
You must strive to find your own voice because the longer you

wait to begin, the less likely you are going to find it at all.

John Keating - Dead Poet Society
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In this chapter, we will focus on the research task II, i.e., we develop a new semantification
process that addresses the issues of existing approaches outlined in the previous chapter. We
identified two main issues with existing MathIR approaches for disambiguation and seman-
tification of LATEX expressions. First, many semantification approaches solely focus on single
tokens, such as identifiers, or the entire mathematical expression but miss to enrich the essential
subexpressions between both extremes semantically. Second, existing translation approaches
lack context sensitivity and disambiguate expressions by following an internal (often hidden)
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context-agnostic decision process. This chapter addresses these issues within three parts.
First, we elaborate on the capabilities of word embedding techniques to semantically enrich
mathematical expressions. Second, we study the frequency distribution of mathematical subex-
pressions in scientific corpora to understand the variety and complexity of subexpressions
better. Third, we briefly outline a context-sensitive translation pipeline based on the gained
knowledge from the first two parts.

The primary goal of this chapter is to develop a context-sensitive LATEX to CAS translation
pipeline. Unfortunately, it is not clear where we can find sufficient semantic information in
the context to perform reliable translations. We can expect a certain amount of inclusive
information in the given expression itself [54, 71, 394]. Additionally, related work has proven
that noun phrases in the nearby textual context (such as the leading or following sentences of
a formula) can successfully disambiguate math formulae [139, 209, 213, 329]. However, many
functions are not necessarily declared in the surrounding context because the author presumes
the interpretation is unambiguous. Wolska and Grigore [394] have shown that only around
70% of mathematical identifiers are explicitly declared in the surrounding context. In this case,
the location of the information that disambiguates the expression may vary greatly depending
on many factors, such as the expected education level of the target audience of the article, the
given references in the document, or even the author’s preferred notation style. One possible
solution for exploiting this source of semantic information is to build a common knowledge
database for mathematical expressions.

As a first attempt to automatically build such a common knowledge database that stores the
standard, i.e., most common, meanings of mathematical symbols, we explore the capabilities
of machine learning algorithms in the first part of this chapter. Specifically, we use word
embeddings to train common co-occurrences of mathematical and natural language tokens.
We will show that this approach is not as successful as we hoped for our knowledge extraction
task but enables new approaches for mathematical search engines. Further, the results will
once again underline the issues with the interpretation of nested mathematical objects. Word
embeddings for mathematical tokens are mainly unable to properly train the connections with
defining expressions in the context because they still ignore the function layer of mathematical
expressions. In the following, we focused our studies on mathematical subexpressions.

As a thought experiment, consider mathematical expressions are like entire sentences in natural
languages rather than single words. Following this analogy, entire math terms are analog to
words, and the notation of mathematical expressions certainly follow a specific grammar [54].
However, ourmathematical sentences have one distinct difference compared to natural language
sentences. The grammar of mathematical expressions is built around a nested structure in
contrast to the sequential order of words. For example, a math term representing a variable is
a placeholder and can be replaced with arbitrarily complex and deeply nested subexpressions
without violating any grammatical rules. This nested structure makes the semantic tokenization
of mathematical expressions to a complex and eventually context-dependent task [71, 402]. In
order to review our analogy, we perform the most extensive notation analysis of mathematical
subexpressions (since those are the potential words) on two real-world scientific datasets. We
discovered that the frequency distributions of mathematical objects obey Zipf’s law, similar
to words in natural language corpora. In turn, we can use frequency-based retrieval functions
to distinguish important or informative mathematical objects from stop-word-like structures.
We coin these essential and informative objects Mathematical Objects of Interest (MOI). The
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success of this new interpretation finally motivated us to move away from the established
MathIR techniques that focus on single identifiers or entire math expressions to meaningful
subexpressions. Hence, we conclude this chapter with an abstract context-sensitive translation
approach that finally attributes to the nested grammar of mathematical formulae and is based
on the new concept of MOI.

In summary, this chapter is organized as follows. In Section 3.1, we explore the capabilities of
word embeddings to discover common co-occurrences of natural language tokens and math
tokens in large scientific datasets. In Section 3.2, we introduce the new concept of MOI and
perform the first extensive frequency distribution study of mathematical notations in two large
scientific corpora. Section 3.3 concludes the findings of the previous sections by introducing a
novel context-sensitive translation approach from LATEX to CAS expressions. Section 3.1 was
published as an article in the Scientometrics journal [15]. Section 3.2 was published as full
paper at the WWW conference [14]. Excerpts of Section 3.3 have been published at the ICMS
conference in a full paper [10].

3.1 Semantification via Math-Word Embeddings

Mathematics is capable of explaining complicated concepts and relations in a compact, precise,
and accurate way. Learning this idiom takes time and is often difficult, even to humans. The
general applicability of mathematics allows a certain level of ambiguity in its expressions. Short
explanations ormathematical expressions are often used to mitigate the ambiguity problem, that
serve as a context to the reader. Along with context-dependency, inherent issues of linguistics
(e.g., ambiguity, non-formality) make it even more challenging for computers to understand
mathematical expressions. Nevertheless, a system capable of automatically capturing the se-
mantics of mathematical expressions would be suitable for improving several applications, from
search engines to recommendation systems. Word embedding [33, 34, 43, 65, 73, 217, 222, 239,
250, 255, 272, 293, 295] has made it possible to apply deep learning in NLP with great effect.
That is because embedding represents individual words with numerical vectors that capture
contextual and relational semantics of the words. Such representation enables inputting words
and sentences to a Neural Network (NN) in numerical form. This allows the training of NNs
and using them as predictive models for various NLP tasks and applications, such as semantic
role modeling [149, 412], word-sense disambiguation [160, 305], sentence classification [186],
sentiment analysis [344], coreference resolution [223, 388], named entity recognition [72], read-
ing comprehension [75], question answering [234], natural language inference [69, 137], and
machine translation [97]. The performance of word embedding in NLP tasks has been measured
and shown to deliver fairly high accuracy [256, 293, 295].

Asmath text consists of natural text as well asmath expressions that exhibit linear and contextual
correlation characteristics that are very similar to those of natural sentences, word embedding
applies to math text much as it does to natural text. Accordingly, it is worthwhile to explore
the use and effectiveness of word embedding in Mathematical Language Processing (MLP),
Mathematical Knowledge Management (MKM), and MathIR. Still, math expressions and math
writing styles are different from natural text to the point that NLP techniques have to undergo
significant adaptations and modifications to work well in math contexts.

While some efforts have started to apply word embedding to MLP, such as equation embed-
ding [121, 9, 215, 400, 404], there is a healthy skepticism about the use of ML and Deep Learning
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(DL) in MLP and MKM, on the basis that much work is still required to prove the effective-
ness of DL in MLP. To learn how to adapt and apply DL in the MLP/MKM/MathIR context is
not an easy task. Most applications of DL in MLP/MKM/MathIR rest on the effectiveness of
word/math-term embedding (henceforth math embedding) because the latter is the most basic
foundation in language DL. Therefore, it behooves us to start to look at the effectiveness of
math embedding in basic tasks, such as term similarity, analogy, information retrieval, and basic
math search, to learn more about their extension and limitations. More importantly, we need
to learn how to refine and evolve math embedding to become accurate enough for more severe
applications, such as knowledge extraction. That is the primary objective of this section.

To that effect, there is a fundamental need for datasets and benchmarks, preferably standard
ones, to allow researchers to measure the performance of various math embedding techniques,
and applications based on them, in an objective and statistically significant way, and to measure
improvements and comparative progress. Such resources are abundant in the natural language
domain but scarce in the MLP domain. Developing some of such datasets and benchmarks will
hopefully form the nucleus for further development by the community to facilitate research
and speed up progress in this vital area of research.

While the task of creating such resources forDL applications inMLP can be long and demanding,
the examination of math embedding should not wait but should proceed right away, even if
in an exploratory manner. Early evaluations of math embedding should ascertain its value
for MLP/MKM/MathIR and inform the process and trajectory of creating the corpora and
benchmarks. Admittedly, until adequate datasets and benchmarks become available for MLP,
we have to resort to less systematic performance evaluation and rely on performing preliminary
tests on the limited resources available. The DLMF [98] and arXiv.org preprint archive1 are
good resources to start our exploratory embedding efforts. The DLMF offers high quality, and
the authors are familiar with its structure and content (which aids in crafting some of the tests).
As for the arXiv collection, its large volume of mostly math articles makes it an option worth
to investigate as well.

In this section, we provide an exploratory investigation of the effectiveness and use of word
embedding in MLP and MKM through different perspectives. First, we train word2vec models
on the DLMF and arXiv with slightly different approaches for embedding math. Since the
DLMF is primarily a handbook of mathematical equations, it does not provide extensive textual
content. We will show that the DLMF trained model is appropriate to discover mathematical
term similarities and term analogies, and to generate query expansions. We hypothesize that
the arXiv trained models are beneficial to extract definiens, i.e., textual descriptive phrases for
math terms. We examine the possible reasons why the word embedding models, trained on the
arXiv dataset, does not present valuable results for this task. Besides, we discuss some of the
reasons that we believe thwart the progress in MathIR in the direction of machine learning. In
summary, we focus on five tasks (i) term similarity, (ii) math analogies, (iii) concept modeling,
(iv) query expansion, and (v) knowledge extraction. In the context of this thesis, we are mostly
interested in the latter, i.e., knowledge extractions, and will solely focus on these experiments
and results. For the tasks (i-iv), see [15].

1https://arxiv.org/ [accessed 2019-09-01]
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3.1.1 Foundations and Related Work

Understanding mathematical expressions essentially mean comprehending the semantic value
of its internal components, which can be accomplished by linking its elements with their
corresponding mathematical definitions. Current MathIR approaches [213, 329, 330] try to
extract textual descriptors of the parts that compose mathematical equations. Intuitively, there
are questions that arise from this scenario, such as (i) how to determine the parts which have
their own descriptors, and (ii) how to identify correct descriptors over others.

Answers to (i) are more concerned in choosing the correct definitions for which parts of a
mathematical expression are considered as one mathematical object [197, 18, 402]. Current
definition-languages, such as the content MathML 3.02 specification, are often imprecise3. For
example, content MathML 3.0 uses ‘csymbol’ elements for functions and specifies them as
expressions that refer to a specific, mathematically-defined concept with an external definition4.
However, in case of the Van der Waerden number, for instance, it is not clear whether W or
the sequence W (r, k) should be declared as a ‘csymbol’. Another example involves content
identifiers, which MathML specifies as mathematical variables that have properties, but no fixed

value5. While content identifiers are allowed to have complex rendered structures (e.g., β2
i ), it

is not permitted to enclose identifiers within other identifiers. Let us consider αi, where α is a
vector and αi its i-th element. In this case, αi should be considered as a composition of three
content identifiers, each one carrying its own individualized semantic information, namely the
vector α, the element αi of the vector, and the index i. However, with the current specification,
the definition of these identifiers would not be canonical. One possible workaround to represent
such expressions with content MathML is to use a structure of four nodes, interpreting αi as
a function via a ‘csymbol’ (one parent ‘apply’ node with the three children vector-selector, α,
and i). However, ML algorithms and MathIR approaches would benefit from more precise
definitions and a unified answer for (i). Most of the related work relies on these relatively vague
definitions and in the analysis of content identifiers, focusing their efforts on (ii).

Questions (i), (ii), and other pragmatic issues are already in discussion in a bigger context, as
data production continues to rise and digital repositories seem to be the future for any archive
structure. A prominent example is the National Research Council’s effort to establish what they
call the Digital Mathematical Library (DML)6, a project under the International Mathematical
Union. The goal of this project is to take advantage of new technologies and help to solve
the inability to search, relate, and aggregate information about mathematical expressions in
documents over the web.

The advances most relevant to our work are the recent developments in word embedding [43,
65, 73, 256, 293, 295, 313]. Word embedding takes as input a text collection and generates a
numerical feature vector (typically with 100 or 300 dimensions) for each word in the collection.
This vector captures latent semantics of a word from the contexts of its occurrences in the

2https://www.w3.org/TR/MathML3/ [accessed 2019-09-01]
3Note that OpenMath is another specification designed to encode semantics of mathematics. However, content

MathML is an encoding of OpenMath and inherent problems of content MathML also apply to OpenMath (see
https://www.openmath.org/om-mml/ [accessed 2019-09-01]).

4https://www.w3.org/TR/\gls{mathml}3/chapter4.html#contm.csymbol [accessed 2019-09-01]
5https://www.w3.org/TR/\gls{mathml}3/chapter4.html#contm.ci [accessed 2019-09-01]
6https://www.nap.edu/read/18619 [accessed 2019-09-01]
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collection; in particular, words that often co-occur nearby tend to have similar feature vectors
(where similarity is measured by the cosine similarity, the Euclidean distance, etc.).

Recently, more andmore projects try to adapt theseword embedding techniques to learn patterns
of the correlations between context andmathematics. In the work of Gao et al. [121], they embed
single symbols and train a model that can discover similarities between mathematical symbols.
Similarly to this approach, Krstovski and Blei [215] uses a variation of word embedding to
represent complex mathematical expressions as single unit tokens for IR. In 2019, Yusanaga and
Lafferty [400] explore an embedding technique based on recurrent neural networks to improve
topic models by considering mathematical expressions. They state their approach outperforms
topic models that do not considermathematics in text and report a topic coherence improvement
of 0.012 over the LDA7 baseline. Equation embedding, as in [121, 215, 400], present promising
results for identifying similar equations and contextual descriptive keywords. In the following,
we will explore in more detail different techniques of word embedding.

3.1.1.1 Word Embedding

In this section, we apply word2vec [256] on the DLMF [98] and on the collection of arXiv docu-
ments for generating embedding vectors for various math symbols and terms. The word2vec
technique computes real-valued vectors for words in a document using two main approaches:
skip-gram and continuous bag-of-words (CBOW). Both produce a fixed-length n-dimensional
vector representation for each word in a corpus. In the skip-gram training model, one tries to
predict the context of a given the word, while CBOW predicts a target word given its context.
In word2vec, context is defined as the adjacent neighboring words in a defined range, called
a sliding window. The main idea is that the numerical vectors representing similar words
should have close values if the words have similar context, often illustrated by the king-queen
relationship.

� King-Queen Relationship of Word-Embedding Vectors

The king-queen relationship describes the similarity (in terms of the cosine distance
between the vectors) of:


vking − 
vman ≈ 
vqueen − 
vwoman, (3.1)

where 
vt represents the vector for the token t.

Extending word2vec’s approaches, Le and Mikolov [222] propose Paragraph Vectors, a frame-
work that learns continuous distributed vector representations for any size of text segments
(e.g., sentences, paragraphs, documents). This technique alleviates the inability of word2vec to
embed documents as one single entity. This technique also comes in two distinct variations:
Distributed Memory and Distributed Bag-of-Words, which are analogous to the skip-gram and
CBOW training models, respectively.

Other approaches also produce word embedding given a training corpus as input, such as
fastText [43], ELMo [295], and GloVe [293]. The choice for word2vec for our experiments is
justified because of its implementation ease, training speed using modest computing resources,

7Latent Dirichlet Allocation
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general applicability, and robustness in several NLP tasks [160, 161, 229, 238, 302, 312]. Ad-
ditionally, in fastText they propose to learn word representations as a sum of the n-grams of
its constituent characters (sub-words). The sub-word structure would incorporate a certain
noise8 to our experiments. In ELMo, they compute their word vectors as the average of their
characters representations, which are obtained through a two-layer bidirectional language
model (biLM). This would bring even more granularity than fastText, as they consider each
character in a word as having their own n-dimensional vector representation. Another factor
that prevents us from using ELMo, for now, is its expensive training process9. Closer to the
word2vec technique, GloVe [293] is also considered, but its co-occurrence matrix would escalate
the memory usage, making its training for arXiv not possible at the moment. We also examine
the recently published Universal Sentence Encoder [65] from Google, but their implementa-
tion does not allow one to use a new training corpus, only to access its pre-calculated vectors
based on words. We also considered BERT [96] with its recent advances of Transformer-based
architectures in NLP as an alternative to word2vec. However, incorporating BERT and other
Transformer-based architectures would require a significant restructuring of the core idea of our
work. BERT is pre-trained in two general tasks that are not directly transferable to mathematics
embeddings: Masked Language Modelling and Next Sentence Prediction. Since this work is an
exploratory investigation of the potential of word embedding techniques in MLP and MKM, we
gave preference to tools that could be applied directly. Nonetheless, since some of our results
are promising, we plan to include Transformer-based systems, such as BERT [96], XLNet [399],
RoBERTa [235], and Transformers-XL [87], in future work.

The overall performance of word embedding algorithms has shown superior results in many
different NLP tasks, such as machine translation [256], relation similarity [161], word sense
disambiguation [55], word similarity [268, 312], and topic categorization [301]. In the same
direction, we also explore how well mathematical tokens can be embedded according to their
semantic information. However, mathematical formulae are highly ambiguous and, if not
properly processed, their representation is jeopardized.

To investigate the situations described in Sections 3.1.1.1 and 2.2.5 we applied word2vec on
two different scenarios, one focusing on MathIR (DLMF) and the other on semantic knowledge
extraction (arXiv), i.e., identifying definiens for math objects. To summarize our decisions, for
the DLMF and arXiv, we choose the stream of token embedding technique, i.e., each inner token
is represented as a single n-dimensional vector in the embedding model. For the DLMF, we
embed all inner tokens, while for the arXiv, we only embed the identifiers. In this thesis, we
are more interested in applying math embeddings to semantic extraction task. The MathIR task
is described in [15, Section 3].

3.1.2 Semantic Knowledge Extraction

Extracting definiens of mathematical objects from a textual context is a common task in
MathIR [214, 279, 329, 330, 405] that often provides a gold dataset for its evaluation. Since
the DLMF does not provide extensive textual information for its mathematical expressions, we
considered an alternative scenario in our analysis, one in which we trained a second word2vec
model on a much larger corpus composed of articles/papers from the arXiv collection. In this
section, we compare our findings against the approach by Schubotz et al. [330]. We apply varia-

8Noise means, the data consists of many uninteresting tokens that affect the trained model negatively.
9https://github.com/allenai/bilm-tf [accessed 2019-09-01]

Chapter 3

Semantification of Mathematical LaTeX
63

https://github.com/allenai/bilm-tf


Section 3.1. Semantification via Math-Word Embeddings

tions of a word2vec [256] and paragraph vectors [222] implementation to extract mathematical
relations from the arXMLiv 2018 [132] dataset (i.e., an HTML collection of the arXiv.org preprint
archive10), which is used as our training corpus. We also consider the subsets that do not report
errors during the document conversion (i.e., no_problem and warning) which represent 70% of
archive.org. We make the code, regarding our experiments, publicly available11.

3.1.2.1 Evaluation of Math-Embedding-Based Knowledge Extraction

As a pre-processing step, we represent mathematical expressions using the MathML12 notation.
First, we replace all mathematical expressions with the identifiers sequence it contains, i.e.,
W (2, k) is replaced by ‘W k’. We also add the prefix ‘math-’ to all identifier tokens to distin-
guish between textual and mathematical terms later. Second, we remove all common English
stopwords from the training corpus. Finally, we train a word2vec model (skip-gram) using the
following hyperparameters13: vector size of 300 dimensions, a window size of 15, minimum
word count of 10, and a negative sampling of 1E − 5. We justify the hyperparameter used in
our experiments based on previous publications using similar models [63, 221, 222, 255, 312].

In the following, distances between vectors are calculated via the cosine distance. The trained
model was able to partially incorporate semantics of mathematical identifiers. For instance,
the closest 27 vectors to the mathematical identifier f are mathematical identifiers themselves
and the fourth closest noun vector to f is ‘function’. We observe that the results of the model
trained on arXiv are comparable with our previous experiments on the DLMF.

Previously, we used the semantic relations between embedding vectors to search for relevant
terms in the model. Hereafter, we will refer to this algebraic property as semantic distance to a
given term with respect to a given relation, i.e., two related vectors. For example, to answer
the query/question: What is to ‘complex’ as x is to ‘real’, one has to find the closest semantic

vectors to ‘complex’ with respect to the relation between x and ‘real’, i.e., finding 
v in


v − 
vcomplex ≈ 
vx − 
vreal.

Instead of asking for mathematical expressions, we will now reword the query to ask for specific
words. For example, to retrieve the meaning of f from the model, we can ask for: What is to
f as ‘variable’ is to x? Or in other words, what is semantically close to f with respect to the
relation between ‘variable’ and x? Table 3.1 shows the top 10 semantically closest results to f
with respect to the relations between 
vvariable and 
vx, 
vvariable and 
vy , and 
vvariable and 
va.

From Table 3.1, we can observe a similar behaviour. Later, we will explore that mathematical
vectors build a cluster in the trained model, i.e., that the vectors of 
vf , 
vx, and 
vy are close to
each other with respect to the cosine similarity. This cluster, and the fact that we did not use
stemming and lemmatization for preprocessing, explains that the top hit to the queries is always
‘variables’. To refine the order of the extracted answers, we calculated the cosine similarity
between 
vf and the vectors for the extractedwords directly. Table 3.2 shows the cosine distances
between 
vf and the extracted words from the query: Term is to f what ‘variable’ is to a.

10https://arxiv.org/ [accessed 2019-09-01]
11https://github.com/ag-gipp/math2vec [accessed 2019-09-01]
12The source TEX file has to use mathematical environments for its expressions.
13Non mentioned hyperparameters are used with their default values as described in the Gensim API [307]
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Table 3.1: Analogies of the form: Find the Term where Term is a word that is to X what Y is to Z.

Top-10 best Terms and their cosine similarities where

Term is to f what

‘variable’ is to x
Term is to f what

‘variable’ is to y
Term is to f what

‘variable’ is to a

variables 0.7655 variables 0.7481 variables 0.7600
independent 0.7411 function 0.7249 function 0.7154
appropriate 0.7279 given 0.7103 appropriate 0.6925

means 0.7250 means 0.7083 independent 0.6789
ie 0.7234 ie 0.7067 instead 0.6784

instead 0.7233 independent 0.7030 defined 0.6729
namely 0.7139 thus 0.6925 namely 0.6719

function 0.7131 instead 0.6922 continuous 0.6707
following 0.7117 appropriate 0.6891 depends 0.6629
depends 0.7095 defined 0.6889 represents 0.6623

Asking for the meaning of f is a very generic question. Thus, we performed a detailed evaluation
on the first 100 entries14 of the MathMLben benchmark [18]. We evaluated the average of the
semantic distances with respect to the relations between 
vvariable and 
vx, 
vvariable and 
va, and

vfunction and 
vf. We have chosen to test on these relations because we believe that these relations
are the most general and still applicable, e.g., seen in Table 3.2. In addition, we consider only
results with a cosine similarity equal to or greater than 0.70 to maintain a minimum quality
in our experiments. The overall results were poor, with a precision of p = .0023 and a recall
of r = .052. Despite the weak results, an investigation of some specific examples showed
interesting characteristics; for example, for the identifier W , the four semantically closest
results were functions, variables, form, and the mathematical identifier q. The poor performance
illustrates that there might be underlying issues with our approach. However, as mentioned
before, mathematical notation is highly flexible and content-dependent. Hence, in the next
section, we explore a technique that rearranges the hits according to the actual close context of
the mathematical expression.

3.1.2.2 Improvement by Considering the Context

We also investigate how a different word embedding technique would affect our experiments. To
do so, we trained a Distributed Bag-of-Words of Paragraph Vectors (DBOW-PV) [222] model. We
trained this DBOW-PV in the same corpus as our word2vec model (with the same preprocessing
steps) with the following configuration: 400 dimensions, a window size of 25, and minimum
count of 10 words. Schubotz et al. [330] analyze all occurrences of mathematical identifiers
and consider the entire article at once. We believe this prevents the algorithm from finding
the right descriptor in the text, since later or prior occurrences of an identifier might appear in
a different context, and potentially introduce different meanings. Instead of using the entire
document, we consider the algorithm by Schubotz et al. [330] only in the input paragraph and

14Same entries used in [330]
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Table 3.2: The cosine distances of f regarding to the hits in Table 3.1.

Cosine distances between the

Terms from Table 3.1 to f

function 0.8138
defined 0.7932

independent 0.7323
namely 0.7214
depends 0.7022

represents 0.6983
instead 0.6837

appropriate 0.6698
continuous 0.6203
variables 0.5638

similar paragraphs given by our DBOW-PV model. Unfortunately, the obtained variance within
the paragraphs brings a high number of false positives to the list of candidates, which affects
the performance of the original approach negatively.

As a second approach for improving our system, we considered a given textual context to
reorder extracted words according to their cosine similarities to the given context. For example,
consider the sentence: ‘Let f(x, y) be a continuous function where x and y are arbitrary values.’.
We ask for the meaning of f concerning this given context sentence. The top-k closest words
to f in the word2vec model only represent the distance over the entire corpus, in this case,
arXiv, but not regarding a given context. To address this issue, we retrieved similar paragraphs
to our context example via the DBOW-PV model and computed the weighted average distance
between all top-k words, that are similar to f and the retrieved sentences. We expected that the
word describing f in our example sentence would also present a higher cosine similarity to the
context itself. Table 3.3 shows the top-10 closest words (i.e., we filtered out other math tokens)
and their cosine similarity to f in the left column. The right column shows the average cosine
similarities of the extracted words to the context example sentence we used and its retrieved
similar sentences.

As Table 3.3 illustrates, this context-sensitive approach was not beneficial; in fact it undermined
ourmodel. According to the fact that the identifier should be closer to the given context sentence
rather than to the related sentences retrieved from the DBOW-PV model, we also explored the
use of weighted average. However, the weighted average did not improve the results of the
normal average. Other hyperparameters for the word embedding models were also tested in an
attempt to tune our system. However, we could not determine any drastic changes regarding
the measured performances.

3.1.2.3 Visualizing Our Model

Figure 3.1 illustrates four t-SNE[154] plots of our word2vec model. Since t-SNE plots may
produce misleading structures [382], we plot four t-SNE plots with different perplexity values.
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Table 3.3: We are looking for descriptive terms for f in a given context ‘Let f(x, y) be a

continuous function where x and y are arbitrary values’. To achieve this, we retrieved close
vectors to f and computed their distances to the given context sentence. To bring variety to
the context, we used our DBOW-PV model to retrieve related sentences to the given context
and computed the average distance of the words to these related sentences.

Top-10 closes words (no

math symbols) to f and their

cosine similarities.

After reordering the hits

according to their distances

to the context vector.

given 0.8162 case 0.8568
case 0.7960 corresponding 0.8562

corresponding 0.7957 note 0.8451
function 0.7900 thus 0.8414

note 0.7803 obtain 0.8413
thus 0.7726 ie 0.8335

obtain 0.7712 since 0.8250
value 0.7682 function 0.8086

ie 0.7656 value 0.8015
since 0.7583 given 0.7096

Other parameters were set to their default values according to the t-SNE python package.
We colored word tokens in blue and math tokens in red. The plots illustrate, though not
surprisingly, that math tokens are clustered together. However, a certain subset of math tokens
appear isolated from other math tokens. By attaching the content to some of the vectors,
we can see that math tokens, such as and (an and within math mode) and im (most likely
referring to imaginary numbers) are part of a second cluster of math tokens. The plot is similar
to the visualized model presented in [121], even though they use a different word embedding
technique. Hence, the general structure within math word2vec models seems to be insensitive
to the embedding technique of formulae used. Compared to [121], we provide a model with
richer details that reveal some dense clusters, e.g., numbers (bottom right plot at (11, 8)) or
equation labels (bottom right plot at (−14, 0)).

Based on the presented results, one can still argue thatmore settings should be explored (e.g., dif-
ferent parameters and embedding techniques) for the embedding phase, different pre-processing
steps (e.g., stemming and lemmatization) should be adopted, and post-processing techniques
(e.g., boosting terms of interest based on a knowledge database such as OntoMathPro [104, 105])
should also be investigated. This presumably solves some minor problems, such as removing
the inaccurate first hit in Table 3.1. Nevertheless, the overall results would not surpass the
ones in [330], which reports a precision score of p = 0.48. On the grounds that mathematics is
highly customizable, many of the defined relations between mathematical concepts and their
descriptors are only valid in a local scope. Let us consider an author that notates his algorithm
using the symbol π. The author’s specific use of π does not change its general use, but it affects
the meaning in the scope of the article. Current ML approaches only learn patterns of most
frequently used combinations, e.g., between f and ‘function’, as seen in Table 3.1.
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Figure 3.1: t-SNE plot of top-1000 closest vectors of the identifier f with perplexity values 5
(top left), 10 (top right), 40 (bottom left), and 100 (bottom right) and the default values of the
t-SNE python package for other settings.

Even though math notations can change, such as π in the example above, one could assume the
existence of a common ground for most notations. The low performance of our experiments
compared to the results in [330] seem to confirm that math notations change regularly in
real-world documents, i.e., are tied to a specific context. If a common ground exists, for math
notations, it must be marginally small, at least in the 100 test cases from [18].

3.1.3 On Overcoming the Issues of Knowledge Extraction Approaches

We assume the low performance regarding our knowledge extraction experiments are caused by
fundamental issues that should be discussed before more efforts are made to train ML algorithms
for extracting knowledge of math expressions. In the following, we discuss some reasons that
we believe can help ML algorithms to understand mathematics better.

It is reported that 70% of mathematical symbols are explicitly declared in the context [394].
Only four reasons justify an explicit declaration in the context: (a) a new mathematical symbol
is defined, (b) a known notation is changed, (c) used symbols are present in other contexts and
require specifications to be correctly interpreted, or (d) authors’ declarations are redundant
(e.g., for improving readability). We assume (d) is a rare scenario compared to the other ones
(a-c), except in educational literature. Current math-embedding techniques can learn semantic
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connections only in that 70%, where the definiens is available. Besides (d), the algorithm
would learn either rare notations (in case of (a)) or ambiguous notations (in cases (b-c)). The
flexibility that mathematical documents allow to (re)define used mathematical notations further
corroborates the complexity of learning mathematics.

Learning algorithms would benefit from literature focused on (a) and (d), instead of (b) and (c).
Similar to students who start to learn mathematics, ML algorithms have to consider the structure
of the content they learn. It is hard to learn mathematics only considering arXiv documents
without prior or complementary knowledge. Usually, these documents represent state-of-the-
art findings containing new and unusual notations and lack of extensive explanations (e.g.,
due to page limitations). In contrast, educational books carefully and extensively explain new
concepts. We assume better results can be obtained if ML algorithms are trained in multiple
stages, first on educational literature, then on datasets of advanced math articles. A basic
model trained in educational literature should capture standard relations between mathematical
concepts and descriptors. This model should also be able to capture patterns independently of
how new or unusual the notations are present in the literature. In 2014, Matsuzaki et al. [247]
presented some promising results to answer mathematical questions from Japanese university
entrance exams automatically. While the approach involves many manual adjustments and
analysis, the promising results illustrate the different levels of knowledge that is still required
for understanding arXiv documents vs. university entrance level exams. A well-structured
digital mathematical library that distinguishes the different levels of sophistication in articles
(e.g. introductions vs. state-of-the-art publications) would also benefit mathematical machine
learning tasks.

The lack of references and applications that provide a solid semantic structure of natural lan-
guage for mathematical identifiers make the disambiguation process of the latter even more
challenging. In natural texts, one can try to infer the most suitable word sense for a word based
on the lemma15 itself, the adjacent words, dictionaries, and thesauri to name a few. However, in
the mathematical arena, the scarcity of resources and the flexibility of redefining their identifiers
make this issue much harder. The context text preceding or following the mathematical equa-
tion is essential for its understanding. This context can be considered in a long or short distance
away from the equation, which aggravates the problem. Thus, a comprehensive annotated
dataset that addresses these needs of structural knowledge would enable further progress in
MathIR with the help of ML algorithms.

Another primary source of complexity is the inherent ambiguity present in any language,
especially in mathematics. A typical workaround in linguistics for such ambiguous notations is
to consider the use of lexical databases (e.g., WordNet [116, 261]) to identify the most suitable
word senses for a given word. These databases allow embeddings algorithms to train a vector
for each semantic meaning for every token. For example, Java could have multiple vectors in
a single model according to its different meanings of the word, e.g., the island in the south of
Indonesia, the programming language or the coffee beans. However, mathematics lacks such
systems, which makes its adoption not feasible at the moment. Youssef [402] proposes the
use of tags, similarly to the PoS tags in linguistics, but for tagging mathematical TEX tokens,
bringing more information to the tokens considered. As a result, a lexicon containing several
meanings for a large set of mathematical symbols is developed. OntoMathPro [104, 105] aims for
generating a comprehensive ontology of mathematical knowledge and, therefore, also contain

15canonical form, dictionary form, or citation form of a set of words
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information about the different meanings of mathematical tokens. Such dictionaries might
enable the disambiguation approaches in linguistics to be used in mathematical embedding in
the near future.

Another issue in recent publications is the lack of standards and the scarcity of benchmarks
to properly evaluate MathIR algorithms. Krstovski and Blei [215], and Yasunaga and Laf-
ferty [400] provide an interesting perspective on the problem of mathematic embeddings. Their
experiments are focused on math-analogies. Our findings on Section 3.2 corroborate with the
math-analogies results, as our experiments have comparable results in a controlled environ-
ment. However, because of a missing well-established benchmark, we, as well the mentioned
publications, are only able to provide incipient results. Existing datasets are often created
for and, therefore, limited to specific tasks. For example, the NTCIR math tasks [21, 22, 405]
or the upcoming ARQMath16 task, provide datasets that are specifically designed to tackle
problems of mathematical search engines. The secondary task of ARQMath actually search for
math-analogies. In general, a proper, common standard for interpreting semantic structures of
mathematics (see for example the mentioned problems with αi in Section 2) would be beneficial
for several tasks in MathIR, such as semantic knowledge extraction.

3.1.4 The Future of Math Embeddings

As we explored through this section, our preliminary results stress the urgent need for creating
extensive math-specific benchmarks for testing math embedding techniques on math-specific
tasks. To appreciate more the magnitude and dimensions of creating such benchmarks, it is
instructive to look at some of those developed for NLP whose tasks can beneficially inform
and guide corresponding tasks in MLP. The NLP benchmarks include one for natural language
inference [47], one for machine comprehension [306], one for semantic role modeling [281],
and one for language modeling [68], to name a few. With such benchmarks, which are often de

facto standards for the corresponding NLP tasks, the NLP research community has been able
to (1) measure the performance of new techniques up to statistical significance, and (2) track
progress in various NLP techniques, including deep learning for NLP, by quickly comparing
the performance of new techniques to others and to the state-of-the-art.

While our exploratory studies regarding our term similarities, analogies, and query expansions
need extensive future experimentation for statistically significant validation on large datasets
and benchmarks, they show some of the promise and limitations of word embedding in math
(MLP) applications. Especially its applicability for our desired knowledge extraction process is
highly questionable. One of the main issues we encountered for embedding mathematics is the
inability to model the nested semantic structure of mathematical expressions. In the following,
we will further explore properties of mathematical subexpressions by analyzing their frequency
distributions in large datasets.

3.2 Semantification with Mathematical Objects of Interest

As discussed before, math expressions often contain meaningful and important subexpressions.
MathIR [141] applications could benefit from an approach that lies between the extremes of

16https://www.cs.rit.edu/~dprl/ARQMath/ [accessed 2020-02-01]
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examining only individual symbols or considering an entire equation as one entity. Consider
for example, the explicit definition for Jacobi polynomials [98, (18.5.7)]

� The Explicit Definition of Jacobi Polynomials

P (α,β)
n (x) = Γ(α + n + 1)

n! Γ(α + β + n + 1)

n∑
m=0

(
n

m

)
Γ(α + β + n + m + 1)

Γ(α + m + 1)

(
x − 1

2

)m

(3.2)

The interesting components in this equation are P
(α,β)
n (x) on the left-hand side, and the ap-

pearance of the gamma function Γ(s) on the right-hand side, implying a direct relationship
between Jacobi polynomials and the gamma function. Considering the entire expression as a
single object misses this important relationship. On the other hand, focusing on single symbols
can result in the misleading interpretation of Γ as a variable and Γ(α+n+1) as a multiplication
between Γ and (α + n + 1). A system capable of identifying the important components, such

as P
(α,β)
n (x) or Γ(α + n + 1), is therefore desirable. Hereafter, we define these components as

Mathematical Objects of Interest (MOI) [9].

The importance of math objects is a somewhat imprecise description and thus difficult to mea-
sure. Currently, not much effort has been made in identifying meaningful subexpressions.
Kristianto et al. [214] introduced dependency graphs between formulae. With this approach,
they were able to build dependency graphs of mathematical expressions, but only if the expres-
sions appeared as single expressions in the context. For example, if Γ(α + n + 1) appears as
a stand-alone expression in the context, the algorithm will declare a dependency with Equa-
tion (3.2). However, it is more likely that different forms, such as Γ(s), appear in the context.
Since this expression does not match any subexpression in Equation (3.2), the approach cannot
establish a connection with Γ(s). Kohlhase et al. studied in [191, 193, 196] another approach
to identify essential components in formulae. They performed eye-tracking studies to identify
important areas in rendered mathematical formulae. While this is an interesting approach that
allows one to learn more about the insights of human behaviors of reading and understanding
math, it is inaccessible for extensive studies.

This section presents the first extensive frequency distribution study of mathematical equations
in two large scientific corpora, the e-Print archive arXiv.org (hereafter referred to as arXiv17)
and the international reviewing service for pure and applied mathematics zbMATH18. We will
show that math expressions, similar to words in natural language corpora, also obey Zipf’s
law [297], and therefore follows a Zipfian distribution. Related research projects observed a
relation to Zipf’s law for single math symbols [71, 329]. In the context of quantitative linguistics,
Zipf’s law states that given a text corpus, the frequency of any word is inversely proportional
to its rank in the frequency table. Motivated by the similarity to linguistic properties, we will
present a novel approach for ranking formulae by their relevance via a customized version of
the ranking function BM25 [310]. We will present results that can be easily embedded in other
systems in order to distinguish between common and uncommon notations within formulae.
Our results lay a foundation for future research projects in MathIR.

17https://arxiv.org/ [accessed 2019-09-01]
18https://zbmath.org [accessed 2019-09-01]
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Fundamental knowledge on frequency distributions of math formulae is beneficial for numerous
applications in MathIR, ranging from educational purposes [341] to math recommendation
systems [50], search engines [92, 274], and even automatic plagiarism detection systems [253,
254, 334]. For example, students can search for the conventions to write certain quantities in
formulae; document preparation systems can integrate an auto-completion or auto-correction
service for math inputs; search or recommendation engines can adjust their ranking scores
with respect to standard notations; and plagiarism detection systems can estimate whether two
identical formulae indicate potential plagiarism or are just using the conventional notations in
a particular subject area. To exemplify the applicability of our findings, we present a textual
search approach to retrieve mathematical formulae. Further, we will extend zbMATH’s faceted
search by providing facets of mathematical formulae according to a given textual search query.
Lastly, we present a simple auto-completion system for math inputs as a contribution towards
advancing mathematical recommendation systems. Further, we show that the results provide
useful insights for plagiarism detection algorithms. We provide access to the source code,
the results, and extended versions of all of the figures appearing in this paper at https :
//github.com/ag-gipp/FormulaCloudData.

3.2.1 Related Work

Today, mathematical search engines index formulae in a database. Much effort has been un-
dertaken to make this process as efficient as possible in terms of precision and runtime per-
formance [92, 181, 231, 236, 407]. The generated databases naturally contain the information
required to examine the distributions of the indexed mathematical formulae. Yet, no in-depth
studies of these distributions have been undertaken. Instead, math search engines focus on
other aspects, such as devising novel similarity measures and improving runtime efficiency.
This is because the goal of math search engines is to retrieve relevant (i.e., similar) formulae
which correspond to a given search query that partially [211, 231, 274] or exclusively [92, 181,
182] contains formulae. However, for a fundamental study of distributions of mathematical
expressions, no similarity measures nor efficient lookup or indexing is required. Thus, we use
the general-purpose query language XQuery and employ the BaseX19 implementation. BaseX
is a free open-source XML database engine, which is fully compatible with the latest XQuery
standard [140, 396]. Since our implementations rely on XQuery, we are able to switch to any
other database which allows for processing via XQuery.

3.2.2 Data Preparation

LATEX is the de facto standard for the preparation of academic manuscripts in the fields of
mathematics and physics [129]. Since LATEX allows for advanced customizations and even
computations, it is challenging to process. For this reason, LATEX expressions are unsuitable for
an extensive distribution analysis of mathematical notations. For mathematical expressions on
the web, the XML formatted MathML20 is the current standard, as specified by the World Wide
Web Consortium (W3C). The tree structure and the fixed standard, i.e., MathML tags, cannot be
changed, thus making this data format reliable. Several available tools are able to convert from
LATEX to MathML [18] and various databases are able to index XML data. Thus, for this study,

19http://basex.org/ [accessed 2019-09-01]; We used BaseX 9.2 for our experiments.
20https://www.w3.org/TR/MathML3/ [accessed 2019-09-01]
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we have chosen to focus on MathML. In the following, we investigate the databases arXMLiv
(08/2018) [132] and zbMATH21 [333].

The arXMLiv dataset (≈1.2 million documents) contains HTML5 versions of the documents
from the e-Print archive arXiv.org. The HTML5 documents were generated from the TEX
sources via LATExml [257]. LATExml converted all mathematical expressions into MathML with
parallel markup, i.e., presentation and content MathML. In this study we only consider the
subsets no-problem and warning, which generated no errors during the conversion process.
Nonetheless, the MathML data generated still contains some errors or falsely annotated math.
For example, we discovered several instances of affiliation and footnotes, SVG22 and other
unknown tags, encoded in MathML. Regarding the footnotes, we presumed that authors falsely
used mathematical environments for generating footnote or affiliation marks. We used the TEX
string, provided as an attribute in the MathML data, to filter out expressions that match the
string ‘{}^{*}’, where ‘*’ indicates any possible expression. In addition, we filtered out SVG
and other unknown tags. We assume that these expressions were generated by mistake due to
limitations of LATExml. The final arXiv dataset consisted of 841,008 documents which contained
at least one mathematical formula. The dataset contained a total of 294,151,288 mathematical
expressions.

In addition to arXiv, we investigated zbMATH, an international reviewing service for pure and
applied mathematics which contains abstracts and reviews of articles, hereafter uniformly called
abstracts, mainly from the domains of pure and applied mathematics. The abstracts in zbMATH
are formatted in TEX [333]. To be able to compare arXiv and zbMATH, we manually generated
MathML via LATExml for each mathematical formula in zbMATH and performed the same filters
as used for the arXiv documents. The zbMATH dataset contained 2,813,451 abstracts, of which
1,349,297 contained at least one formula. In total, the dataset contained 11,747,860 formulae.
Even though the total number of formulae is smaller compared to arXiv, we hypothesize that
math formulae in abstracts are particularly meaningful.

3.2.2.1 Data Wrangling

Since we focused on the frequency distributions of visual expressions, we only considered
pMML. Rather than normalizing the pMML data, e.g., via MathMLCan [117], which would also
change the tree structure and visual core elements in pMML, we only eliminated the attributes.
These attributes are used for minor visual changes, e.g., stretched parentheses or inline limits
of sums and integrals. Thus, for this first study, we preserved the core structure of the pMML
data, which might provide insightful statistics for the MathML community to further cultivate
the standard. After extracting all MathML expressions, filtering out falsely annotated math and
SVG tags, and eliminating unnecessary attributes and annotations, the datasets required 83GB
of disk space for arXiv and 6GB for zbMATH, respectively.

In the following, we indexed the data via BaseX. The indexed datasets required a disk space of
143.9GB in total (140GB for arXiv and 3.9GB for zbMATH). Due to the limitations23 of databases
in BaseX, it was necessary to split our datasets into smaller subsets. We split the datasets

21https://zbmath.org/ [accessed 2019-09-01]
22Scalable Vector Graphics
23A detailed overview of the limitations of BaseX databases can be found at http://docs.basex.org/wiki/

Statistics [accessed 2019-09-01].
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according to the 20major article categories of arXiv24 and classifications of zbMATH. To increase
performance, we use BaseX in a server-client environment. We experienced performance issues
in BaseXwhenmultiple clients repeatedly requested data from the same server in short intervals.
We determined that the best workaround for this issue was to launch BaseX servers for each
database, i.e., each category/classification.

Mathematical expressions often consist of multiple meaningful subexpressions, which we de-
fined as MOIs. However, without further investigation of the context, it is impossible to deter-
mine meaningful subexpressions. As a consequence, every equation is a potential MOI on its
own and potentially consists of multiple other MOIs. For an extensive frequency distributional
analysis, we aim to discover all possible mathematical objects. Hence, we split every formula
into its components. Since MathML is an XML data format (essentially a tree-structured format),
we define subexpressions of equations as subtrees of its MathML format.

� P
(α,β)
n (x)

1 <math><mrow>
2 <msubsup>
3 <mi>P</mi>
4 <mi>n</mi>
5 <mrow>
6 <mo>(</mo>
7 <mi>α</mi>
8 <mo>,</mo>
9 <mi>β</mi>
10 <mo>)</mo>
11 <mo></mo>
12 </mrow>
13 </msubsup>
14 <mo></mo>
15 <mrow>
16 <mo>(</mo>
17 <mi>x</mi>
18 <mo>)</mo>
19 </mrow>
20 </mrow></math>

Listing 3.1: MathML repre-

sentation of P
(α,β)
n (x).

Listing 3.1 illustrates a Jacobi polynomial P
(α,β)
n (x) in pMML.

The <mo> element on line 14 contains the invisible times UTF-8
character. By definition, the <math> element is the root element
of MathML expressions. Since we cut off all other elements be-
sides pMML nodes, each <math> element has one and only one
child element25. Thus, we define the child element of the <math>
element as the root of the expression. Starting from this root
element, we explore all subexpressions. For this study, we pre-
sume that every meaningful mathematical object (i.e., MOI) must
contain at least one identifier.

Hence, we only study subtrees which contain at least one <mi>
node. Identifiers, in the sense of MathML, are ‘symbolic names

or arbitrary text’ 26, e.g., single Latin or Greek letters. Identi-
fiers do not contain special characters (other than Greek letters)
or numbers. As a consequence, arithmetic expressions, such
as (1 + 2)2, or sequences of special characters and numbers,
such as {1, 2, ...} ∩ {−1}, will not appear in our distributional
analysis. However, if a sequence or arithmetic expression con-
sists of an identifier somewhere in the pMML tree (such as in
{1, 2, ...} ∩ A), the entire expression will be recognized. The

Jacobi polynomial P
(α,β)
n (x), therefore consists of the following

subexpressions: P
(α,β)
n , (α, β), (x), and the single identifiers P ,

n, α, β, and x. The entire expression is also a mathematical ob-
ject. Hence, we take entire expressions with an identifier into

account for our analysis. In the following, the set of subexpressions will be understood to
include the expression itself.

For our experiments, we also generated a string representation of the MathML data. The string
is generated recursively by applying one of two rules for each node: (i) if the current node is a
leaf, the node-tag and the content will be merged by a colon, e.g., <mi>x</mi> will be converted

24The arXiv categories astro-ph (astro physics), cond-mat (condensed matter), and math (mathematics) were still
too large for a single database. Thus, we split those categories into two equally sized parts.

25Sequences are always nested in an <mrow> element.
26https://www.w3.org/TR/MathML3/chapter3.html [accessed 2019-09-01]
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to mi:x; (ii) otherwise the node-tag wraps parentheses around its content and separates the
children by a comma, e.g.,

<mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow> (3.3)

will be converted to
mrow(mo:(,mi:x,mo:)). (3.4)

Furthermore, the special UTF-8 characters for invisible times (U+2062) and function application
(U+2061) are replaced by ivt and fa, respectively. For example, the gamma function with
argument x + 1, Γ(x + 1) would be represented by

mrow(mi:Γ,mo:ivt,mrow(mo:(,mrow(mi:x,mo:+,mn:1),mo:))). (3.5)

Between Γ and (x+1), there would most likely be the special character for invisible times rather
than for function application, because LATExml is not able to parse Γ as a function. Note that this
string conversion is a bijective mapping. The string representation reduces the verbose XML
format to a more concise presentation. Thus, an equivalence check between two expressions is
more efficient.

3.2.2.2 Complexity of Math

Mathematical expressions can become complex and lengthy. The tree structure of MathML
allows us to introduce a measure that reflects the complexity of mathematical expressions.
More complex expressions usually consist of more extensively nested subtrees in the MathML
data. Thus, we define the complexity of a mathematical expression by the maximum depth of
the MathML tree. In XML the content of a node and its attributes are commonly interpreted as
children of the node. Thus, we define the depth of a single node as 1 rather than 0, i.e., single
identifiers, such as <mi>P</mi>, have a complexity of 1. The Jacobi polynomial from Listing 3.1
has a complexity of 4.

We perform the extraction of subexpressions from MathML in BaseX. The algorithm for the
extraction process is written in XQuery. The algorithm traverses recursively downwards from
the root to the leaves. In each iteration, it checks whether there is an identifier, i.e., <mi>
element, among the descendants of the current node. If there is no such element, the subtree
will be ignored. It seems counterintuitive to start from the root and check if an identifier is
among the descendants rather than starting at each identifier and traversing upwards to the root.
If an XQuery requests a node in BaseX, BaseX loads the entire subtree of the requested node
into the cache (up to a specified size). If the algorithm traverses upwards through the MathML
tree, the XQuery will trigger database requests in every iteration. Hence, the downwards
implementation performs better, since there is only one database request for every expression
rather than for every subexpression.

Since we only minimize the pMML data rather than normalizing it, two identically rendered
expressions may have different complexities. For instance,

<mrow><mi>x</mi></mrow> (3.6)

consists of two distinct subexpressions, but both of them are displayed the same. Another
problem often appears for arrays or similar visually complicated structures. The extracted
expressions are not necessarily logical subexpressions. Wewill consider applyingmore advanced
embedding techniques such as special tokenizers [231], symbol layout trees [92, 407], and a
MathML normalization via MathMLCan [117] in future research to overcome these issues.
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3.2.3 Frequency Distributions of Mathematical Formulae

By splitting each formula into subexpressions, we generated longer documents and a bias
towards low complexities. Note that, hereafter, we only refer to the mathematical content of
documents. Thus, the length of a document refers to the number of math formulae - here the
number of subexpressions - in the document. After splitting expressions into subexpressions,
arXiv consists of 2.5B and zbMATH of 61M expressions, which raised the average document
length to 2,982.87 for arXiv and 45.47 for zbMATH, respectively.

For calculating frequency distributions, we merged two subexpressions if their string repre-
sentations were identical. Remember, the string representation is unique for each MathML
tree. After merging, arXiv consisted of 350,206,974 unique mathematical subexpressions with a
maximum complexity of 218 and an average complexity of 5.01. For high complexities over 70,
the formulae show some erroneous structures that might be generated from LATExml by mistake.
For example, the expression with the highest complexity is a long sequence of a polynomial
starting with ‘P4(t1, t3, t7, t11) =’ followed by 690 summands. The complexity is caused by
a high number of unnecessarily deeply nested <mrow> nodes. The highest complexity with a
minimum document frequency of two is 39, which is a continued fraction. Since continued
fractions are nested fractions, they naturally have a large complexity. One of the most complex
expressions (complexity 20) with a minimum document frequency of three was the formula⎛⎜⎜⎜⎜⎜⎜⎝

n∑
j1=1

⎛⎜⎜⎜⎜⎝
n∑

j2=1

⎛⎜⎜⎝· · ·
⎛⎝ n∑

jm=1

∣∣∣∣T (
ej1 , . . . , ejm

)∣∣∣∣qm

⎞⎠
qm−1

qm

· · ·

⎞⎟⎟⎠
q2
q3

⎞⎟⎟⎟⎟⎠
q1
q2

⎞⎟⎟⎟⎟⎟⎟⎠

1
q1

≤ CK
m,p,q ‖T‖ . (3.7)

In contrast, zbMATH only consisted of 8,450,496 unique expressions with a maximum complex-
ity of 26 and an average complexity of 3.89. One of the most complex expressions in zbMATH
with a minimum document frequency of three was

Mp(r, f) =
(

1
2π

∫ 2π

0

∣∣∣∣f (
reiθ

)∣∣∣∣p dθ

)1/p

. (3.8)

As we expected, reviews and abstracts in zbMATH were generally shorter and consisted of
less complex mathematical formulae. The dataset also appeared to contain fewer erroneous
expressions, since expressions of complexity 25 are still readable and meaningful.

Figure 3.2 shows the ratio of unique subexpressions for each complexity in both datasets. The
figure illustrates that both datasets share a peak at complexity four. Compared to zbMATH, the
arXiv expressions are slightly more evenly distributed over the different levels of complexities.
Interestingly, complexities one and two are not dominant in either of the two datasets. Single
identifiers only make up 0.03% in arXiv and 0.12% in zbMATH, which is comparable to expres-
sions of complexity 19 and 14, respectively. This finding illustrates the problem of capturing
semantic meanings for single identifiers rather than for more complex expressions [330]. It
also substantiates that entire expressions, if too complex, are not suitable either for capturing
the semantic meanings [214]. Instead, a middle ground is desirable, since the most unique
expressions in both datasets have a complexity between 3 and 5. Table 3.4 summarizes the
statistics of the examined datasets.
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Figure 3.2: Unique subexpressions for each complexity in arXiv and zbMATH.

Table 3.4: Dataset overview. Average Document Length is defined as the average number of
subexpressions per document.

Category arXiv zbMATH

Documents 841,008 1,349,297

Formulae 294,151,288 11,747,860

Subexpressions 2,508,620,512 61,355,307

Unique Subexpressions 350,206,974 8,450,496

Average Document Length 2,982.87 45.47

Average Complexity 5.01 3.89

Maximum Complexity 218 26

3.2.3.1 Zipf’s Law

In linguistics, it is well known that word distributions follow Zipf’s Law [297], i.e., the r-th
most frequent word has a frequency that scales to

f(r) ∝ 1
rα

(3.9)

with α ≈ 1. A better approximation can be applied by a shifted distribution

f(r) ∝ 1
(r + β)α

, (3.10)

where α ≈ 1 and β ≈ 2.7. In a study on Zipf’s law, Piantadosi [297] illustrated that not only
words in natural language corpora follow this law surprisingly accurately, but also many other
human-created sets. For instance, in programming languages, in biological systems, and even
in music. Since mathematical communication has derived as the result of centuries of research,
it would not be surprising if mathematical notations would also follow Zipf’s law. The primary
conclusion of the law illustrates that there are some very common tokens against a large number
of symbols which are not used frequently. Based on this assumption, we can postulate that a
score based on frequencies might be able to measure the peculiarity of a token. The infamous
TF-IDF ranking functions and their derivatives [23, 310] have performed well in linguistics for
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many years and are still widely used in retrieval systems [30]. However, since we split every
expression into its subexpressions, we generated an anomalous bias towards shorter, i.e., less
complex, formulae. Hence, distributions of subexpressions may not obey Zipf’s law.

(a) Frequency Distributions (b) Complexity Distributions

Figure 3.3: Each figure illustrates the relationship between the frequency ranks (x-axis) and the
normalized frequency (y-axis) in zbMATH (top) and arXiv (bottom). For arXiv, only the first 8
million entries are plotted to be comparable with zbMATH (≈ 8.5 million entries). Subfigure (a)
shades the hexagonal bins from green to yellow using a logarithmic scale according to the
number of math expressions that fall into a bin. The dashed orange line represents Zipf’s
distribution (3.10). The values for α and β are provided in the plots. Subfigure (b) shades the
bins from blue to red according to the maximum complexity in each bin.

Figure 3.3 visualizes a comparison between Zipf’s law and the frequency distributions of math-
ematical subexpressions in arXiv and zbMATH. The dashed orange line visualizes the power
law (3.10). The plots demonstrate that the distributions in both datasets obey this power law.
Interestingly, there is not much difference in the distributions between both datasets. Both dis-
tributions seem to follow the same power law, with α = 1.3 and β = 15.82. Moreover, we can
observe that the developed complexity measure seems to be appropriate, since the complexity
distributions for formulae are similar to the distributions for the length of words [297]. In other

78 Chapter 3

Semantification of Mathematical LaTeX



Section 3.2. Semantification with Mathematical Objects of Interest

words, more complex formulae, as well as long words in natural languages, are generally more
specialized and thus appear less frequent throughout the corpus. Note that colors of the bins for
complexities fluctuate for rare expressions because the color represents the maximum rather
than the average complexity in each bin.

3.2.3.2 Analyzing and Comparing Frequencies

Figure 3.4 shows in detail the most frequently used mathematical expressions in arXiv for
the complexities 1 to 7. The orange dashed line visible in all graphs represents the normal
Zipf’s law distribution from Equation (3.9). We explore the total frequency values without any
normalization. Thus, Equation (3.9) was multiplied by the highest frequency for each complexity
level to fit the distribution. The plots in Figure 3.4 demonstrate that even though the parameter
α varies between 0.35 and 0.62, the distributions in each complexity class also obey Zipf’s law.

The plots for each complexity class contain some interesting fluctuations. We can spot a set
of five single identifiers that are most frequently used throughout arXiv: n, i, x, t, and k. Even
though the distributions follow Zipf’s law accurately, we can explore that these five identifiers
are proportionally more frequently used than other identifiers and clearly separate themselves
above the rest (notice the large gap from k to a). All of the five identifiers are known to be used
in a large variety of scenarios. Surprisingly, one might expect that common pairs of identifiers
would share comparable frequencies in the plots. However, typical pairs, such as x and y, or α
and β, possess a large discrepancy.

The plot of complexity two also reveals that two expressions are proportionally more often used
than others: (x) and (t). These two expressions appear more than three times as often in the
corpus than any other expression of the same complexity. On the other hand, the quantitative
difference between (x) and (t) is negligible. We may assume that arXiv’s primary domain,
physics, causes the quantitative disparity between (x), (t), and the other tokens. The primary
domain of the dataset becomes more clearly visible for higher complexities, such as SU(2)
(C327) or kms−1 (C4).

Another surprising property of arXiv is that symmetry groups, such as SU(2), appear to
play an essential role in the majority of articles on arXiv, see SU(2) (C3), SU(2)L (C4), and
SU(2) × SU(2) (C5), among others. The plots of higher complexities28, made this even more
noticeable. Given a complexity of six, for example, the most frequently used expression was
SU(2)L × SU(2)R, and for a complexity of seven it was SU(3) × SU(2) × U(1). Given a
complexity of eight, ten out of the top-12 expressions were from symmetry group calculations.

It is also worthwhile to compare expressions among different levels of complexities. For instance,
(x) and (t) appeared almost six million times in the corpus, but f(x) (at position three in
C3) was the only expression which contained one of these most common expressions. Note
that subexpressions of variations, such as (x0), (t0), or (t − t′), do not match the expression
of complexity two. This may imply that (x), and especially (t), appear in many different
scenarios. Further, we can examine that even though (x) is a part of f(x) in only approximately
3% of all cases, it is still the most likely combination. These results are especially useful for
recommendation systems that make use of math as input. Moreover, plagiarism detection

27We refer to a given complexity n with Cn, i.e., C3 refers to complexity 3.
28More plots showing higher complexities are available at https : / / github . co m /ag - gipp / For m

ulaCloudData [accessed 2021-10-01]
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Figure 3.4: Overview of the most frequent mathematical expressions in arXiv for complexities
1-7. The color gradient from yellow to blue represents the frequency in the dataset. Zipf’s
law (3.9) is represented by a dashed orange line.
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systems may also benefit from such a knowledge base. For instance, it might be evident that
f(x) is a very common expression, but for automatic systems that work on a large scale, it is
not clear whether duplicate occurrences of f(x) or Ξ(x) should be scored differently, e.g., in
the case of plagiarism detection.

Figure 3.4 shows only the most frequently occurring expressions in arXiv. Since we already
explored a bias towards physics formulae in arXiv, it is worth comparing the expressions present
within both datasets. Figure 3.5 compares the 25-top expressions for the complexities one to
six. In zbMATH, we discovered that computer science and graph theory appeared as popular
topics, see for example G = (V, E) (in C3 at position 20) and the Bachmann-Landau notations
in O(log n), O(n2), and O(n3) (C4 positions 2, 3, and 19).

From Figure 3.5, we can also deduce useful information for MathIR tasks which focus on
semantic information. Current semantic extraction tools [330] or LATEX parsers [18] still have
difficulties distinguishing multiplications from function calls. For example as mentioned before,
LATExml [257] adds an invisible times character between f(x) rather than a function application.
Investigating the most frequently used terms in zbMATH in Table 3.5 reveals that u is most likely
considered to be a function in the dataset: u(t) (rank 8), u(x) (rank 13), uxx (rank 16), u(0) (rank
17), |∇u| (rank 22). Manual investigations of extended lists reveal even more hits: u0(x) (rank
30), −Δu (rank 32), and u(x, t) (rank 33). Since all eight terms are among the most frequent
35 entries in zbMATH, it implies that u can most likely be considered to imply a function in
zbMATH. Of course, this does not imply that u must always be a function in zbMATH (see f(u)
on rank 14 in C3), but this allows us to exploit probabilities for improving MathIR performance.
For instance, if not stated otherwise, u could be interpreted as a function by default, which
could help increase the precision of the aforementioned tools.

Figure 3.5 also demonstrates that our two datasets diverge for increasing complexities. Hence, we
can assume that frequencies of less complex formulae are more topic-independent. Conversely,
the more complex a math formula is, the more context-specific it is. In the following, we will
further investigate this assumption by applying TF-IDF rankings on the distributions.

3.2.4 Relevance Ranking for Formulae

Zipf’s law encourages the idea of scoring the relevance of words according to their number
of occurrences in the corpus and in the documents. The family of BM25 ranking functions
based on TF-IDF scores are still widely used in several retrieval systems [30, 310]. Since we
demonstrated that mathematical formulae (and their subexpressions) obey Zipf’s law in large
scientific corpora, it appears intuitive to also use TF-IDF rankings, such as a variant of BM25,
to calculate their relevance.

� Okapi BM25

In its original form [310], Okapi BM25 was calculated as follows

bm25(t, d) := (k + 1) IDF(t) TF(t, d)
TF(t, d) + k

(
1 − b + b|d|

AVGDL

) . (3.11)
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Figure 3.5: The top-20 and 25 most frequent expressions in arXiv (left) and zbMATH (right) for
complexities 1-6. A line between both sets indicates a matching set. Bold lines indicate that the
matches share a similar rank (distance of 0 or 1).
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Here, TF (t, d) is the term frequency of t in the document d, |d| the length of the document d
(in our case, the number of subexpressions), AVGDL the average length of the documents in
the corpus (see Table 3.4), and IDF (t) is the inverse document frequency of t, defined as

IDF(t) := log
N − n(t) + 1

2
n(t) + 1

2
, (3.12)

where N is the number of documents in the corpus and n(t) the number of documents which
contain the term t. By adding 1

2 , we avoid log 0 and division by 0. The parameters k and b are
free, with b controlling the influence of the normalized document length and k controlling the
influence of the term frequency on the final score. For our experiments, we chose the standard
value k = 1.2 and a high impact factor of the normalized document length via b = 0.95.

As a result of our subexpression extraction algorithm, we generated a bias towards low complex-
ities. Moreover, longer documents generally consist of more complex expressions. As demon-

strated in Section 3.2.2.1, a document that only consists of the single expression P
(α,β)
n (x),

i.e., the document had a length of one, would generate eight subexpressions, i.e., it results in
a document length of eight. Thus, we modify the BM25 score in Equation (3.11) to emphasize
higher complexities and longer documents. First, the average document length is divided by
the average complexity AVGC in the corpus that is used (see Table 3.4), and we calculate the
reciprocal of the document length normalization to emphasize longer documents.

Moreover, in the scope of a single document, we want to emphasize expressions that do not
appear frequently in this document, but are the most frequent among their level of complexity.
Thus, less complex expressions are ranked more highly if the document overall is not very
complex. To achieve this weighting, we normalize the term frequency of an expression t
according to its complexity c(t) and introduce an inverse term frequency according to all
expressions in the document. We define the inverse term frequency as

ITF(t, d) := log
|d| − TF(t, d) + 1

2
TF(t, d) + 1

2
. (3.13)

� Definition of the importance score of a formula in a document

Finally, we define the score s(t, d) of a term t in a document d as

s(t, d) := (k + 1) IDF(t) ITF(t, d) TF(t, d)
max

t′∈d|c(t)
TF(t′, d) + k

(
1 − b + b AVGDL

|d| AVGC

) . (3.14)

The TF-IDF ranking functions and the introduced s(t, d) are used to retrieve relevant documents
for a given search query. However, we want to retrieve relevant subexpressions over a set of
documents.
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� Definition of the Mathematical BM25

Thus, we define the score of a formula (mBM25) over a set of documents as the maximum
score over all documents

mBM25(t, d) := max
d∈D

s(t, d), (3.15)

where D is a set of documents.

We used Apache Flink [157] to count the expressions and process the calculations. Thus, our
implemented system scales well for large corpora.

Table 3.5: Settings for the retrieval experi-
ments.

arXiv zbMATH
Retrieved Doc. 40 200
Min. Hit Freq. 7 7

Min. DF 50 10
Max. DF 10k 10k

Table 3.6 shows the top-7 scored expressions,
where D is the entire zbMATH dataset. The re-
trieved expressions can be considered as meaning-
ful and real-world examples of MOIs, since most
expressions are known for specific mathematical
concepts, such as Gal(Q/Q), which refers to the
Galois group ofQ overQ, or L2(R2), which refers
to the L2-space (also known as Lebesgue space)
over R2. However, a more topic-specific retrieval
algorithm is desirable. To achieve this goal, we (i)
retrieved a topic-specific subset of documents Dq ⊂ D for a given textual search query q, and
(ii) calculated the scores of all expressions in the retrieved documents. To generate Dq , we
indexed the text sources of the documents from arXiv and zbMATH via Elasticsearch (ES)29

and performed the pre-processing steps: filtering stop words, stemming, and ASCII-folding30.
Table 3.5 summarizes the settings we used to retrieve MOIs from a topic-specific subset of
documents Dq . We also set a minimum hit frequency according to the number of retrieved
documents an expression appears in. This requirement filters out uncommon notations.

Figure 3.6 shows the results for five search queries. We asked a domain expert from the NIST to
annotate the results as related (shown as green dots in Figure 3.6) or non-related (red dots). We
found that the results range from good performances (e.g., for the Riemann zeta function) to
bad performances (e.g., beta function). For instance, the results for the Riemann zeta function
are surprisingly accurate, since we could discover that parts of Riemann’s hypothesis31 were
ranked highly throughout the results (e.g., ζ(1

2 + it)). On the other hand, for the beta function,
we retrieved only a few related hits, of which only one had a strong connection to the beta
function B(x, y). We observed that the results were quite sensitive to the chosen settings (see
Table 3.5). For instance, according to the beta function, the minimum hit frequency has a strong
effect on the results, since many expressions are shared among multiple documents. For arXiv,
the expressions B(α, β) andB(x, y) only appear in one document of the retrieved 40. However,
decreasing the minimum hit frequency would increase noise in the results.

29https://github.com/elastic/elasticsearch [accessed 2019-09-01]. We used version 7.0.0
30This means that non-ASCII characters are replaced by their ASCII counterparts or will be ignored if no such

counterpart exists.
31Riemann proposed that the real part of every non-trivial zero of the Riemann zeta function is 1/2. If this

hypothesis is correct, all the non-trivial zeros lie on the critical line consisting of the complex numbers 1/2 + it.
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Figure 3.6: Top-20 ranked expressions retrieved from a topic-specific subset of documents Dq .
The search query q is given above the plots. Retrieved formulae are annotated by a domain
expert with green dots for relevant and red dots for non-relevant hits. A line is drawn if a hit
appears in both result sets. The line is colored in green when the hit was marked as relevant.
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Table 3.6: Top s(t, D) scores, where D is the set of all zbMATH documents with a minimum
document frequency of 200, maximum document frequency of 500k, and a minimum complexity
of 3.

C3 C4 C5

114.84 (n!) 129.44 i, j = 1, . . . , n 119.21 Gal
(
Q/Q

)
108.85 φ−1 108.52 xij 112.55

∣∣f(z)
∣∣p

100.19 zn−1 108.50 ẋ = A(t)x 110.52
(
1 + |x|2

)
100.06 (cn) 106.66 |x − x0| 109.19

∣∣f(x)
∣∣p

100.05 B(G) 105.52 S2n+1 106.22 |∇u|2dx

99.87 log2 n 104.91 L2
(
R2

)
102.86 n(n − 1)/2

99.65 ξ (x) 103.70 ẋ = Ax + Bu 101.40 O(n−1)

C6 C7

110.83 (1 + |z|2)α 98.72 div
(
|∇u|p−2 ∇u

)
105.69 f

(
reiθ

)
–

94.14 f(z) = z +
∑∞

n=2 anzn –

92.33
(
|∇u|p−2 ∇u

)
–

87.27
(
log n/ log log n

)
–

78.54 O (n log2 n) –

– –

Even though we asked a domain expert to annotate the results as relevant or not, there is still
plenty of room for discussion. For instance, (x + y) (rank 15 in zbMATH, ‘Beta Function’) is the
argument of the gamma function Γ(x + y) that appears in the definition of the beta function
[98, (5.12.1)] B(x, y) := Γ(x)Γ(y)/Γ(x + y). However, this relation is weak at best, and thus
might be considered as not related. Other examples are Rez and Re(s), which play a crucial
role in the scenario of the Riemann hypothesis (all non-trivial zeroes have Re(s) = 1

2 ). Again,
this connection is not obvious, and these expressions are often used in multiple scenarios. Thus,
the domain expert did not mark the expressions as being related.

Considering the differences in the documents, it is promising to have observed a relatively high
number of shared hits in the results. Further, we were able to retrieve some surprisingly good
insights from the results, such as extracting the full definition of the Riemann zeta function
[98, (25.2.1)] ζ(s) :=

∑∞
n=1

1
ns . Even though a high number of shared hits seem to substantiate

the reliability of the system, there were several aspects that affected the outcome negatively,
from the exact definition of the search queries to retrieve documents via ES, to the number of
retrieved documents, the minimum hit frequency, and the parameters in mBM25.
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3.2.5 Applications

The presented results are beneficial for a variety of use-cases. In the following, we will demon-
strate and discuss several of the applications that we propose.

Extension of zbMATH’s Search Engine Formula search engines are often counterintuitive
when compared to textual search, since the user must know how the system operates to enter a
search query properly (e.g., does the system supports LATEX inputs?). Additionally, mathematical
concepts can be difficult to capture using only mathematical expressions. Consider, for example,
someone who wants to search for mathematical expressions that are related to eigenvalues. A
textual search query would only retrieve entire documents that require further investigation
to find related expressions. A mathematical search engine, on the other hand, is impractical
since it is not clear what would be a fitting search query (e.g., Av = λv?). Moreover, formula
and textual search systems for scientific corpora are separated from each other. Thus, a textual
search engine capable of retrieving mathematical formulae can be beneficial. Also, many search
engines allow for narrowing down relevant hits by suggesting filters based on the retrieved
results. This technique is known as faceted search. The zbMATH search engine also provides
faceted search, e.g., by authors, or year. Adding facets for mathematical expressions allows
users to narrow down the results more precisely to arrive at specific documents.

Our proposed system for extracting relevant expressions from scientific corpora via mBM25
scores can be used to search for formulae even with textual search queries, and to add more
filters for faceted search implementations. Table 3.7 shows two examples of such an extension
for zbMATH’s search engine. Searching for ‘Riemann Zeta Function’ and ‘Eigenvalue’ retrieved
4,739 and 25,248 documents from zbMATH, respectively. Table 3.7 shows the most frequently
used mathematical expressions in the set of retrieved documents. It also shows the reordered
formulae according to a default TF-IDF score (with normalized term frequencies) and our
proposed mBM25 score. The results can be used to add filters for faceted search, e.g., show
only the documents which contain u ∈ W 1,p

0 (Ω). Additionally, the search system now provides
more intuitive textual inputs even for retrieving mathematical formulae. The retrieved formulae
are also interesting by themselves, since they provide insightful information on the retrieved
publications. As already explored with our custom document search system in Figure 3.6, the
Riemann hypothesis is also prominent in these retrieved documents.

The differences between TF-IDF and mBM25 ranking illustrates the problem of an extensive
evaluation of our system. From a broader perspective, the hit Ax = λBx is highly correlated
with the input query ‘Eigenvalue’. On the other hand, the raw frequencies revealed a prominent
role ofdiv(|∇u|p−2 ∇u). Therefore, the top results of themBM25 ranking can also be considered
as relevant.

Math Notation Analysis A faceted search system allows us to analyze mathematical nota-
tions in more detail. For instance, we can retrieve documents from a specific time period. This
allows one to study the evolution of mathematical notation over time [54], or for identifying
trends in specific fields. Also, we can analyze standard notations for specific authors since it is
often assumed that authors prefer a specific notation style which may vary from the standard
notation in a field.
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Table 3.7: The top-5 frequent mathematical expressions in the result set of zbMATH for the
search queries ‘Riemann Zeta Function’ (top) and ‘Eigenvalue’ (bottom) grouped by their com-
plexities (left) and the hits reordered according to their relevance scores (right). The TF-IDF
score was calculated with normalized term frequencies.

Riemann Zeta Function

C1 C2 C3 C4

15,051 n 4,663 (s) 1,456 ζ(s) 349 (1
2 + it)

11,709 s 2,460 (x) 340 σ + it 232 (1/2 + it)
9,768 x 2,163 (n) 310

∑∞
n=1 195 (σ + it)

8,913 k 1,485 (t) 275 (log T ) 136 1
2 + it

8,634 T 1,415 it 264 1/2 + it 97 s = σ + it

C5 C6 TF-IDF mBM25

203 ζ(1
2 + it) 105

∣∣ζ(1/2 + it)
∣∣ ζ(s) ζ (1/2 + it)

166 ζ(1/2 + it) 88
∣∣∣ζ(1

2 + it)
∣∣∣ ζ(1/2 + it) (1/2 + it)

124 ζ(σ + it) 81
∣∣ζ(σ + it)

∣∣ (1/2 + it) (1
2 + it)

54 ζ(1 + it) 32
∣∣ζ(1 + it)

∣∣ 1
2 + it ζ (1

2 + it)
44 ζ(2n + 1) 22

∣∣ζ(+it)
∣∣ (1

2 + it) (σ + it)

Eigenvalue

C1 C2 C3 C4

45,488 n 12,515 (x) 686 −Δu 218 |∇u|p−2

43,090 x 6,598 (t) 555 (n − 1) 218 −Δpu

37,434 λ 4,377 λ1 521 |∇u| 133 W 1,p
0 (Ω)

35,302 u 2,787 (Ω) 512 aij 127 |∇u|2
22,460 t 2,725 Rn 495 u(x) 97 (aij)

C5 C6 TF-IDF mBM25

139 |∇u|p−2 ∇u 137
(
|∇u|p−2 ∇u

)
Ax = λBx − div

(
|∇u|p−2 ∇u

)
68 −d2/dx2 35 −(py′)′ −Δp div

(
|∇u|p−2 ∇u

)
51 A = (aij) 26 (

∣∣u′∣∣p−2
u′) P (λ) p = N+2

N−2

46 − d2

dx2 18 (φp(u′))′
λk+1

(
φp

(
u′))′

45 u ∈ W 1,p
0 (Ω) 18

∫
Ω |∇u|2 dx λ1 > 0 λ ∈ (0, λ∗)
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Section 3.2. Semantification with Mathematical Objects of Interest

Table 3.8: Suggestions to complete ‘E = m’ and ‘E = {m, c}’ (the right-hand side contains m
and c) with term and document frequency based on the distributions of formulae in arXiv.

Auto-completion for ‘E = m’ Suggestions for ‘E = {m, c}’
Sug. Expression TF DF Sug. Expression TF DF

E = mc2 558 376 E = mc2 558 376

E = m cosh θ 23 23 E = γmc2 39 38

E = mv0 7 7 E = γmec2 41 36

E = m/
√

1 − q̇2 12 6 E = m cosh θ 23 23

E = m/
√

1 − β2 10 6 E = −mc2 35 17

E = mc2γ 6 6 E =
√

m2c4 + p2c2 10 8

Math Recommendation Systems The frequency distributions of formulae can be used to
realize effective math recommendation tasks, such as type hinting or error-corrections. These
approaches require long training on large datasets, but may still generate meaningless results,
such as Gi = {(x, y) ∈ Rn : xi = xi} [400]. We propose a simpler system which takes
advantage of our frequency distributions. We retrieve entries from our result database, which
contain all unique expressions and their frequencies. We implemented a simple prototype that
retrieves the entries via pattern matching. Table 3.8 shows two examples. The left side of
the table shows suggested autocompleted expressions for the query ‘E = m’. The right side
shows suggestions for ‘E =’, where the right-hand side of the equation should contain m and
c in any order. A combination using more advanced retrieval techniques, such as similarity
measures based on symbol layout trees [92, 407], would enlarge the number of suggestions.
This kind of autocomplete and error-correction type-hinting system would be beneficial for
various use-cases, e.g., in educational software or for search engines as a pre-processing step of
the input.

Plagiarism Detection Systems As previously mentioned, plagiarism detection systems
would benefit from a system capable of distinguishing conventional from uncommon nota-
tions [253, 254, 334]. The approaches described by Meuschke et al. [254] outperform existing
approaches by considering frequency distributions of single identifiers (expressions of com-
plexity one). Considering that single identifiers make up only 0.03% of all unique expressions
in arXiv, we presume that better performance can be achieved by considering more complex ex-
pressions. The conferred string representation also provides a simple format to embed complex
expressions in existing learning algorithms.

Expressions with high complexities that are shared among multiple documents may provide
further hints to investigate potential plagiarisms. For instance, the most complex expression
that was shared among three documents in arXiv was Equation (3.7). A complex expression
being identical in multiple documents could indicate a higher likelihood of plagiarism. Further
investigation revealed that similar expressions, e.g., with infinite sums, are frequently used
among a larger set of documents. Thus, the expression seems to be a part of a standard notation
that is commonly shared, rather than a good candidate for plagiarism detection. Resulting from
manual investigations, we could identify the equation as part of a concept called generalized

Hardy-Littlewood inequality and Equation (3.7) appears in the three documents [24, 292, 304]. All
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Figure 3.7: The top ranked expression for ‘Jacobi polynomial’ in arXiv and zbMATH. For arXiv,
30 documents were retrieved with a minimum hit frequency of 7.

three documents shared one author in common. Thus, this case also demonstrates a correlation
between complex mathematical notations and authorship.

Semantic Taggers and Extraction Systems We previously mentioned that semantic extrac-
tion systems [214, 329, 330] and semantic math taggers [71, 402] have difficulties in extracting
the essential components (MOIs) from complex expressions. Considering the definition of the
Jacobi polynomial in Equation (3.2), it would be beneficial to extract the groups of tokens that

belong together, such as P
(α,β)
n (x) or Γ(α + m + 1). With our proposed search engine for

retrieving MOIs, we are able to facilitate semantic extraction systems and semantic math tag-
gers. Imagine such a system being capable of identifying the term ‘Jacobi polynomial’ from the
textual context. Figure 3.7 shows the top relevant hits for the search query ‘Jacobi polynomial’
retrieved from zbMATH and arXiv. The results contain several relevant and related expres-
sions, such as the constraints α, β > −1 and the weight function for the Jacobi polynomial
(1 − x)α(1 + x)β , which are essential properties of this orthogonal polynomial. Based on
these retrieved MOIs, the extraction systems can adjust its retrieved math elements to improve
precision, and semantic taggers or a tokenizer could re-organize parse trees to more closely
resemble expression trees.
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3.2.6 Outlook

In this first study, we preserved the core structure of the MathML data which provided insightful
information for the MathML community. However, this makes it difficult to properly merge
formulae. In future studies, we will normalize the MathML data via MathMLCan [117]. In
addition to this normalization, we will include wildcards for investigating distributions of
formula patterns rather than exact expressions. This will allow us to study connections between
math objects, e.g., between Γ(z) andΓ(x+1). This would further improve our recommendation
system andwould allow for the identification of regions for parameters and variables in complex
expressions.

3.3 Semantification with Textual Context Analysis

The results of our math embedding experiments and the introduction of MOI motivates us to
develop a context-sensitive LATEX to CAS translation approach around the MOI concept. In this
section, we briefly discuss our novel approach to perform context-sensitive translations from
LATEX to CAS, which concludes research task II. We focus on three main sources of semantic
information to disambiguate mathematical expressions sufficiently for such translations:

1. the inclusive structural information in the expression itself;

2. the textual context surrounding the expression; and

3. a common knowledge database.

The first source is what most existing translators rely on by concluding the semantics from a
given structure. The second source is rather broad. The necessary information can be given
in the sentences before and after an equation, somewhere in the same article, or even through
references (e.g., hyperlinks in Wikipedia articles or citations in scientific publications). In
this thesis, we will focus on the textual context in a single document, i.e., we do not analyze
references or deep links to other articles yet. The last source can be considered a backup option.
If we cannot retrieve information from the context of a formula, the semantic meaning of a
formula might be considered common knowledge, such as π referring to the mathematical
constant.

We extract knowledge from each of the three sources with different approaches. For the inclusive
structural information, we rely on the semantic LATEX macros developed by Miller [260] for
the DLMF that define standard notation patterns for numerous OPSF. To analyze the textual
context of a formula, we rely on the approach proposed by Schubotz et al. [330], who extracted
noun phrases to enrich identifiers semantically. As a backup common knowledge database, we
use the POM tagger developed by Youssef [402] that relies on manually crafted lexicon files
with several common knowledge annotations for mathematical tokens.

3.3.1 Semantification, Translation & Evaluation Pipeline

Figure 3.8 illustrates the pipeline of the proposed system to convert generic LATEX expressions
to CAS. The figure contains numbered badges that represent the different steps in the system.
Steps 1-4 represent the conversion pipeline, while steps 5-7 are different ways to evaluate the
system.
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Figure 3.8: Pipeline of the proposed context-sensitive conversion process. The pipeline consists
of four semantification steps (1-4) and three evaluation approaches (5-7).

The conversion pipeline starts with mathosphere32 (step 1a ). Mathosphere is the Java frame-
work developed by Schubotz et al. [279, 329, 330] in a sequence of publications to semantically
enrich mathematical identifier with defining phrases from the textual context. First, we will
modify mathosphere so that it extracts MOI-definiens pairs rather than single identifiers (step

1b ). For this purpose, we propose the following significant simplification: an isolated mathe-
matical expression in a textual context is considered essential and informative. Hence, isolated
formulae are defined as MOI. Moreover, mathosphere scores identifier-definiens pairs in regard
of their first appearance in a document (since the first declaration of a symbol often remains
valid throughout the rest of the document [394]). We adopt this scoring forMOI with a matching

algorithm that allows us to identify MOI within other MOI in the same document (step 1c ).

Step 2 is currently optional and combines the results from the MOI-definiens extraction
process with the common knowledge database of the POM tagger. The information can then
be used to feed existing LATEX to MathML converters with additional semantic information. In
Chapter 2, we created a MathML benchmark, called MathMLben, to evaluate such converters.
We have also shown that, for example, LATExml can adopt additional semantic information via
given semantic macros. Hence, via step 4 (and subsequently step 5 ) we can evaluate our

semantification so far with the help of existing converters. The steps 2 , 4 , and 5 are not
subject of this thesis but part of upcoming projects.

32https://github.com/ag-gipp/mathosphere [accessed 03-24-2020]
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Besides this optional evaluation over MathMLben, we continue our main translation path.
Once we extracted the MOI-definiens pairs, we replace the generic LATEX expressions by their
semantic counterparts (step 3 ). We do so by indexing semantic LATEX macros so that we can
search for them by textual queries. Afterward, we are able to retrieve semantic LATEX macros by
the previously extracted definiens. Finally, we create replacement patterns so that the generic
LATEX expression can be replaced with the semantic enriched semantic macros from the DLMF.
The result should be semantic LATEX, which enables another evaluation method. Consider we
perform this pipeline on the DLMF, we can compare the generated semantic LATEX with the
original, manually crafted semantic LATEX source in the DLMF to validate its correctness (step
6 ). Unfortunately, the entire pipeline focuses on the textual context. The DLMF does not
provide sophisticated textual information because semantic information is available via special
infoboxes, through hyperlinks, or in tables and graphs. A more comprehensive evaluation
approach can be enabled by further translating the expressions to the syntax of CAS via LACAST
as we have shown in previous projects [2] (step 7 ), namely symbolic and numeric evaluations.
Moreover, this evaluation is most desired since it evaluates the entire proposed translation
pipeline, from the semantification via mathosphere and the semantic LATEX macros, and the final
translation via LACAST. The next chapter will aim to realize this proposed pipeline. The steps 1

and 3 are discussed in Chapter 4. The step 7 is subject of Chapter 5. Step 6 has not been

realized due to the reduced amount of textual context within the DLMF. Steps 2 , 4 , and 5

are subject of future work.
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