = 3494 ± 52, B =
−118.8 ± 0.03, C = 3.2 × 104 ± 297
with χ2/dof = 1.5 giving εx = 12.9±
0.2 nm-rad or γεx = 30.1 ± 0.4 μm-
rad. In the vertical plane (bottom),
A = 158.5± 3.5, B = −129.3± 0.08,
and C = 5.1× 103± 103 with χ2/dof
= 4.6 giving εy = 1.71± 0.02 nm-rad
or γεx = 3.98± 0.04 μm-rad
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The above results also give the beam-ellipse parameters αx, βx, and γx:

βx =
Σ11
ε
=

√
A

C
, (4.17)

αx = −
Σ12
ε
=

√
A

C

(
B +

S11
S12

)
, (4.18)

γx =
S12

2

√
AC

[
(AB2 + C) + 2AB

(
S11
S12

)
+A

(
S11
S12

)2]
. (4.19)

As a useful check, the beam-ellipse parameters should satisfy (βxγx−1) = α2x.
An example of emittance measurements in the two transverse planes x

and y is shown in Fig. 4.2. Notice that the optics at the wire scanners has
been optimally chosen to allow simultaneous measurement of the beam waists
in both transverse planes.

4.1.2 Multiple Wire Measurement

The beam emittance in a transport line or linac may be measured (in
many applications noninvasively) using multiple wire scanners. Here, the
quadrupole gradients are fixed, but the R matrices between s0 and the dif-
ferent wire scanners (or other beam-size monitors) are different. If there are
no coupling elements, three measurements using three wire scanners are re-
quired. With coupling, four wire scanners are needed (in this case each wire
scanner should be equipped with several wires oriented at different angles in
the transverse plane, e.g., a horizontal, a vertical and a wire oriented at 45◦

in the case of ‘round beams’ with equal horizontal and vertical beam size).
The optimum wire locations for maximum sensitivity (without coupling) are
such that the separation between wires corresponds to a difference in beta-
tron phase advance Δμ of 90◦/Nw, where Nw is the number of wires used in
the measurement.
The matrix equation to be solved is

⎛
⎜⎜⎜⎜⎝
(σx

(1))2

(σx
(2))2

(σx
(3))2

. . .
(σx

n)2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

(R11
(1))2 2R

(1)
11 R

(1)
12 (R12

(1))2

(R11
(2))2 2R

(2)
11 R

(2)
12 (R12

(2))2

(R11
(3))2 2R

(3)
11 R

(3)
12 (R12

(3))2

. . .

(R11
(n))2 R

(n)
11 R

(n)
12 (R12

(n))2

⎞
⎟⎟⎟⎟⎟⎠
⎛
⎝ β(s0)ε−α(s0)ε
γ(s0)ε

⎞
⎠ . (4.20)

This equation is applicable for both a multiple wire measurement or for
a quadrupole scan. The superindex within parenthesis refers to the differ-
ent different measurements; i.e., it either corresponds to the setting of some
quadrupole magnet, in the case of a quadrupole scan, or to a different wire
scanner or monitor, in the case of a multi-wire emittance measurement. The
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superindex ‘2’ is meant to denote the square of the quantity. At least 3 meas-
urements are required in order to solve for the three independent parameters
ε, β(s0) and α(s0).
To simplify the notation, let us denote the n × 3 matrix on the right-

hand side of (4.20) as B, the n-component vector on the left side by Σx =

(σ
(1)2
x , ..., σ

(n)2
x ), and the 3-component vector on the far right by

o = (β(s0)ε,−α(s0)ε, γ(s0)ε) . (4.21)

The equation is then
Σx = B · o . (4.22)

The problem of determining the elements of the vector o can be solved
by a simple least-squares fit. We have to minimize the sum

χ2 =
n∑
l=1

1

σ2
Σ
(l)
x

(
Σ(l)x −

3∑
i=1

Blioi

)2
, (4.23)

where σ
Σ
(l)
x
denotes the rms error of Σ

(l)
x = σ

(l)2
x . This error is obtained from

the fit to the lth wire scan which determines the rms beam size σ
(l)
x .

We find it convenient to normalize the coordinates Σ(l) so that the rms
error is 1, introducing

Σ̂(l)x =
Σ
(l)
x

σ
Σ
(l)
x

, (4.24)

and

B̂li =
Bli
σ
Σ
(l)
x

. (4.25)

Forming a symmetric n× n covariance matrix

T = (B̂t · B̂)−1 , (4.26)

the least-squares solution to (4.22) is

o = T · B̂t · Σ̂x , (4.27)

and the error of any scalar function f(o) is given by

σ(f)2 = (∇of)
t ·T · (∇of) . (4.28)

In particular, the errors of the parameters o themselves are

σoi =
√
Tii . (4.29)

Once the components of o are known, we still need to perform a simple
nonlinear transformation to infer ε, β, and α:
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ε =
√
o1o3 − o22 , (4.30)

β = o1/ε , and (4.31)

α = −o2/ε . (4.32)

The error propagation is straightforward, using (4.28).
A possible procedure for the multiple wire emittance measurement is as

follows:
1. Each wire is scanned to obtain detector counts versus wire position x.
2. For each wire scan, the distribution is fit with a Gaussian using (4.6).
3. The Σ matrix is reconstructed using (4.20), the transfer matrix elements
Ri from the model, and the σi from the measurements.
4. The emittance is calculated ε =

√
det Σbeam.

5. The ellipse parameters α = −Σ12/ε, β = Σ11/ε, and γ = Σ22/ε are
calculated, if desired.

4.1.3 Graphics

Increased operational efficiency may be obtained from a meaningful graphi-
cal representation of the experimental data. In the multiple wire emittance
measurement it is useful to project the measurements to a single point along
the accelerator and to plot the normalized phase space. The emittance ε,
multiplied by π, corresponds to the area of the ellipse parametrized by

ε = γxx
2 + 2αxxx

′ + βxx
′2 . (4.33)

Since βγ = 1 + α2,

ε =
1

βx
[x2 + (αxx+ βxx

′)2] =
1

βx
(x2 + px

2) , (4.34)

where px = αxx+ βxx
′ is the coordinate orthogonal to x.

A succinct representation of the measured beam emittances is obtained
by the following procedure (applied at the SLC), which displays the data in
the normalized phase space, so that deviations from the design values are
immediately obvious. The wire orientations are also plotted to indicate the
phase space coverage provided by the wires:
1. Plot the design rms ellipse in the coordinates(

x
√
βx
,
αxx+ βxx

′

√
βx

)
(4.35)

at some reference point s along the trajectory. This results in a circle. Nor-
malize the design ellipse to unit radius.
2. Plot also the ellipse obtained from the measurements of the ellipse param-
eters transposed to the reference point. Apply the same normalization as in
step 1.
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3. Using the lattice model, project each beam-size measurement back to the
reference point and add the result as a line to the figure; that is, for each
point (σx,w, x

′
w), where σx,w is the beam size measured at the wire, apply

an inverse mapping to the reference point:(
x
x′

)
ref point

= R−1
(
σx,w
x′w

)
, (4.36)

where R is the 2×2 transport matrix from the reference point to the location
of the wire. Here x′w represents the undetermined angle variable (divergence)
at the wire which parametrizes the location along the straight line in the
phase space defined by (4.35). The slope of this line is related to the phase
advance between the reference point and the wire.
An accompanying display of numbers should summarize the measure-

ments which might include the measured and expected beam widths at each
of the wires, the measured and design beam emittances, as well as the beam
intensity. In addition, a measure of the degree of “mismatch” is useful. This
will be further discussed in the next section.

Fig. 4.3. Graphics output of multiple-wire transverse beam emittance measure-
ment in the injector linac at the SLC

An example of this graphics is shown in Fig. 4.3. The corresponding raw
data are given in Fig. 4.4. From Fig. 4.3 it is immediately obvious that while
the measured ellipse has roughly the same emittance as the design circle (the
horizontal emittance is 208.8 ± 9.9 [mm-mrad] compared to the design of
200 [mm-mrad], the vertical emittance is 323± 26.7 [mm-mrad] compared to
the design of 200 [mm-mrad]), the ellipse orientation is incorrect. As will be
shown in the next section, if this beam were allowed to propagate uncorrected,
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Fig. 4.4. Raw data showing individual wire scans used in the summary display of
Fig. 4.3 and the “asymmetric Gaussian” fits of (4.37)

the final emittance titled Bmagε would be 390.0 ± 10.2 [mm-mrad] in x and
543.3± 13.2 [mm-mrad] in y. The emittance dilution factor Bmag represents
the degree of the mismatch. From Fig. 4.3 can be deduced immediately the
degree of phase space coverage spanned by the wires. In the horizontal plane,
for example, the wire orientations are about 0◦, −45◦, −22.5◦, and −67.5◦,
which is ideal for a 4-wire emittance measurement.
The “measured ellipse”, that is the ellipse that was reconstructed from the

beam widths obtained by Gaussian fits to the individual wire scans, does not
always represent the true rms emittance of a Gaussian beam distribution.
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This can be seen by inspecting the raw data shown in Fig. 4.4. For more
complex beam distributions, a somewhat better characterization is achieved
by applying an “asymmetric Gaussian” fit to the wire-scan measurement,
in which the left and right hand sides of the measured beam profile are
approximated independently by two separate Gaussians. For example, the
fitting function used at the SLC [7] was

f(x) = f0 + fmax exp

[
−

(x− 〈x〉)2

2〈x2〉(1 + α[sign(x− 〈x〉)]

]
, (4.37)

where α represents an asymmetry factor and is zero for a perfect Gaussian2.
The σ for the left and right hand sides of the fitted distribution are σ =
〈x2〉(1 ± α). For the ellipse reconstruction the average σ was used. When
large tails are present in the raw data this more accurately represents the
beam distribution. Based on the raw data it is clear, however, that even with
the more sophisticated fitting algorithm, the fit only marginally represents
the actual distributions.
For reasonably well “matched” beams, the graphical summary display is

most useful for quick evaluation of the beam. In this example the deviations
between the design and measured ellipse in the graphics suggest that a closer
inspection of the raw data may be warranted. The “double-humps” in the
single-wire measurements are characteristic of an upstream error; a beam,
if kicked transversely, will filament, i.e., it loses coherency due to the natu-
ral spread in the phase advance between particles, resulting in an increased
emittance and the characteristic double humps.
If a wire is mounted at 45◦ with respect to x and y (a “u-plane” wire),

then it is also possible to measure the coupling between the horizontal and
vertical plane. The (4×4) Σ-matrix is

Σxybeam =

⎛
⎜⎝
Σ11 Σ12 Σ13 Σ14
Σ21 Σ22 Σ23 Σ24
Σ31 Σ32 Σ33 Σ34
Σ41 Σ42 Σ43 Σ44

⎞
⎟⎠ , (4.38)

where, for example, Σ14 represents the correlation between x and y
′. No-

tice that Σ14 �= Σ23. Whereas for the single plane uncoupled beam matrix
reconstruction a minimum of 3 measurements are required, to fully recon-
struct the coupled beam matrix a total of 10 measurements is needed. This
includes the 3 measurements in the x plane, 3 in the y plane, and 4 in the
u plane. The raw data used in such a coupled emittance measurement is
presented in Figs. 4.5–4.7. In this case the raw data are well fitted using
Gaussian fits. From these fits, using the uncoupled analysis (with only the x
and y wires) presented previously, γεx = (2.20 + / − 0.01) × 10−5 m-r and

2 with high resolution scanners this parameter may also prove useful for charac-
terizing ‘banana’ beams in future linear colliders
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Fig. 4.5. Raw data in the x-plane for emittance measurement with x−y coupling

Fig. 4.6. Raw data in the y-plane for emittance measurement with x−y coupling

γεy = (1.89+/−0.02)×10−5 m-r. Using the complete data set, and project-
ing the distributions onto the eigenplanes of the tilted beam ellipses, the fits
yielded γε1 = 2.13×10−5 m-r and γε2 = 1.71×10−5 m-r, which is in reason-
able agreement with the results obtained excluding coupling effects indicating
that the coupling is small. However, the error bars were not fully propagated.
Recent experience at the ATF has shown that proper wire orientations are
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Fig. 4.7. Raw data in the u-plane for emittance measurement with x−y coupling

critical for maximizing sensitivity particularly for flat beam measurements.
Moreover, measurement errors can strongly influence the value of the emit-
tance [8] interpreted from the approach given above. More robust tuning
procedures for minimizing the linear coupling are given in [8].

4.1.4 Emittance Mismatch

In this section we begin by explicitly computing, in two dimensions, the
transverse position and angle using the general form of the beam transfer
matrix for a periodic lattice. This result is used to calculate the individual
elements of the beam transfer matrix and to derive an expression for the
mismatch parameter Bmag [9, 10].
The parameter Bmag has an important physical meaning. If a beam is

injected into a ring or linac with a mismatch, the beam will filament until
its distribution approaches a shape that is matched to the ring or the linac
lattice. However, the filamentation causes the beam emittance to increase,
such that, after complete filamentation, the emittance is given by the product
of Bmag and the initial value of ε. The mismatch parameter is well suited for
analysis in circular machines for which the periodicity is implicit. We will see
that the same formalism is useful in describing emittance transport in linear
accelerators and transport lines as well.

Derivation of Beam Matrix Elements. According to (1.27) and after
subtracting the mean values from all coordinates, the beam matrix is

Σxbeam =

(
〈x2〉 〈xx′〉
〈xx′〉 〈x′2〉

)
. (4.39)
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From (1.25), the point-to-point transfer matrix is

Rfi =

⎛
⎝

√
βf
βi
(cosφfi + αi sinφfi)

√
βfβi sinφfi

αi−αf√
βfβi
cosφfi −

1+αfαi√
βfβi

sinφfi
√
βi
βf
(cosφfi − αf sinφfi)

⎞
⎠ ,
(4.40)

where αf and βf are the ellipse parameters at a (final) observation point f
downstream of a reference point, which is denoted by the subscript i. Here
φfi is the phase advance between the reference point and the observation
point and is equal to

φfi =

∫ sf
si

ds

β
. (4.41)

For a periodic lattice for which α = α0 and β = β0, the periodic, one turn
map, transfer matrix Rotm is given by (1.26):

Rotm =

(
cosμ+ α sinμ β sinμ
−γ sinμ cosμ− α sinμ

)
. (4.42)

The beam matrix elements after 1 iteration through the periodic lattice are

〈x2〉n = 〈x
2〉0R11

2 + 2〈xx′〉0R11R12 + 〈x
′2〉0R12

2 , (4.43)

〈xx′〉n = 〈x
2〉0R11R21 + 〈xx

′〉0[R11R22 +R12R21]

+ 〈x′
2
〉0R12R22 , (4.44)

〈x′
2
〉n = 〈x

2〉0R21
2 + 2〈xx′〉0R21R22 + 〈x

′2〉0R22
2 . (4.45)

After substitution of the matrix elements of (4.42) into (4.44–4.45), and using
cos 2ψ = cos2 ψ − sin2 ψ and sin 2ψ = 2 sinψ cosψ,

〈x2〉n =
1

2
[〈x2〉0 + 〈(αx0 + βx

′
0)
2〉]

−
1

2
[〈x2〉0

(
α2 − 1

)
+ 2βα〈xx′〉0 + β

2〈x′
2
〉0] cos 2ψ

+ [α〈x2〉0 + β〈xx
′〉0] sin 2ψ , (4.46)

〈x′
2
〉n =

1

2
[〈x′

2
〉0 + 〈(αx

′ + γx)2〉0]

+
1

2
[〈x′

2
〉0 − 〈(αx

′ + γx)2〉0] cos 2ψ

− [α〈x′
2
〉0 + γ〈xx

′〉0] sin 2ψ , (4.47)

〈xx′〉n =
1

2
[−αγ〈x2〉0 − 2α〈xx

′〉0 − αβ〈x
′2〉0]

+

[
αγ

2
〈x2〉0 + (1 + α

2)〈xx′〉0 +
αβ

2
〈x′
2
〉0

]
cos 2ψ

+
1

2
[−γ〈x2〉0 + β〈x

′2〉0] sin 2ψ . (4.48)
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Next, let

a =
β

2
[γ〈x2〉0 + 2α〈xx

′〉0 + β〈x
′2〉0] , (4.49)

b =
γ

β
a , (4.50)

c = −
α

β
a , (4.51)

and use

c1 cos 2ψ + c2 sin 2ψ =
√
c12 + c22 cos(2ψ − χ), with χ = tan

−1

(
c2
c1

)
.

(4.52)
Then,

〈x2〉n = a+
√
a2 − β2(〈x2〉0〈x′

2〉0 − 〈xx′〉0
2
) cos(2ψ + χ〈x2〉0) , (4.53)

〈x′
2
〉n = b+

√
b2 − γ2(〈x2〉0〈x′

2〉0 − 〈xx′〉0
2
) cos(2ψ + χ〈x′2〉0) , (4.54)

and

〈xx′〉n = c+

√
(〈xx′〉0 − c)2 +

(
−
γ

2
〈x2〉0 +

β

2
〈x′2〉0

)2
cos(2ψ + χ〈xx′〉0) ,

(4.55)
where the angles χ〈x2〉0 , χ〈x′2〉0 , and χ〈xx′〉0 , follow from (4.52), (4.46), (4.47),

and (4.48), respectively. Note that since ε =
√
det σ is an invariant in the

absence of filamentation,

〈x2〉n〈x
′2〉n − 〈xx

′〉2n = 〈x
2〉0〈x

′2〉0 − 〈xx
′〉20 . (4.56)

The Mismatch Parameter [9] Bmag. Dividing both sides of (4.53) by

βε0 = β
√
〈x2〉0〈x′

2〉0 − 〈xx′〉0, we have

〈x2〉n
βε0

=
a/β√

〈x2〉0〈x′
2〉0 − 〈xx′〉0

2

+

√√√√√
⎛
⎝ a/β√
〈x2〉0〈x′

2〉0 − 〈xx′〉0
2

⎞
⎠
2

− 1 cos(2ψ − χ〈x2〉0)

= Bmag +
√
B2mag − 1 cos(2ψ − χ〈x2〉0) , (4.57)

where the mismatch parameter Bmag is defined as

Bmag =
a/β√

〈x2〉0〈x′
2〉0 − 〈xx′〉0

. (4.58)
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With the ellipse parameters α, β, and γ referring to the steady-state or
equilibrium beam distribution, we have

Bmag =
1

2

[γ〈x2〉0 + 2α〈xx′〉0 + β〈x′
2〉0]√

〈x2〉0〈x′
2〉0 − 〈xx′〉0

. (4.59)

Thus, Bmag is the ratio of the area of the decohered beam to the area of the
injected beam. The factor of 2 results from the numerator representing an
rms area.

Examples of Emittance Dilution due to Mismatch. Emittance dilu-
tion results if Bmag �= 1 due to the difference in the transverse phase advance
of the particles within the bunch. There are multiple sources of such phase
advance variations. The two most commonly considered sources depend on
the chromaticity or on the amplitude of the betatron oscillations. The chro-
maticity ξ (≡ Q′/Q) = (Δψ/ψ)/δ characterizes the energy dependence of
the phase advance where Δψ is the difference in the phase advance of a par-
ticle from the mean phase advance of the bunch and δ is the relative energy
deviation of that particle compared to the mean energy of the bunch. The
amplitude dependence of the phase advance due to sextupole or octupolar
magnetic fields is approximately described by

2πψ = 2πψ0 − μa
2 , (4.60)

where ψ0 is the phase advance for a reference particle on the closed orbit,
μ characterizes the strength of the sextupolar or octupolar fields, and a is
the betatron oscillation amplitude of the particle. Less commonly considered
sources for phase advance variations include wakefield focussing or space-
charge defocussing for high current beams, focussing due to ions or electron
clouds, and focussing due to the beam-beam tune shift in colliding beam
accelerators.

a) Periodic Lattice
Let the length of the lattice period be L. Then, as shown in Fig. 4.8,

for Bmag = 1, the beam always fills the same area in phase space after each
lattice period. The rms area of the ellipse after n turns is

〈x2〉n = βε0 , (4.61)

and the beam is said to be matched. Under these conditions, no emittance
dilution will occur. In particular, since 〈x2〉n is independent of the phase
advance ψ, the phase space area is unchanged even if the phase of each of
the particles in the beam advances differently.
For Bmag > 1, then

εn =
〈x2〉n
β

= ε0

[
Bmag +

√
Bmag

2 − 1 cos(2ψ − χ〈x2〉0)

]
, (4.62)
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Fig. 4.8. Horizontal phase space for a matched beam in a periodic lattice. The
emittance is preserved even if the phase advance is different for different particles
(denoted here by the numbers 1 and 2)

as shown in Fig. 4.9. The solid, small ellipse represents the matched ellipse
for which Bmag = 1. The shaded ellipse represents the (1σ) rms distribution
of the mismatched beam. During the first few traversals of identical lattice
segments, the phase advance variations of the different particles may not be
obvious. As n approaches infinity, however, the phase advance variations lead
to a smearing in the transverse phase space resulting in a larger emittance.
This is represented by the area occupied by the hatched ellipse as given by
(4.57).

Fig. 4.9. Schematic of the horizontal phase space for a mismatched beam in a peri-
odic linear lattice after 1, 2, 3 and N � 1 periods. The emittance is not preserved:
the dilution is given by the ratio of the areas of the hatched ellipse to the design
ellipse (for N →∞)

b) Circular Lattice
For a circular accelerator, the periodicity is usually taken to be not the

superperiodicity of the machine (i.e., the number of identical lattice sections),
but the revolution period. The index n therefore represents the turn number.
The mismatch Bmag most often arises from improper orientation of the beam
ellipse at injection. Neglecting the constant phase offset χ〈x2〉0 in (4.57), the
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equilibrium emittance is

εn =
〈x2〉n
β
= ε0

[
Bmag +

√
Bmag

2 − 1 cos(4πν)

]
, (4.63)

where ν is the phase advance per turn. Shown in Fig. 4.10 is the evolution
of the transverse phase space for Bmag along with the projections onto the
horizontal axis. With a turn-by-turn beam size monitor, the mismatch can
be measured directly by detecting the beam size changes at every turn. An
example is given in Sect. 9.6.

Fig. 4.10. Horizontal phase space and x-projection for a mismatched beam in a
circular accelerator

4.2 Beta Matching in a Transport Line or Linac

The beam size (squared) at the location s can be expressed in terms of the
α and β functions and the emittance at an upstream location s0 as

〈x2(s)〉 = R211β(s0)ε− 2R12R11α(s0)ε+R
2
12γ(s0)ε . (4.64)

In a quadrupole scan, the transfer matrix elements R11 and R12 are varied,
by changing the strength of a quadrupole between s0 and s. Beam-size meas-
urements for at least 3 different quadrupole settings are required in order
to solve for the three independent unknown parameters: ε, β(s0) and α(s0).
The fourth parameter, γ(s0) is not free, but determined by α(s0) and β(s0):
γ = (1 + α2)/β.
The deviation of the β, α, and γ from the design parameters βD, αD

and γD is often characterized in terms of the ‘Bmag’ (β matching) parameter
[9, 10] of (4.59), which can also be written as
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Bmag =
1

2
(βγD − 2ααD + γβD) . (4.65)

Once the values of β and α are known, quadrupole magnets can be adjusted
so as to match the optical functions at a selected point to their design value,
which is equivalent to Bmag = 1.
The SLC had more than 10 multi-wire emittance measurement stations,

which monitored the beam emittances in various parts of the machine in
hourly intervals, and were indispensable for emittance control and tuning.
As will be shown in Sect. 4.4.3, in the SLC linac transverse orbit bumps
were intentionally induced as a global correction which cancelled the accu-
mulated local effects of dispersion or wakefields. The bumps were optimized
by minimizing the emittance downstream, as calculated by this measurement
technique.

Example. To illustrate the beta matching method, Fig. 4.11 shows an ex-
ample from the KEK/ATF beam transport line (BT), connecting the S-band
linac and the ATF damping ring. The top picture shows the result of a typ-
ical quadrupole scan at the end of the BT. Plotted is the square of the
vertical beam size versus the strength of an upstream quadrupole, as well as
a quadratic fit to the data. The Twiss parameters deduced from such a fit
can be propagated through the BT, using a model derived from the actual
or the design magnet settings. The bottom picture displays the inferred beta
functions compared to the design optics.

4.3 Equilibrium Emittance

We now discuss different methods for changing and controlling the equilib-
rium emittance in electron or positron storage rings. In these rings, syn-
chrotron radiation gives rise to an equilibrium beam size, which is indepen-
dent of the beam emittance at injection. While at high beam currents, collec-
tive effects and intrabeam scattering may be important as well, at low beam
intensity the value of the equilibrium emittance is determined solely by the
ring optics and the beam energy.
The discreteness and the random character of the synchrotron radiation

increases the beam emittance. The expression for the transverse emittance
growth in the plane u (u = x or y) due to quantum excitation is [12]:

dεu
dt
= cCQE

5

〈
Hu
ρ3

〉
, (4.66)

where the function Hu, introduced by Sands [13], is

Hu(s) =
1

βu

{
D2u + (βuD

′
u + αuDu)

2
}
, (4.67)
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Fig. 4.11. Beta matching in the KEK/ATF beam transport line (BT) [11]: (top)
quadrupole-scan emittance measurement; shown is the square of the vertical beam
size measured using a fluorescent screen vs. the strength of an upstream quadrupole;
(bottom) the vertical beta function obtained by propagating the measured Twiss
parameters (solid) through the actual BT optics is compared with the beta function
expected for the design optics (dashed)

the coefficient CQ is

CQ =
55

48
√
3

reh̄c

(mec2)6
≈ 2× 10−11 m2 GeV−5 . (4.68)

and ρ is the bending radius. The angular brackets denote an average over the
ring.
On the other hand, the average energy loss due to the synchrotron radia-

tion usually leads to damping in all three degrees of freedom. The emittance
decrease due to radiation damping is described by

dεu
dt
= −2εuCdJuE

3

〈
1

ρ2

〉
, (4.69)

where ε is the beam emittance,

Cd =
c

3

re
(mec2)3

= 2.1× 103 m2 GeV−3 s−1 , (4.70)

and Ju is the damping partition number.
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The equilibrium emittance is reached when the quantum excitation and
the damping are equal. It is

εu,∞ = Cq
γ2

Ju

〈
Hu/ρ3

〉
〈1/ρ2〉

, (4.71)

where the new constant Cq is defined by

Cq =
55

32
√
3

h̄c

mec2
= 3.84× 10−13 m . (4.72)

Thus εu is inversely proportional to the transverse damping partition num-
ber Ju. Similarly, the longitudinal emittance is inversely proportional to Jz.
The exponential amplitude-damping time τu is obtained from the equation

1

τu
≡
1

2εu

dεu
dt
. (4.73)

Including also the longitudinal degree of freedom, the exponential damping
times for all three oscillation modes can be written as [13]

τi =
2E0
〈Pγ〉Ji

, (4.74)

where E0 is the nominal energy, and 〈Pγ〉 is the average rate of energy loss.
The latter is given by

〈Pγ〉 =
cCγ
2π
E40

〈
1

ρ2

〉
, (4.75)

where yet another constant is introduced, namely

Cγ =
4πre
3(mec2)3

≈ 8.877× 10−5 m GeV−3 , (4.76)

as defined by Sands [13].
The factor Ji in (4.74) is the damping partition number for the ith degree

of freedom. A general theorem by Robinson [14] states that the sum of the
three partition numbers is a constant:

Jx + Jy + Jz = 4 . (4.77)

A general proof of this theorem is given in Chap. 11. If the ring only contains
horizontal, but no vertical bending magnets, then Jy = 1 and the partition
numbers in the other two planes are related by a term D [13]

Jx = 1−D , (4.78)

Jz = 2 +D , (4.79)



120 4 Transverse Beam Emittance Measurement and Control

where

D =

∮
Dx/ρ

(
1/ρ2 + 2k

)
ds∮

1/ρ2 ds
. (4.80)

For separated function magnets k/ρ = 0 and the value of D is typically much
smaller than 1.
It is often desirable to increase one of the damping rates or to vary the

horizontal emittance. For example, in linear collider applications, a fast hori-
zontal damping and a small horizontal emittance are advantageous, whereas
the longitudinal emittance is of less concern. In storage-ring colliders one
may instead want to increase the horizontal emittance near the beam-beam
limit3.
The damping rate and the equilibrium emittance can be changed by ad-

justing the value of D and/or by adding wiggler magnets. Depending on the
application, there are various possibilities to do so. In the following, we de-
scribe the effect of a change in the ring circumference, an almost equivalent
application in which the accelerating frequency is changed, and two different
applications of wigglers.

4.3.1 Circumference Change

If the geometric circumference of the ring is changed by moving the magnet
centers outwards by a stepΔxmag while holding the ring rf frequency fixed (so
as to maintain synchronization with other systems) the quantity D changes
by

ΔD ≈ −

(∑
q

k2qDx,qLq

)
2ρ2

C
Δxmag , (4.82)

where kq is the non-integrated quadrupole gradient, Lq the quadrupole
length, Dx,q the dispersion function at the quadrupole, C the ring circumfer-
ence, and ρ the bending radius of the dipole magnets. The minus sign arises
because the orbit moves inwards with respect to the quadrupole magnets (the
orbit shift is opposite to the displacement: Δx = −Δxmag). Note that the
contributions from focusing and defocusing magnets add, because the effect
is quadratic in k1,q. Note that −2 < ΔD < 1 else beam loss may occur at

3 Near the beam-beam limit, experimental observations [15] have shown that at-
tempts to raise the luminosity by increasing the bunch charge leads to an increase
in the beam size such that the beam-beam tune shift, from (2.101),

ξx = ξy =
re
2πγ

Nb
εx(1 + κ)

(4.81)

(with κ = εy/εx the emittance ratio), remains approximately constant. However,
since L ∝ Nb

2/ε, such an increase in bunch charge and emittance still can result
in a higher luminosity
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the damping poles. The maximum tolerable shift Δx is determined by the
available aperture, and by the beam size at injection.
In 1992, the magnet support girders of the SLC North Damping Ring

were pulled outwards by about Δxmag = 1.5 mm, increasing the geometric
ring circumference by 9 mm. As a result the measured horizontal damping
time decreased [16] from 4.11 ± 0.11 ms to 3.41 ± 0.09 ms, consistent with
predictions.

4.3.2 RF Frequency Change

An equivalent change in D can be achieved with a shift of the rf frequency
by

Δfrf
frf
=
2πΔxmag

C
. (4.83)

More accurately, the orbit shift in the quadrupole is proportional to the local
dispersion function

Δx(s) = −
Dx
αx

Δfrf
frf
, (4.84)

with αc the momentum compaction factor. The change in the partition num-
ber is

ΔD ≈

∮
2k2D2xds∮
ds/ρ2

Δp

p
≡ C0

Δp

p
. (4.85)

However, in practice the rf frequency must be locked to the rf of the injec-
tion (or extraction) system. Therefore, at the SLC damping rings in addition
to the static circumference change a dynamic rf frequency shift was imple-
mented [17]. The dynamic rf frequency shift by up to 100 kHz started about
1.33ms after injection, and was stopped 200 μs before extraction, in order
to stabilize the injected beam and to minimize emittance and extraction jit-
ter, respectively [18]. The total store time was 8.33ms, equal to about 2.5
nominal damping times. For a dynamic frequency shift of 62.5 kHz the nor-
malized emittance of the extracted beam decreased from 3.30 ± 0.07m to
2.66 ± 0.06m. The 20% reduction agreed with SAD calculations [17]. This
example is discussed further in Sect. 8.10 after describing the influence of
heavy beam loading on the rf system.
Emittance control via the accelerating rf has been used already before [19].

More recently it was applied at LEP [20] and in the HERA electron ring [21].
At HERA the associated increase in beam energy spread was compensated
by a larger rf bucket height. With limited rf power, this was achieved by
increasing the transverse focussing thereby reducing the dispersion and hence
the momentum compaction factor.
We note an interesting side effect, remarked by Wiedemann [12]. From

(4.85) the partition number changes with the particle momentum. If a particle
performs synchrotron oscillations
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Δp

p
= δmax sinΩst , (4.86)

its horizontal partition number and damping time vary with the synchrotron
period:

1

τ
=
1

τ0
(1− C0δmax sinΩst) , (4.87)

The equation for the horizontal equilibrium emittance of such particles is
then time-dependent according to [12]

εx(t) = εx,∞ exp

[
2δmaxC0
Ωτ0

(cosΩt− 1)

]
. (4.88)

The effect is largest for particles with large synchrotron oscillations.

4.3.3 Wigglers

A wiggler magnet generates additional synchrotron radiation and, thus, can
enhance the radiation damping and/or change the equilibrium emittance.
The damping time is modified as

τu,w = τu,0
1

1 + 〈1/ρ2〉w/〈1/ρ2〉0
, (4.89)

where τu,x is the damping time in the plane u including the effect of the
wiggler, τu,0 on the right is the damping time for the ring proper, while
on the right-hand side of the equality, the subindex 0 indicates an average
over the ring without wiggler magnets, while the subindex w indicates the
contribution from the wiggler magnets. On the left, τu,x is the damping time
in the plane u, including the effect of the wiggler, and τu,0 on the right is the
damping time for the ring proper.
Similarily, the relative emittance increase due to the presence of the wig-

gler is

εu,w
εu,0

=
1 +
〈
Hu/ρ3

〉
w
/〈Hu/ρ3〉0

1 + 〈1/ρ2〉w /〈1/ρ
2〉0

, (4.90)

where the averages are given, for example, by〈
1

ρ2

〉
w

=
1

C

∮
1

ρ2w
ds , (4.91)

with C the circumference, and ρw the bending radius in the wiggler.
In addition to changing the emittance, wigglers also affect the energy

spread [12]:
σ2δ,w
σ2δ,0

=
1 +
〈
1/ρ3
〉
w
/〈1/ρ3〉0

1 + 〈1/ρ2〉w /〈1/ρ
2〉0
. (4.92)
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Damping Wigglers. If we place a wiggler in a region with no dispersion,
Dx = 0, we might expect that the equilibrium emittance decreases according
to (4.90) with 〈Hw〉 = 0. However this is not completely correct, because the
wiggler itself generates dispersion. As an example, we consider a sinusoidal
wiggler with field

B(z) = Bw cos kpz , (4.93)

where kp = 2π/λp and λp denotes the length of the wiggler period. The
differential equation for the dispersion function reads:

D′′u(z) =
1

ρw
cos kpz , (4.94)

which, assuming Du(0) = D
′
u(0) = 0, can be solved as

Du(z) =
1

k2pρw
(1− cos kpz) . (4.95)

Using
1

ρ
=
1

ρw
| cos kpz| , (4.96)

for each half period of the wiggler we find [12]∫ λp/2
0

Hu
|ρ|3

dz =
36

15

1

βu

1

k5pρ
5
w

+
4

15

βu
k3pρ

5
w

≈
4

15

βu
k3pρ

5
w

, (4.97)

where β is the beta function and we assumed that λp 
 β. Introducing the
deflection angle per wiggler pole θw = 1/(ρwkp), and the number of wiggler
periods Nw, we can rewrite (4.97) as∫

w

Hu
ρ3
dz ≈ Nw

8

15

β

ρ2w
.θ3w (4.98)

Similarily, we find ∫
w

1

ρ2
dz ≈ πNw

θw
ρw
. (4.99)

Finally the emittance ratio, (4.90), becomes

εu,w
εu,0

=
1 + 8

30πNw
βu
〈Hu〉0

ρ20
ρ2w
θ3w

1 + 12Nw
ρ0
ρw
θw

, (4.100)

where 〈Hu〉0 is the average value of Hu in the ring magnets, excluding the
wiggler magnets. The latter can be re-expressed in terms of the emittance
εx0 to yield, e.g., with a vertical wiggler field, the horizontal emittance

εx,w
εx,0

=
1 +

8Cq
30πJx

Nw
βx
εx0ρw

γ2 ρ0
ρw
θ3w

1 + 12Nw
ρ0
ρw
θw

. (4.101)
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The emittance is reduced by the wiggler magnet if

8

15π

Cq
Jx

βx
ε0ρw

γ2θ2w ≤ 1 . (4.102)

In a wiggler-dominated ring the minimum emittance which one might
hope to achieve is still limited. Ignoring the contributions from the arcs,
after traversing a large number of wiggler periods (with intermittent re-
acceleration) the emittance reaches an asymptotic value

εx,w →
16

30π

Cqβx
ρw
γ2θ2w . (4.103)

The horizontal damping time with a wiggler can be written as

τx,w = τx,0
1

1 + 12Nw
ρ0
ρw
θw
. (4.104)

In the limit of an extremely wiggler-dominated ring or a very long wiggler
channel, again assuming intermittent re-acceleration, this simplifies to

τx,w ≈
2ρ2w
CdJxE3

. (4.105)

Equations (4.103) and (4.105) set lower bounds on the emittance and damp-
ing times that can be attained in the damping ring of a future linear collider.

Robinson wiggler. A “Robinson wiggler” is a wiggler consisting of a series
of combined function magnets, arranged such as to increase the horizontal
partition number. Such a magnet was first used at the CEA to convert the
synchrotron (which because D > 1 was horizontally unstable) into a stable
storage ring with 0 < D < 1 [14]. Such a wiggler will change the partition
number according to [22]

ΔD ≈
D̄xLRobk

2π(1 + Fω)

ρ0
ρRob

, (4.106)

where LRob and ρRob are the length and the bending radius of the Robinson
wiggler, D̄x the average dispersion in the wiggler, ρ0 the bending radius of
the main bends, k the magnitude of the wiggler quadrupole gradient (in units
of m−2), and

Fω ≡
1

2
Nw
ρ0
ρw
θw . (4.107)

Unfortunately, the Robinson wiggler not only increases the damping but it
can also blow up the equilibrium emittance, since it is preferably placed at a
location with large dispersion.

Other wigglers. Further applications of wigglers include polarization wig-
glers for electron storage rings. These decrease the polarization time at low
beam energies [23] or invert the spin direction [24].
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4.4 Linac Emittance Control

4.4.1 Introduction

Preservation of the beam emittances in a linear accelerator differs from that
in a lepton storage ring since in a linac there is no or little radiation damping.
The normalized beam emittance therefore may increase due to many different
effects.
In an electron linac, emittance dilutions may occur due to alignment errors

of the accelerator components, which arise from steering the beam through
misaligned structures and quadrupole magnets using beam-position monitors
with residual offset errors [29]. The resulting transverse wake fields and dis-
persive effects increase the beam emittance. Some countermeasures that have
been developed to minimize linac emittance growth are BNS damping, tra-
jectory oscillations or ‘wake field bumps’, and dispersion-free steering, which
we have already encountered in the previous chapter. In this section we dis-
cuss the BNS damping in more detail. We also present a further example
for the application of ‘wake field bumps’ in the SLC, and briefly recall the
underlying concept of dispersion-free steering.

Fig. 4.12. Profile monitor measurements in a region of nonzero dispersion after the
end of the SLC linac and vertical centroid trajectories with a positive purturbation
to the bunch orbit (top), under nominal conditions (middle), and with a negative
perturbation (bottom) (Courtesy J. Seeman, 2000)



126 4 Transverse Beam Emittance Measurement and Control

As an example, Fig. 4.12 shows profile monitor measurements and trajec-
tories for three different initial vertical displacements [25] of the linac beam
in the SLC. The middle plots correspond to an optimized orbit. In the top
plots the beam was kicked in one direction and in the bottom plot in the
other direction. The increase in vertical amplitude towards the tail of the
bunch shows the intrabunch particle displacements due to the transverse
wakefields. Also evident from this measurement is a position-energy corre-
lation4. The observed decrease in energy along the bunch depends on the
cancellation between the rf slope due to the induced field and the rf slope of
the accelerating rf (see Chap. 8).
Viewed independently, shown in Fig. 4.13 are the transverse beam profiles

measured at the end of the linac for various initial beam displacements [26].
These measurements were made [27] by deflecting the beam using a fast
kicker magnets located within the linac so that the true transverse profile
y(x) is represented. Notice that while the slice emittances of Fig. 4.12 are
almost constant, the projected emittance is significantly increased as shown
in Fig. 4.13.

Fig. 4.13. Measured beam profiles demonstrating emittance growth due to wake-
fields as a function of increasing oscillation amplitude. From left to right the ampli-
tudes in the applied horizontal trajectory displacement are 0mm, 0.2mm, 0.5mm,
and 1.0 mm. The single-bunch charge was 2×1010 electrons (Courtesy J. Seemann,
2000)

4.4.2 BNS Damping

The wake field effect can be reduced by proper adjustment of the rf phase
profile along the linac. By passing the rf wave off-crest a position-energy

4 these measurements were obtained by deflecting the beam onto a fluorescent
screen using a kicker magnet located in a dispersive region (in the collider arcs)
so that the measured horizontal position indicates an energy deviation; i.e., the
profile monitor shows y(E)
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correlation is generated along each linac bunch, such that the tail particles
have lower energy than the particles in the bunch head. This results in so-
called BNS damping [28], where the defocusing due to the wake fields is
compensated by the stronger focusing for lower-energy tail particles.
To illustrate the mechanism, consider a 2-particle model, each with half

the total bunch charge and a distance z apart. Let the first (head) particle
be at the design energy and assume that the bunch head performs a pure
betatron oscillation,

y1(s) = ŷ cos s/β , (4.108)

with β the average vertical beta function. For simplicity. we here employ a
smooth approximation for the betatron oscillation and the lattice focusing,
i.e., the beta function is constant. Then the equation of motion for the second
particle with a relative momentum deviation δ ≡ Δp/p0 (p0 denotes the
design momentum) is [30]

dy2(s)

ds2
+

1

β2(δ)
y2(s) =

NreW1(z)

2γL
ŷ cos s/β , (4.109)

where W1(z) denotes the value of the transverse wake function per cavity (in
units of m−2), N is the bunch population, and L the cavity period. We have
ignored the effect of acceleration.
Equation (4.109) shows that there exists a value of δ for which, in first

order, the bunch tail exactly follows the bunch head. Writing β(δ) = β(0) +
Δβ(δ) this value corresponds to [30]

Δβ(δ)

β(0)
= −
Nbreβ

2W1(z)

4γL
, (4.110)

a condition which is also known as ‘autophasing’. The relative change in
beta function as a function of energy can easily be expressed using the linac
chromaticity ξ using the relation

Δβ

β
= −ξδ . (4.111)

For an optical FODO cell, we have

ξ = −
2

μ
tan
μ

2
, (4.112)

where μ is the betatron phase advance per cell. In case of an accelerated beam,
the autophasing condition is still given by (4.110), if we simply replace the
factor 1/γ by ln(γf/γi)/γf where γi and γf characterize the initial and final
energies in units of the rest mass.
In practice, BNS damping can only partially be realized, since the energy

spread introduced at low energies must be restored later in the linac to fit
inside the energy acceptance of the downstream beam delivery system.
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4.4.3 Trajectory Oscillations

In addition to BNS damping, empirically distributing a set of short-range
oscillations, or wake-field bumps (see Sect. 3.6), along the accelerator proved
indispensable for SLC operation [29]. Examples of betatron oscillations in-
tentionally induced in the SLAC linac are shown in Fig. 4.14 [29].

Fig. 4.14. Two trajectory ocillations in the SLAC linac, which were used to study
the effect on the downstream emittance (Courtesy F.J. Decker, 1999)

Wakefields and dispersive effects in the linac generate both emittance
growth and a mismatch. The mismatch induced early in the linac has com-
pletely filamented when the beam reaches its end, while perturbations near
the linac end also result in residual unfilamented tails and in a phase-space
mismatch, which is conventionally characterized by the parameter Bmag,
(4.59). This factor specifies the emittance growth after filamentation.
A matched beam fulfills Bmag = 1.
Similarily, trajectory oscillations induced in the early parts of the linac

only change the beam emittance γε, while those in the latter sections also
affect the measured betatron mismatch. This is illustrated in Fig. 4.15, which
displays the measured normalized emittance versus the amplitude of the two
trajectory bumps in Fig. 4.14.
The SLC employed a series of more than 10 orbit feedback loops with

roughly equidistant spacing along the SLAC linac. These feedbacks continu-
ally maintained constant values of offset and slope at certain pairs of beam-
position monitors, by adjusting the strengths of a few steering correctors. The
feedback set points for position and slope were set to empirically determined
target values.
A closed trajectory oscillation was most easily generated by changing a

feedback set point (for either slope or position). The induced trajectory os-
cillation was then automatically taken out by the next feedback downstream,
because the latter attempted to restore the original orbit.
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Fig. 4.15. Change in the normalized emittance as a function of the amplitude of
a trajectory oscillation induced early in the linac (left) and towards the end of the
linac (right). In the first case, the betatron mismatch is constant, and the normalized
emittance decreased by 25% for an oscillation amplitude of about 1.5 mm. In the
lower plot, the trajectory oscillation applied later in the linac did not reduce the
normalized emittance. Instead it enhances the observed betatron mismatch, which
is evident by the separation of the two curves representing γε and Bmagγε (Courtesy
F.J. Decker, 1999)

In the later years of SLC operation, typical oscillation amplitudes were
of the order of 100 or 200 μm, comparable to the presumed misalignments of
the accelerating structures.

4.4.4 Dispersion-Free Steering

A very efficient steering algorithm has been developed in order to minimize
the dispersive emittance growth in a linac. By its effect, this method is known
as ‘dispersion-free steering’ [31, 32]. The detailed algorithm was already pre-
sented in Sect. 3.7, in the context of orbit correction schemes.
The basic idea of this method is to steer the orbit such that the particle

trajectories become independent of the particle energy. In practice this can be
achieved, for example, by exciting the steering coils (orbit correctors), so as
to minimize the orbit response to a constant relative change of all quadrupole
strengths.
During initial studies of this algorithm, the quadrupoles and correctors

were so scaled to mimic the change in beam energy. In later years, instead,
advantage was taken of the fact that both electron and positron bunches
traversed the same linac. As far as dispersion is concerned, a change in the
sign of the charge is equivalent to a 200% energy variation.
The so-called two-beam dispersion-free steering then consisted in mea-

suring the orbit of both electron and positron beams, and correcting the
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absolute orbit offset of one beam as well the difference to the orbit of the
other beam. At the same time, the overall excitation strength of the steering
correctors was also constrained. This steering method was implemented in the
SLC control system by means of an SVD algorithm (SVD or singular value
decomposition was discussed in Sect. 3.5), where weighting factors could be
assigned to the different minimization constraints. Two-beam dispersion-free
steering was also applied with great success at the circular collider LEP [33].

Exercises

4.1 Beta Mismatch

Suppose a beam is injected with a distribution characterized by optical
functions β, α and γ different from the matched values β0, α0 and γ0. Show
that the beam emittance after filamentation is given by ε = Bmag ε0, where
ε0 is the initial emittance of the injected beam, and Bmag was defined in
(4.65). Hint: filamentation corresponds to a randomization of the betatron
phase and ε = 〈I〉.

4.2 Propagation of Twiss Parameters

In Fig. 4.11 the Twiss parameters were measured at a single location
yet the ‘measured’ values were shown as a function of position along the
transport line. Derive the matrix for propagation of the Twiss parameters
from a known location to an arbitrary location along the transport line.
Hint: use the equation for a general phase space ellipse of area ε (not to be
confused with the rms emittance)

γx2 + 2αxx′ + βx′
2
= ε , (4.113)

the relation βγ − α2 = 1, and the 2× 2 transport matrix of the form(
x
x′

)
=

(
C(s) S(s)
C(s)

′
S(s)

′

)(
x0
x0
′

)
. (4.114)

4.3 Static and Dynamic change of Partition Numbers

Assume parameters typical for the SLC damping rings: 40 quadrupoles,
kq ≈ 15 m−2, Dx,q ≈ 0.15 m, Lq ≈ 18 cm, ρ ≈ 1/2 C/(2π), C = 35 m,
harmonic number h = 84, rf frequency frf = 714 MHz, and momentum
compaction α = 0.0147.
a) What is the change in D for an outward shift of all magnets by Δx =

1.5mm?
b) What would be the equivalent change in the rf frequency?
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4.4 Effect of Wiggler on Equilibrium Emittance

Consider a ring which consists mainly of wiggler magnets, with a peak
magnetic field Bw of 40 kG, and a wiggler oscillation period of λp of 20 cm.
Calculate the equilibrium emittance and the damping time in such a ring,
assuming a beta function βx of 5 m, and beam energies of 1 GeV and 5 GeV.
Compare this with a typical damping-ring design for a future linear collider,
where γεx ≈ 3 μm, and τx ≈ 3 ms.

4.5 BNS Damping at the SLC

For the SLAC linac β ≈ 20 m, W⊥(1 mm) ≈ 1 cm−2, L = 3.5 cm,
N = 4× 1010, μ ≈ π/2, with an injected beam energy of 1.2 GeV and a final
energy of 47 GeV. How large is the BNS energy chirp δ over the bunch length
of 1 mm?








