Skip to main content

Contrastive Representations for Unsupervised Anomaly Detection and Localization

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2023 (BVM 2023)

Part of the book series: Informatik aktuell ((INFORMAT))

Included in the following conference series:

Abstract

Unsupervised anomaly detection in medical imaging aims to detect and localize arbitrary anomalies without requiring labels during training. Often, this is achieved by learning a data distribution of normal samples and detecting anomalies as regions in the image which deviate from this distribution. In the medical imaging domain, most current state-of-the-art methods use latent variable generative models operating directly on the images. However, generative models have been shown to mostly capture low-level features s.a. pixel-intensities instead of rich semantic features, which also applies to their representations. We circumvent this problem by proposing CRADL whose core idea is to model the distribution of normal samples directly in the low-dimensional representation space of an encoder which has been trained with a contrastive pretext-task. By utilizing the representations of contrastive learning we aim to fix the over-fixation on low-level features and aim to learn more semantic-rich representations. Our experiments on the task of anomaly localization on three distinct datasets show that 1) the contrastive representations are superior to generative latent variable models and 2) the CRADL framework shows competetive or superior performance to state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baur C, Denner S, Wiestler B, Navab N, Albarqouni S. Autoencoders for unsupervised anomaly segmentation in brain MR images: a comparative study. Med Image Anal. 2021;69:101952.

    Google Scholar 

  2. Chen X,You S, TezcanKC,Konukoglu E.Unsupervised lesion detection via image restoration with a normative prior. Med Image Anal. 2020;64:101713.

    Google Scholar 

  3. Schlegl T, Seeböck P,Waldstein SM, Langs G, Schmidt-Erfurth U. F-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks. Med Image Anal. 2019;54:30– 44.

    Google Scholar 

  4. Nalisnick E, Matsukawa A, Teh YW, Gorur D, Lakshminarayanan B. Do deep generative models know what they don’t know? arXiv:1810.09136. 2019.

  5. Ren J, Liu PJ, Fertig E, Snoek J, Poplin R, DePristo MA et al. Likelihood ratios for out-ofdistribution detection. arXiv:1906.02845. 2019.

  6. Xiao Z, Yan Q, Amit Y. Likelihood regret: an out-of-distribution detection score for variational auto-encoder. arXiv:2003.02977. 2020.

  7. Meissen F, Kaissis G, Rueckert D. Challenging current semi-supervised anomaly segmentation methods for brain MRI. 2021.

    Google Scholar 

  8. Zimmerer D, Kohl SAA, Petersen J, Isensee F, Maier-Hein KH. Context-encoding variational autoencoder for unsupervised anomaly detection. arXiv:1812.05941. 2018.

  9. Chen T, Kornblith S, Norouzi M, Hinton G. A simple framework for contrastive learning of visual representations. arXiv: 2002.05709. 2020.

    Google Scholar 

  10. Dempster AP, Laird NM, Rubin DB. Maximum Likelihood from incomplete data via the EM Algorithm. Journal of the Royal Statistical Society: Series B (Methodological). 1977;39(1):1– 22.

    Google Scholar 

  11. Van Essen D, Ugurbil K, Auerbach E, Barch D, Behrens T, Bucholz R et al. The human connectome project: a data acquisition perspective. NeuroImage. 2012;62(4):2222–31.

    Google Scholar 

  12. Zimmerer D, Petersen J, Köhler G, Jäger P, Full P, Roß T et al. Medical out-of-distribution analysis challenge. 2020.

    Google Scholar 

  13. Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby JS et al. Advancing the Cancer GenomeAtlas GliomaMRIcollections with expert segmentation labels and radiomic features. Sci Data. 2017;4(1):170117.

    Google Scholar 

  14. Maier O, Menze BH, von der Gablentz J, Häni L, Heinrich MP, LiebrandMet al. ISLES 2015 - a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med Image Anal. 2017;35:250–69.

    Google Scholar 

  15. Radford A, Metz L, Chintala S.Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434. 2016.

  16. Loshchilov I, Hutter F. SGDR: stochastic gradient descent with warm restarts. arXiv: 1608.03983. 2017.

    Google Scholar 

  17. Zimmerer D, Isensee F, Petersen J,Kohl S, Maier-Hein K.Unsupervised anomaly localization using variational auto-encoders. arXiv:1907.02796. 2019.

  18. Li CL, Sohn K, Yoon J, Pfister T. CutPaste: self-supervised learning for anomaly detection and localization. CVPR. 2021:9659–69.

    Google Scholar 

  19. He K, Chen X, Xie S, Li Y, Dollár P, Girshick R. Masked autoencoders are scalable vision learners. 2021.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten T. Lüth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lüth, C.T., Zimmerer, D., Koehler, G., Jaeger, P.F., Isenensee, F., Maier-Hein, K.H. (2023). Contrastive Representations for Unsupervised Anomaly Detection and Localization. In: Deserno, T.M., Handels, H., Maier, A., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2023. BVM 2023. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-41657-7_54

Download citation

Publish with us

Policies and ethics