Skip to main content

A Validation Methodology for the 3D-CFD Model of a Hydrogen Injector

  • Conference paper
  • First Online:
23. Internationales Stuttgarter Symposium (ISSYM 2023)

Part of the book series: Proceedings ((PROCEE))

Included in the following conference series:

  • 796 Accesses

Zusammenfassung

Direct injection H\(_2\) engine represents a potential solution towards decarbonisation, combining high power output with efficiency. However, mixing process is worth of thorough investigation, since, even in overall lean mixtures, locally rich zones result in high heat release rates and temperatures, leading to abnormal combustion and high NOx production. Within this scope, an H\(_2\) outward-opening injector, manufactured by BorgWarner, providing mass flow rates close to 6 g/s when operating at 36 bar of injection pressure, is studied. An experimental campaign has been carried out, injecting H\(_2\) into a N\(_2\)-filled vessel, the presented results being at ambient temperature and pressures of 3, 5 and 10 bar. H\(_2\) initially enters this domain as a hollow-cone jet and its development differs for each condition. Predictive modelling of the injection event is of interest to further investigate the spray development, besides its integration within engine cylinder simulations. To this end, a validation regarding the 3D-CFD implementation of the referred injector and real test vessel in the software CONVERGE is presented, against the experimental results. This methodology includes preliminary 2D and 3D-simplified simulation cases, to initially define the numerical setup in a time effective manner. Furthermore, the accuracy of modelling the injection via 2D simulations is discussed, as well as the robustness of the applied strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Paris Agreement (2016), https://climate.ec.europa.eu/eu-action/international-action-climate-change/climate-negotiations/paris-agreement_en

  2. Senecal, K., Leach, F.: Racing Toward Zero: The Untold Story of Driving Green. SAE International (Jun 2021), https://saemobilus.sae.org/content/R-501/

  3. Verhelst, S.: Recent progress in the use of hydrogen as a fuel for internal combustion engines. International Journal of Hydrogen Energy 39(2), 1071–1085 (Jan 2014), https://linkinghub.elsevier.com/retrieve/pii/S0360319913026153

  4. Wang, Y., Pang, Y., Xu, H., Martinez, A., Chen, K.S.: PEM Fuel cell and electrolysis cell technologies and hydrogen infrastructure development – a review. Energy & Environmental Science 15(6), 2288–2328 (2022), http://xlink.rsc.org/?DOI=D2EE00790H

  5. Verhelst, S., Wallner, T.: Hydrogen-fueled internal combustion engines. Progress in Energy and Combustion Science 35(6), 490–527 (Dec 2009), https://linkinghub.elsevier.com/retrieve/pii/S0360128509000422

  6. Pandey, J.K., Kumar, G.: Effect of variable compression ratio and equivalence ratio on performance, combustion and emission of hydrogen port injection SI engine. Energy 239, 122468 (Jan 2022), https://linkinghub.elsevier.com/retrieve/pii/S0360544221027171

  7. Yip, H.L., Srna, A., Yuen, A.C.Y., Kook, S., Taylor, R.A., Yeoh, G.H., Medwell, P.R., Chan, Q.N.: A Review of Hydrogen Direct Injection for Internal Combustion Engines: Towards Carbon-Free Combustion. Applied Sciences 9(22), 4842 (Nov 2019), https://www.mdpi.com/2076-3417/9/22/4842

  8. Li, Y., Gao, W., Zhang, P., Ye, Y., Wei, Z.: Effects study of injection strategies on hydrogen-air formation and performance of hydrogen direct injection internal combustion engine. International Journal of Hydrogen Energy 44(47), 26000–26011 (Oct 2019), https://linkinghub.elsevier.com/retrieve/pii/S036031991933006X

  9. Takagi, Y., Oikawa, M., Sato, R., Kojiya, Y., Mihara, Y.: Near-zero emissions with high thermal efficiency realized by optimizing jet plume location relative to combustion chamber wall, jet geometry and injection timing in a direct-injection hydrogen engine. International Journal of Hydrogen Energy 44(18), 9456–9465 (Apr 2019), https://linkinghub.elsevier.com/retrieve/pii/S0360319919306421

  10. Oikawa, M., Kojiya, Y., Sato, R., Goma, K., Takagi, Y., Mihara, Y.: Effect of supercharging on improving thermal efficiency and modifying combustion characteristics in lean-burn direct-injection near-zero-emission hydrogen engines. International Journal of Hydrogen Energy 47(2), 1319–1327 (Jan 2022), https://linkinghub.elsevier.com/retrieve/pii/S0360319921040386

  11. Yamane, K.: Hydrogen Fueled ICE, Successfully Overcoming Challenges through High Pressure Direct Injection Technologies: 40 Years of Japanese Hydrogen ICE Research and Development. pp. 2018–01–1145 (Apr 2018), https://www.sae.org/content/2018-01-1145/

  12. Wittek, K., Cogo, V., Prante, G.: Development of a pneumatic actuated low-pressure direct injection gas injector for hydrogen-fueled internal combustion engines. International Journal of Hydrogen Energy p. S0360319922057354 (Dec 2022), https://linkinghub.elsevier.com/retrieve/pii/S0360319922057354

  13. Wang, X., Sun, B.g., Luo, Q.h., Bao, L.z., Su, J.y., Liu, J., Li, X.c.: Visualization research on hydrogen jet characteristics of an outward-opening injector for direct injection hydrogen engines. Fuel 280, 118710 (Nov 2020), https://linkinghub.elsevier.com/retrieve/pii/S0016236120317063

  14. Zhao, J., Liu, W., Liu, Y.: Experimental investigation on the microscopic characteristics of underexpanded transient hydrogen jets. International Journal of Hydrogen Energy 45(33), 16865–16873 (Jun 2020), https://linkinghub.elsevier.com/retrieve/pii/S0360319920315433

  15. Lee, S., Kim, G., Bae, C.: Behavior of hydrogen hollow-cone spray depending on the ambient pressure. International Journal of Hydrogen Energy 46(5), 4538–4554 (Jan 2021), https://linkinghub.elsevier.com/retrieve/pii/S0360319920341689

  16. Deshmukh, A., Vishwanathan, G., Bode, M., Pitsch, H., Khosravi, M., van Bebber, D.: Characterization of Hollow Cone Gas Jets in the Context of Direct Gas Injection in Internal Combustion Engines. SAE International Journal of Fuels and Lubricants 11(4), 353–378 (2018), https://www.jstor.org/stable/26642167, publisher: SAE International

  17. Richards, K.J., Senecal, P.K., Pomraning, E.: CONVERGE 3.0, Convergent Science, Madison, WI (2022)

    Google Scholar 

  18. Ye, Y., Gao, W., Li, Y., Zhang, P., Cao, X.: Numerical study of the effect of injection timing on the knock combustion in a direct-injection hydrogen engine. International Journal of Hydrogen Energy 45(51), 27904–27919 (Oct 2020), https://linkinghub.elsevier.com/retrieve/pii/S0360319920326926

  19. Babayev, R., Andersson, A., Dalmau, A.S., Im, H.G., Johansson, B.: Computational characterization of hydrogen direct injection and nonpremixed combustion in a compression-ignition engine. International Journal of Hydrogen Energy 46(35), 18678–18696 (May 2021), https://linkinghub.elsevier.com/retrieve/pii/S0360319921008168

  20. Babayev, R., Andersson, A., Serra Dalmau, A., Im, H.G., Johansson, B.: Computational comparison of the conventional diesel and hydrogen direct-injection compression-ignition combustion engines. Fuel 307, 121909 (Jan 2022), https://linkinghub.elsevier.com/retrieve/pii/S0016236121017865

  21. van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. Journal of Computational Physics 32(1), 101–136 (Jul 1979), https://linkinghub.elsevier.com/retrieve/pii/0021999179901451

  22. Venkatakrishnan, V.: On the accuracy of limiters and convergence to steady state solutions. In: 31st Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, Reno, NV, U.S.A. (Jan 1993), https://arc.aiaa.org/doi/10.2514/6.1993-880

  23. Michalak, C., Ollivier-Gooch, C.: Accuracy preserving limiter for the high-order accurate solution of the Euler equations. Journal of Computational Physics 228(23), 8693–8711 (Dec 2009), https://linkinghub.elsevier.com/retrieve/pii/S0021999109004641

  24. Issa, R.: Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics 62(1), 40–65 (Jan 1986), https://linkinghub.elsevier.com/retrieve/pii/0021999186900999

  25. Nasrifar, K.: Comparative study of eleven equations of state in predicting the thermodynamic properties of hydrogen. International Journal of Hydrogen Energy 35(8), 3802–3811 (Apr 2010), https://linkinghub.elsevier.com/retrieve/pii/S0360319910000777

  26. Richards, K.J., Senecal, P.K., Pomraning, E.: CONVERGE 3.0 Manual, Convergent Science, Madison, WI (2022)

    Google Scholar 

  27. Greenshields, C.J., Weller, H.G.: Notes on computational fluid dynamics: general principles. CFD Direct Limited, Reading, UK (2022)

    Google Scholar 

  28. Basse, N.T.: Turbulence Intensity and the Friction Factor for Smooth- and Rough-Wall Pipe Flow. Fluids 2(2),  30 (Jun 2017), https://www.mdpi.com/2311-5521/2/2/30, number: 2 Publisher: Multidisciplinary Digital Publishing Institute

  29. CFD Online: Turbulence length scale, https://www.cfd-online.com/Wiki/Turbulence_length_scale

Download references

Acknowledgements

The authors would like to thank BorgWarner, and more specifically the site of Blois, for the injector provision and technical support.

The authors benefited from the use of the cluster at the Centre de Calcul Scientifique en region Centre-Val de Loire.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Mota Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mota Ferreira, J., Tinchon, A., Coratella, C., Oung, R., Doradoux, L., Foucher, F. (2023). A Validation Methodology for the 3D-CFD Model of a Hydrogen Injector. In: Kulzer, A.C., Reuss, HC., Wagner, A. (eds) 23. Internationales Stuttgarter Symposium. ISSYM 2023. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-42048-2_24

Download citation

Publish with us

Policies and ethics