
I don’t know half of you half as well as I should like, and I like

less than half of you half as well as you deserve.

Bilbo Baggins - The Lord of the Rings

CHAPTER 2

Mathematical Information Retrieval

Contents

2.1 Background and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Mathematical Formats and Their Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Web Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1.1 MathML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1.2 OpenMath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1.3 OMDoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Word Processor Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2.1 LATEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2.2 Semantic/Content LaTeX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.2.3 sTeX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2.4 Template Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.3 Computable Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.3.1 Computer Algebra Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.3.2 Theorem Prover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.4 Images and Tree Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.5 Math Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 From Presentation to Content Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.2 Benchmarking MathML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.2.1 Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.2.2 Gold Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.2.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.3 Evaluation of Context-Agnostic Conversion Tools . . . . . . . . . . . . . . . . . . 48

2.3.3.1 Tool Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.3.2 Testing framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.3.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.4 Summary of MathML Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4 Mathematical Information Retrieval for LaTeX Translations . . . . . . . . . . . . . . . . . 51

17
© The Author(s) 2023
A. Greiner-Petter, Making Presentation Math Computable,
https://doi.org/10.1007/978-3-658-40473-4_2

Supplementary Information The online version contains supplementary material available at
.https://doi.org/10.1007/978-3-658-40473-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-40473-4_2&domain=pdf


Section 2.1. Background and Overview

Making presentational math computable implies a transformation from one mathematical
representation to another. In order to frame this task, we need to introduce presentational and
computable formats, and analyze available transformation tools between these formats. There
is a large variety of different formats available to encode mathematical expressions, from visual
formats, such as LATEX [220] or MathML [60], to semantic enhanced encodings, such as content
MathML [270], semantic LATEX [260], STEX [200], or OpenMath [19], and entire programming
languages, such as CAS syntaxes [36, 128, 173, 175, 176, 177, 178, 393], theorem provers [37,
266, 287, 340, 354, 384], or mathematical packages in C++ [168], Python [252] or Java [79]. This
chapter introduces what we understand as presentational and computable formats, provides an
overview of math formats, and discusses existing transformation tools between these formats.

In particular, Section 2.1 introduces presentational and computable formats. Section 2.2 provides
an extensive overview of mathematical formats, their attributes, and conversion approaches
between them. Since there are a large variety of conversion tools and approaches available
for many different formats [39, 200, 18, 351, 406] a translation from a presentational to a
computable format can be achieved in many different ways. In this thesis, we mainly focus on
translations from LATEX to CAS syntaxes. The most well-studied translation path from LATEX to
CAS syntaxes would use content MathML as an intermediate, semantically enriched format.
Hence, Section 2.3 analyzes state-of-the-art LATEX to MathML converters. Section 2.4 underlines
the research gap and paves the way for the rest of the thesis by briefly discussing MathIR
approaches for conversions from presentational to computable formats. Section 2.3 has been
published at the JCDL [18]. The introduction of math embeddings in Section 2.2 was published
as a workshop paper at the SIGIR conference [9] and later reused in an extended article for the
Scientometrics journal [15].

2.1 Background and Overview

Computable encodings are interpretable formal languages in which keywords or sequences of
tokens are associated with specific implemented definitions, which allows performing certain
mathematical actions on these elements, such as evaluating numeric values or symbolically
manipulating the elements. Computable encodings, therefore, must be semantically unam-
biguous. Otherwise, an interpreter is unable to associate the sequence of tokens with a unique
underlying definition. This ambiguity problem is mainly solved by interpreters in two ways:
either the system automatically performs disambiguation steps following a decision tree with
a fixed set of internal rules, such as x^y^z in Mathematica, or the system refuses to parse the
expression and returns an error, such as for x^y^z in Maple.

�
Computable formats are formal languages that link key words or phrases with
unique implemented definitions. Computable expressions are semantically unam-
biguous.

Presentational formats, on the other hand, focus on controlling the visualization ofmathematical
formulae. They generally allow users to change spaces between tokens (e.g., \, and \; in LATEX),
support two-dimensional visualizations (e.g.,

∫ b
a

dx
x ), or render entire graphs and images. How-

ever, pure presentational formats (in contrast to enhanced semantic encodings) do not specify
the meaning of an expression. Consequently, mathematical expressions in presentational for-

18 Chapter 2

Mathematical Information Retrieval



Section 2.2. Mathematical Formats and Their Conversions

mats are generally semantically ambiguous, and it is the author’s responsibility to disambiguate
the meaning of the expression by providing additional information in the context. Digital
presentational formats, such as LATEX, are also interpretable formal languages1. In contrast to
computable formats, presentational languages link tokens with specific visualizations rather
than executable subroutines. Hence, expressions in these formats must be unambiguous too.
Otherwise, interpreters are unable to link an expression with a unique visualization (see x^y^z
in LATEX). The difference to computable encodings is that expressions in presentational formats
must be visually but not semantically unambiguous. For instance, LATEX refuses to parse x^y^z
because the rendering of {x^y}^z (see xyz) and x^{y^z} (see xyz

) is different. In contrast,
Maple rejects x^y^z because there is a mathematical (and in consequence a computational)
difference between (xy)z and x(yz).

�
Presentational formats are formal languages with a focus on visualization.
Presentational expressions can be semantically but not visually ambiguous.

In this thesis, we focus on LATEX for the presentational format and CAS syntaxes for computable
formats. We choose LATEX because it is currently the de-facto standard for writing scientific
papers in the STEM disciplines [129, 402]. Several other word processors, such as the article’s
editor in Wikipedia2 or Microsoft’s Word [248], entirely or partially support LATEX inputs. In
addition, LATEX is the main presentational format that is entered by hand. In contrast, MathML,
due to its XML datastructure, is not a user-friendly3 encoding and mostly automatically gen-
erated from other formats [82, 159, 18, 374]. Image formats are the result of pictures, scans,
or handwritten inputs, and, therefore, less machine-readable. As a consequence, image for-
mats of mathematical formulae are mainly converted into LATEX or MathML in a pre-processing
step [27, 39, 267, 378, 379, 406, 411]. We choose CAS syntaxes for our target computable format
because CAS generally support a large variety of different use cases, from manipulations and
visualizations to computations and simulations [81, 413]. Especially general-purpose CAS,
such as Maple [36] and Mathematica [393], address a broad range of topics [128, 392]. In con-
trast, theorem provers, proof assistants, and similar software, as potential other computable
formats, solely focus on automated reasoning [147, 266, 354, 384]. Hence, the computation of
mathematical formulae plays a less significant role in such software.

2.2 Mathematical Formats and Their Conversions

Figure 2.1 provides an overview of different math encodings and existing conversion approaches
between them. In addition to the figure, Table 2.1 provides quick access to references for specific
translation directions. Figure 2.1 organizes formats by their level of semantics and the level
of machine readability. This categorization is not meant to be as accurate as possible nor to
be complete. Instead, the figure aims to provide a rough visualization of the most common
encodings and their differences. For instance, there is no notable technical difference between

1Note that this interpretation of presentational formats does not include images. Since images are less machine-
readable formats, they are generally first converted into interpretable formats, such as LATEX. This conversion process
is very challenging on its own [406, 411]. Hence, including images for our task would not provide any benefits but
makes it unnecessarily more complicated.

2https://en.wikipedia.org/wiki/Help:Displaying_a_formula [accessed 2021-10-01]
3A little histrionically described as ‘Making humans edit XML is sadistic!’ from the Django 1.7.11 documenta-

tion [118].

Chapter 2

Mathematical Information Retrieval
19

https://en.wikipedia.org/wiki/Help:Displaying_a_formula


Section 2.2. Mathematical Formats and Their Conversions

Level of Semantics

M
ac
h
in
e
R
ea
da
bi
li
ty

Images

LATEX

pMML

semantic
LATEX

sTeX

cMML Open
Math

OMDoc

Theorem
Prover

CAS

[406, 411]

[18, 351]

[18]

[270, 364] [342]

[198]
[198]

[152, 205]

[152][318]

[28]

[198]

[19]

[361]

[57, 338]

[200]

[200]
[257]

[13]

[257]

[260]

[391]

Figure 2.1: Reference map of mathematical formats and translations between them. The red
path illustrates the main subject of this thesis. In Section 2.3, we focus specifically on existing
translation approaches from LATEX to MathML (orange arrows) to evaluate an alternative to the
red translation path.

the levels of semantics in content MathML and OpenMath (see the paragraph about OpenMath
in Section 2.2.1). Nonetheless, OpenMath defines the content dictionaries that content MathML
uses to semantically annotate symbols beyond school mathematics. Hence, we could argue
that content MathML encodes less semantic information without the help of OpenMath and,
therefore, should be positioned more to the left. Another disparity can be found in the level
of machine readability between CAS syntaxes and theorem provers. Since both formats are
programming languages, any CAS or theorem prover expression requires a very specific (often
proprietary) parser. Thus, a programming language is arguably never more machine readable

than any other programming language. Nonetheless, most CAS prefer a more intuitive input
format (sometimes even 2D inputs) similar to LATEX over a machine-readable syntax [88, 128,
179] to improve their user experience. Because of these more user-friendly input formats, we
positioned CAS syntaxes below theorem prover formats. Note also that math embeddings, i.e.,
vector representation of math tokens, are not in Figure 2.1 because the level of semantics these
vectors capture is still unclear and an open research question (see Section 2.2.5). The red path
in Figure 2.1 shows the new translation path that we focus on in this thesis. Dotted arrows
represent translation paths that generally do not require context analysis and are, therefore,
of less interest for the subject of this thesis. The orange and red arrows (and highlighted cells
in Table 2.1) refer to our contributions for this thesis. The red arrows refer the main research
contribution explained in the chapters 3 and 4.

2.2.1 Web Formats

Web formats are designed to display mathematical formulae and knowledge on the web. Con-
sequently, those formats prioritize machine readability over user experience. Hence, a variety
of different translation approaches to, from, or between web formats exists. Since mathematics
in the web is generally embedded in HTML code, most web formats use the XML encoding

20 Chapter 2

Mathematical Information Retrieval



Section 2.2. Mathematical Formats and Their Conversions

Table 2.1: Overview table of available mathematical format translations. The highlighted
conversion fields refer to contributions made in this thesis. The columns and rows refer to:
‘pMML’ for presentation MathML, ‘cMML’ for content MathML, ‘sem.LaTeX’ for semantic
LATEX, ‘Theo. Prov.’ for theorem prover or proof assistants, ‘Img’ for images, and ‘Speech’ for
spoken (audio) mathematical content. The group ‘Comp.’ refers to computable formats. In some
cases, no transformation is necessary, e.g., from OMDoc to OpenMath because OMDoc uses
OpenMath internally. In this (and similar) cases, we simply refer to the overview publication of
the format, here [198] for OMDoc.

From

T
o

pM
M
L

cM
M
L

O
p
en
M
at
h

O
M
D
oc

L
aT
eX

se
m
.L
aT
eX

ST
EX

T
h
eo
.
P
ro
v.

C
A
S

V
ec
to
r

Im
g

Sp
ee
ch

pMML / [364] [61] [391] [86] [358] [349]

W
ebcMML [300] / [342] [198] [391] [318] [242] [257]

OpenMath [59] [342] / [198] [61] [57] [303]

OMDoc [198] [198] [198] / [198] [198] [152] [152]

LaTeX [18] [159] [257] [198] / [11] [195] [11] [15] [358] [249]

T
eXsem.LaTeX [257] [18] [257] [257] / [13] [404] [257]

STEX [257] [257] [257] [195] [198] / [257]

Theo. Prov. [205] [205] [167] [62] [338]

CAS [391] [391] [391] [13] [338] [361] [391] C
om

p.

Vector [400] /

Img [406] [406] [406] /

Speech [386] [386] [387]

Web TeX Comp.

structure. Thus, web formats are often described as verbose and rarely edited or created by
hand. On the other hand, the XML structure simplifies the inter-connectivity between web
formats, e.g., via XSL Transformations (XSLT) [362]. There are three main formats used in
the web: the current web standard MathML, the pure semantic encoding OpenMath, and the
semantic document encoding OMDoc. Note that many websites still use image formats to
display math. We will discuss image formats in Section 2.2.4.

2.2.1.1 MathML

For the web, the Mathematical Markup Language (MathML) [60] is the current official recom-
mendation from the World Wide Web Consortium (W3C) and even an official standard since
2015 [169] for HTML5. MathML is defined via two different markups: the presentation4 and

4https://www.w3.org/TR/MathML3/chapter3.html [accessed 2021-10-01]

Chapter 2

Mathematical Information Retrieval
21

https://www.w3.org/TR/MathML3/chapter3.html


Section 2.2. Mathematical Formats and Their Conversions

the content5 markup. MathML containing only presentation markup elements is, therefore,
also called presentation MathML or, in case it only contains content markup elements, content
MathML, respectively. Both markups can be used together side by side for a single expression in
so-called parallel markup [202, 259, 270]. If elements in the presentation markup are linked back
and forth with elements from the content markup, the encoding is also called cross-referenced
MathML.

Content MathML, in contrast to presentation MathML, aims to encode the meaning, i.e., the
semantics, of mathematical expressions. Content MathML addresses the issues of ambiguous
presentational encodings by providing a standard representation of the content of mathematics.
The encoding comes with a large number of predefined functions, e.g., for sin and log, intend-
ing to cover most of K-146 mathematics. For formulae beyond school mathematics, content
MathML use so-called Content Dictionaries (DCs) [204] (see the OpenMath paragraph for more
details about CDs). Listing 2.1 shows presentation and content MathML encodings for the Leg-
endre polynomial Pn(x). Note that the presentation MathML encoding contains an operator
(<mo> for mathematical operator) between Pn and (x) which contains the invisible character
function application (unicode character U+2061). Nowadays, content MathML is often used in
digital libraries to improve the performance of math search engines with accessible semantic
information [345, 347, 348, 381].

Since MathML is the web standard, there are numerous tools available that convert other
encodings from and to MathML. Most common conversions include translations between
presentation and content MathML [139, 270, 364], from [159, 257, 267, 335, 374] and to7 LATEX,
OpenMath [59, 342, 343], CAS [318], PDF [27, 267], images [406], and audio encodings (mainly
in the math to speech research field) [67, 349, 387]. The W3C officially lists 42 converters and
other softare tools that generate MathML on their wiki8. In addition, the official interoperability
report9 of MathML provides a comprehensive overview of software that supports MathML and
show official statements from implementors. Due to its XML format, most conversion tools use
XSLT [362] to transformMathML into either other XML encodings or string representations [59,
61]. This translation approach can be described as rule-based, because in XSLT, we define a set
of transformation rules for XML subtrees.

Most of the converters to MathML do not support content MathML. Translations from presen-
tational formats to content MathML face a wide range of ambiguity issues [159, 259, 374]. For
example, the <mo> element in Listing 2.1 regularly contains the invisible times symbol (unicode
character U+2062) rather than function application because most conversion tools interpret
Pn not as a function. For content MathML, even more disambiguation steps are required to
link P with the Legendre polynomial correctly. For such disambiguation, a combination of
semantification and XSLT rules are used to perform translations to content MathML [139, 270,
364]. Nghiem et al. [270] proposes a machine translation approach to generate content MathML
from presentation MathML but does not consider textual descriptions from the surrounding
context of a formula. Likewise, Toloaca and Kohlhase [364] uses patterns of notation definitions

5https://www.w3.org/TR/MathML3/chapter4.html [accessed 2021-10-01]
6Kindergarten to early college.
7Two well-known projects for translations from MathML to LATEX use XSL transformations:

web-xslt https://github.com/davidcarlisle/web-xslt/tree/main/pmml2tex and
mml2tex https://github.com/transpect/mml2tex [accessed 2021-10-01].

8https://www.w3.org/wiki/Math_Tools [accessed 2021-10-01]
9https://www.w3.org/Math/iandi/mml3-impl-interop20090520.html [accessed 2021-10-01]

22 Chapter 2

Mathematical Information Retrieval

https://www.w3.org/TR/MathML3/chapter4.html
https://github.com/davidcarlisle/web-xslt/tree/main/pmml2tex
https://github.com/transpect/mml2tex
https://www.w3.org/wiki/Math_Tools
https://www.w3.org/Math/iandi/mml3-impl-interop20090520.html


Section 2.2. Mathematical Formats and Their Conversions

to find a content MathML expression that matches the presentation MathML parse tree. Grigore
et al. [139], on the other hand, generates a local context of five nouns prior to the expression
first to conclude symbol declarations from OpenMath CDs. Besides Grigore et al. [139], other
existing approaches for translations to content MathML only consider the semantics within
the given formula itself or in formulae in the same document [159, 259, 374] but ignore the
textual context surrounding a formula. For example, these tools follow the assumption that a P
with subscript followed by an expression in parenthesis should be interpreted as the Legendre
polynomial. However, many expressions cannot be disambiguated without considering the
textual context, such as the π(x + y) example from the introduction.

Most CAS support MathML either directly or via external software packages [318, 343]. How-
ever, to the best of our knowledge, no CAS currently consider the CD in content MathML
correctly. Hence, these import and export functions in CAS are generally limited to school
mathematics. It should be noted that the CDs are considered by CAS but only in OpenMath, e.g.,
via the transport protocol Symbolic Computation Software Composability Protocol (SCSCP) [361].
Since this protocol was developed to enable inter-CAS communication, we explain this project
more in detail in Section 2.2.3.

In summary, a reliable generation of content MathML requires a semantic enhanced source
formula, e.g., in CAS syntaxes [318, 343], theorem prover formats [152], or OpenMath [59,
342]. Otherwise, translations tend to generate inaccurate MathML. In Section 2.3, we will
examine existing LATEX to MathML converters more in detail to investigate the practicality of
using MathML as an intermediate format for translations from LATEX to CAS encodings.

2.2.1.2 OpenMath

The OpenMath Society (originally OpenMath Consortium [19]) defines another standard encod-
ing called OpenMath [53]. The OpenMath standard aims to focus exclusively on the semantics
of mathematics and, therefore, going a step further compared to MathML [204], which aims
to cover both the presentation and the content information in a single format. Originally,
OpenMath was invented during a series of workshops starting in 1993, mainly from researchers
in the computer algebra community, to easily exchange mathematical expressions between
CAS and other systems [19, 89]. MathML, originally developed with the same goal, was first
released in 199810. Both formats are very similar to each other [204] and one may ask for the
purpose of two different formats for more or less the same tasks [82, 114]. Discussions about
the necessity of both formats raise from time to time even decades later [25, 204]. However,
OpenMath and MathML have been and are still developed alongside each other rather than
competing with one another due to a large overlap of people working on both formats [204].
To summarize the coexistence today: MathML provides rendered visualizations for OpenMath,
while the Content Dictionaries (CDs) from OpenMath add semantics to MathML11.

The OpenMath Society maintains a set of standard CDs. A CD is a set of declarations (i.e.,
definitions, notations, constraints, etc.) for mathematical symbols, functions, operators, and
other mathematical concepts. The idea behind the publicly maintained CDs by the OpenMath

10https://www.w3.org/TR/1998/REC-xml-19980210 [accessed 2021-10-01]
11A more detailed discussion about the history of both formats can be found at https://openmath.org/

projects /esprit /final /node6 . htm, https :/ /open math . org/ om- m m l/ [both accessed 2021-10-01],
and [198, pp. 5].

Chapter 2

Mathematical Information Retrieval
23

https://www.w3.org/TR/1998/REC-xml-19980210
https://openmath.org/projects/esprit/final/node6.htm
https://openmath.org/projects/esprit/final/node6.htm
https://openmath.org/om-mml/


Section 2.2. Mathematical Formats and Their Conversions

�
Presentational

MathML

1 <mrow>
2 <msub>
3 <mi>P</mi>
4 <mi>n</mi>
5 </msub>
6 <mo>
7 <!-- Invisible
8 Funct. Appl.
9 Unicode U+2061 -->
10 </mo>
11 <mrow>
12 <mo>(</mo>
13 <mi>x</mi>
14 <mo>)</mo>
15 </mrow>
16 </mrow>

� Content MathML

1 <apply>
2 <csymbol definitionURL="http://www.

openmath.org/cd/orthpoly1.ocd"
encoding="OpenMath">legendreP

3 </csymbol>
4 <ci>n</ci><ci>x</ci>
5 </apply>

� OpenMath

1 <OMOBJ><OMA>
2 <OMS name="legendreP" cd="orthpoly1"/>
3 <OMV name="n"/>
4 <OMV name="x"/>
5 </OMA></OMOBJ>

Listing 2.1: The Legendre polynomial in two MathML encodings and in OpenMath.

Society is to provide a ground truth for math declarations so that the used symbols become in-
terchangeable among different parties. However, everybody can create new custom CDs which
might be integrated into the existing standard set maintained by the OpenMath Society [90].
M. Schubotz [327], for example, proposed a concept for a CD that uses on the knowledge
base Wikidata. More recently, B. Miller [258] created a content dictionary specifically for the
functions in the DLMF.

Listing 2.1 compares both MathML markups with OpenMath. While the tree structures of
content MathML and OpenMath cannot directly be compared with mathematical expression
trees [331] (see also Section 2.2.4), the XML tree structure of both formats is unique. Both
formats rely on the CD entry of the Legendre polynomial in orthpoly112. Since the CD is from
OpenMath, the OpenMath encoding does not require the entire url. The CD entry further
specifies that the Legendre polynomial has two arguments. Hence, the following two siblings in
the tree structure are considered to be the arguments. OpenMath specifically annotate them as
OMV (for variable objects). Alternatively to the orthpoly1 CD by OpenMath, one can also use
Schubotz’s [327] Wikidata CD to annotate P with the Wikidata item Q215405 or Miller’s [258]
DLMF CD to link P to §18.3 of the DLMF [98, (18.3)].

As previously mentioned, both formats (content MathML and OpenMath) are rather similar
to each other [56, 343]. Hence, there are several ways to transform mathematical expressions
between both formats [343], e.g., via XSLT [59, 342]. This transformation is possible without
information retrieval techniques since both formats encode the same level of semantic infor-
mation via CDs. Even though the primary goal for OpenMath was to provide a format that
allows communication between mathematical software [19], most CAS do not support Open-
Math directly. Instead, an independent project of research institutions funded by the European
Union was launched to improve the symbolic computation infrastructure in Europe. The main

12https://openmath.org/cd/orthpoly1.html#legendreP [accessed 2021-10-01]

24 Chapter 2

Mathematical Information Retrieval

https://www.wikidata.org/wiki/215405
https://dlmf.nist.gov/18.3
https://openmath.org/cd/orthpoly1.html#legendreP


Section 2.2. Mathematical Formats and Their Conversions

result of this project was the SCSCP protocol for inter-CAS communication via OpenMath. We
will discuss the SCSCP protocol and the project more in detail in Section 2.2.3. Several CAS,
including Maple [243] and Mathematica [44], implemented endpoints for the SCSCP protocol.
Hence, via this new protocol, CAS support OpenMath to some degree. Apart from the protocol
solution, there are some research projects available that use OpenMath as an interface to and
between CAS and theorem prover formats [57, 152, 303, 338, 343].

2.2.1.3 OMDoc

Sometimes, it might be worthwhile to annotate the context of mathematical expressions with
additional information explicitly. For example, an equation might be part of a theorem that has
not been proven yet. Hence, that particular equation and its context should not be confused
with a definition. Since this meta-information about mathematical expressions is organized
on a document level, Kohlhase [198, 199] introduced another format, the Open Mathematical
Document (OMDoc), to semantically describe entire mathematical documents. While formats
like OpenMath orMathML encode the semantics of single expressions, whichKohlhase describes
as the microscopic level, OMDoc aims for the macroscopic, i.e., the document level. This format
can be especially useful for interactive documents [80, 85, 131, 150, 162, 201] and theorem
prover [38, 146, 163, 340] which generally rely more on the meta information from a document
level. Single math expressions in OMDoc are still encoded as OpenMath for the semantics and
MathML for the visualization. In turn, this thesis focuses more on the formats that directly
encode mathematical expressions rather than a macroscopic level encoding. Nonetheless, it
should be noticed that a translation to a CAS might be different depending on the scope of
an equation, e.g., an equation symbol in a definition differs from an equation symbol in an
example. Heras et al. [152], for example, used OMDoc to interface CAS and theorem prover.
Hence, the OMDoc format might be worth supporting once the translation reaches a level of
reliability and comprehensiveness that the semantics on the document level matter (see the
future work section 6.3).

2.2.2 Word Processor Formats

The previously explained formats of mathematics are beneficial for web applications and ex-
changing mathematical knowledge between systems. However, the underlying verbose XML
data structure makes manual maintenance of these formats too cumbersome. In turn, MathML
and OpenMath, considering a specific size, are almost always computer-generated. The actual
source of the data, something a human manually typed, uses a different format, such as LATEX,
visual template editors, or image formats. In the following, we introduce formats and methods
used to type mathematics in word processors manually.

2.2.2.1 LATEX

LATEX is currently the de-facto standard for writing scientific papers in the STEM disciplines [129,
220, 402] and has even been described as the lingua franca of the scientific world [220]. Numerous
other word processors entirely or partially support LATEX inputs. LATEX was developed by Leslie
Lamport and extended the TEX system with some valuable macros that make working with TEX
easier [220]. TEX was developed by Donald E. Knuth [189, p.559] in 1977. Knuth was dissatisfied
with the typography of his book, The Art of Computer Programming [189, pp. 5, 6, and 24]
and created TEX to overcome the hurdles of consistently and reliably typesetting mathematical

Chapter 2

Mathematical Information Retrieval
25



Section 2.2. Mathematical Formats and Their Conversions

formulae for printing. Today, there is no significant difference between LATEX and TEX in terms
of mathematical expressions. Hence, we continue using LATEX as the modern successor and
refer to TEX only to underline technical differences or to describe the underlying base for other
TEX-like encodings. LATEX provides an intuitive syntax for mathematics that is similar to the
way a person would write the math by hand, e.g., by using the underscore to set a sequence of
tokens in subscript.

LATEX is an interpretable language that requires a parser. Theoretically, the flexibility of LATEX (and
especially the underlying TEX implementation) makes parsing LATEX really challenging [187].
For example, TEX allows to redefine every literal at runtime, making TEX (and therefore LATEX
too) to a context-sensitive formal language. However, in practice, most LATEX literals are gen-
erally not redefined. Instead, it is common to extend LATEX with additional commands rather
than redefining existing logic. Especially in mathematical expressions, several projects simply
presume that LATEX is parsable with a context-free grammar, which makes parsing mathematical
expressions in LATEX a lot simpler [71, 402].

Since LATEX is the standard to typeset mathematics, there are numerous of translation tools to the
webstandard MathML available [133, 135, 159, 257, 267, 335, 374] (see also MathML explanation
in Section 2.2.1). In the next Section 2.3, we will focus more closely on translations between LATEX
and MathML. LATEX is also a standard target encoding for Optical Character Recognition (OCR)
techniques [406, 411], which retrieve mathematical expressions from images or PDF files (see
Section 2.2.4). LATEX focus solely on the representation ofmath (similar to presentationMathML).
Additionally, recent studies try to explore the capabilities of trained vector representations of
LATEX expressions [121, 15, 215, 360, 400, 404] to explore new similarity measure and search
engines [404], classification approaches [404], and even automatically generating new LATEX
expressions [400]. Nonetheless, the effectiveness of capturing the semantic information with
these methods is controversial [9].

LATEX to CAS converters Most relevant for our task are existing translation approaches
directly from LATEX to CAS sytanxes. These translators can be categorized in two groups: (1)
CAS internal import functions and (2) external programs for specific or multiple CAS. Mathe-
matica [391] and SymPy [357] are two CAS with the ability to import LATEX expressions directly.
SymPy’s import function was ported from the external latex2sympy13 project. Examples of
external tools are SnuggleTeX [251] and our in-house translator LACAST [3, 13]. SnuggleTeX
is a LATEX to MathML converter with the experimental feature to perform translations to the
CAS Maxima [324]. LACAST is the predecessor project of this thesis and focused on translating
semantic LATEX from the DLMF to the CAS Maple.

All of these converters are rule-based translators, i.e., they perform translations on hard-
coded pre-defined conversion rules. SnuggleTeX support translations to Maxima since version
1.1.0 [251]. The tool allows users to manually predefine translation rules, such as interpreting e
as the mathematical constant, Γ as the Gamma function, or f as a general function. SnuggleTeX
is no longer actively maintained and mostly fail to translate general expressions. The developers
themselves declare the translation to Maxima as experimental and limited14. SymPy, in contrast,

13The project is therefore no longer actively developed but still available on GitHub: https://github.com
/augustt198/latex2sympy [accessed 2021-10-01]

14https://www2.ph.ed.ac.uk/snuggletex/documentation/semantic-enrichment.html [accessed
2021-10-01]

26 Chapter 2

Mathematical Information Retrieval

https://github.com/augustt198/latex2sympy
https://github.com/augustt198/latex2sympy
https://www2.ph.ed.ac.uk/snuggletex/documentation/semantic-enrichment.html


Section 2.2. Mathematical Formats and Their Conversions

is actively maintained and provide a more sophisticated import function for LATEX expressions.
SymPy’s import function parses a given LATEX expression via ANTLR15 and traverses through
the parse tree to convert each token (and subtree) into the SymPy syntax. SymPy uses a set of
heuristics that mostly cover standard notations, including \sin. Additionally, it uses pattern
matching approaches to identify typical mathematical concepts, such as the derivative notation
in d

dx sin(x). Similarly, LACAST first parses the input expression with the Part-of-Math (POM)
tagger [402] and performs translations by traversing through the parse tree. The POM tagger
tags tokens with additional information from external lexicon files. LACAST manipulates these
lexicon files to tag tokens with their appropriate translation patterns. LACAST takes the translation
patterns attached to a single token and fills them with with the following and preceding nodes
in the parse tree to perform a translation. Within this thesis, we will extend LACAST further with
pattern matching techniques and human-inspired heuristics to perform more general formulae,
including the derivative notation example, sums, products, and other operators. A more detailed
discussion about the first version of LACAST is available in [13].

While SymPy and SnuggleTeX are open source and allows interested readers to analyze the
internal implementation details, we can only speculate about the solutions in proprietary soft-
ware, such as Mathematica. As we saw in Table 1.2 (and later in Chapter 4), Mathematica seems

to follow a pattern recognition approach to link known notations, such as P
(α,β)
n (x), to their in-

ternal counterparts, such as JacobiP[n, \[Alpha], \[Beta], x]. Since Mathematica (nor
does any other CAS or mentioned converter) analyze the textual context of a formula, import-
ing ambiguous notations generally fail. Since the internal logic (and therefore the underlying
patterns) is hidden, it is difficult to estimate the accuracy and power of Mathematica’s LATEX
import function. As an alternative to Mathematica itself, one can use WolframAlpha16 [309].
WolframAlpha is described as a knowledge or answer engine. Technically, WolframAlpha is
a web interface which uses Mathematica as backbone for computations. WolframAlpha per-
forms numerous of pre-processing and interpretation steps to allow users to generate scientific
information without inputting specific Mathematica syntax [64, 383].

Table 2.2 compares the converters on our introduction examples (see Table 1.2). The table
contains also LACAST first version (published in 2017 [3]) for comparison. We observe that Wol-
framAlpha clearly performs best on this simple general inputs. The reason is thatWolframAlpha
focus on a broad, less scientific audience which allows the system to make several assumptions.

On more topic specific inputs, such as P
(α,β)
n (cos(aΘ)), it fails. This is further underlined by

the fact that Mathematica itself has no trouble interpreting P
(α,β)
n (cos(aΘ)). This indicates

that both systems are optimized for their expected user groups. On these simple cases, SymPy
also performs better compared to Mathematica. However, SymPy’s size and support of special
functions is not comparable with Mathematica and therefore falls behind Mathematica on a
more scientific dataset, such as the DLMF.

A more sophisticated evaluation on 100 randomly selected DLMF formulae revealed that Math-
ematica can be considered the current state-of-the-art for translating LATEX to CAS. Nonetheless,
it only translated 11 cases correctly compared to 7 successful translations by SymPy and 22 by
LACAST. The full benchmark is available in Table E.1 in Appendix E.1 available in the electronic
supplementary material.

15ANother Tool for Language Recognition (ANTLR): https : / / www . antlr . org / index . ht m l [accessed
2021-10-01]

16Often stylized with Wolfram|Alpha

Chapter 2

Mathematical Information Retrieval
27

https://www.antlr.org/index.html


Section 2.2. Mathematical Formats and Their Conversions

Table 2.2: LATEX to CAS translation comparison between Mathematica’s (MM) and SymPy’s (SP)
import functions, SnuggleTeX (ST) translation to Maxima, WolframAlpha (WA) interpretation of
LATEX inputs, and the first version of LACAST (LCT1)

LATEX Rendering MM SP ST WA LCT1
\int_a^b x dx

∫ b
a xdx � � � � �

\int_a^b x \mathrm{d}x
∫ b

a xdx � � � � �

\int_a^b x\, dx
∫ b

a x dx � � � � �

\int_a^b x\; dx
∫ b

a x dx � � � � �

\int_a^b x\, \mathrm{d}x
∫ b

a x dx � � � � �

\int_a^b \frac{dx}{x}
∫ b

a
dx
x � � � � �

\sum_{n=0}^N n^2
∑N

n=0 n2 � � � � �

\sum_{n=0}^N n^2 + n
∑N

n=0 n2 + n ? ? � ? ?

{n \choose m}
(n

m

)
� � � � �

\binom{n}{m}
(n

m

)
� � � � �

P_n^{(\alpha,\beta)}(\cos(a\Theta)) P
(α,β)
n (cos(aΘ)) � � � � �

\cos(a\Theta) cos(aΘ) � � � � �

\frac{d}{dx} \sin(x) d
dx sin(x) � � � � �

Since LATEX can be easily extended with new content via macros, some projects try to semanti-
cally enhance LATEX with unambiguous commands. The two most comprehensive projects are
semantic LATEX and STEX.

2.2.2.2 Semantic/Content LaTeX

� The Jacobi polynomial in LATEX and semantic LATEX

1 P_n^{( \alpha , \beta)}(x) % Generic LaTeX
2 \JacobipolyP {n}{ \alpha }{\beta}@{x} % Semantic LaTeX

Listing 2.2: The Jacobi polynomial in LATEX (line 1) and semantic LATEX (line 2).

Semantic LATEX (also known as content LATEX) was developed by Bruce Miller [260] at the Na-
tional Institute of Standards and Technology (NIST) to semantically enhance the equations in
the DLMF [403]. Essentially, semantic LATEX is a set of custom LATEX macros which are linked
to unique definitions in the DLMF. Consider for example the Jacobi polynomial in Listing 2.2.
The general LATEX expression does not contain any information linked to the Jacobi polynomial.
However, semantic LATEX replaces the general expression with a new macro \JacobipolyP
which is linked to the DLMF [98, (18.3#T1.t1.r2)]17. In addition, all variable arguments (parame-

17Hereafter, we refer to specific equations in the DLMF by their labels. The label can be added to the base
URL of the DLMF. For example, the sine function is defined at 4.14.E1, which can be reached via https :
//dlmf.nist.gov/4.14.E1 [accessed 2021-10-01].

28 Chapter 2

Mathematical Information Retrieval

https://dlmf.nist.gov/18.3#T1.t1.r2
https://dlmf.nist.gov/4.14.E1
https://dlmf.nist.gov/4.14.E1


Section 2.2. Mathematical Formats and Their Conversions

ters and variables) are separated and ordered following the function command. This separation
is essential to disambiguate notations. For example, the sine function is sometimes written with-
out parenthesis, such as sin x, resulting in ambiguous semantic notations, such as in sin x + y.
The semantic LATEX macros allow to visualize this expression but encode it unambiguously via
\sin@@{x+y} (which is rendered as sin x + y). Originally, the semantic LATEX helped to develop
a reliable search engine for the DLMF [260]. Nowadays, the macros are also in use in other
projects and have been even extended for the Digital Repository of Mathematical Formulae
(DRMF) [77, 78], an outgrowth of the DLMF.

Semantic LATEX will play a crucial role in the rest of this thesis because it allows us to stick
with the easily maintainable syntax of LATEX but semantically elevates the information of math
expressions to a level that can be exploited for translations towards CAS [3, 8, 13]. The main
reason is that the semantic LATEX macros mostly cover OPSF from the DLMF. OPSF are a set of
functions and polynomials which are generally considered as important, such as the trigono-
metric functions (also categorized as elementary functions), the Beta function, or orthogonal
polynomials. Most OPSF have more or less well-established names and standard notations. The
DLMF (i.e., especially the original book [276]) is considered a standard reference for OPSF [381].
General-purpose CAS, such as Mathematica and Maple, focus also on the comprehensive sup-
port of OPSF [381]. Hence, semantic LATEX macros play a crucial role for translations from LATEX
to CAS syntaxes. Since CAS syntaxes are programming languages, CAS can be extended with
new code. However, translating new math formulae to CAS can become arbitrarily complex.
Consider the prime counting function would be not supported by Mathematica. In this case,
π(x + y) cannot be translated to a simple mathematical formula in the syntax of Mathematica
but would require entire new subroutines. Therefore, a comprehensive, viable, and reliable
translator from LATEX to the syntax of CAS should maximize its support for OPSF in order to be
useful.

Definition 2.1 provides a brief definition for the elements of a semantic macro. While the
semantic source of the DLMF is publicly available [403], the actual definitions, i.e., the LATEX
style files, of the macros, are still private18. B. Miller provided access to the definitions of
the macros for this thesis. Later in this thesis, we will rely on additional meta-information
given for each semantic macro. This includes default parameters and variables, a short textual
description, and links to the DLMF CD [258]. Further information is not explicitly given in
the macro definition files. For example, function constraints, domains, branch cut positions,
singularities, and other properties are only given in the DLMF.

As previously mentioned, we19 developed LACAST for translating semantic LATEX DLMF formulae
to CAS [3, 13]. The first version did not contain any disambiguation steps or pattern matching
approaches to deduce the intended meaning of an expression. Instead, if fully relied on the
semantic LATEX macros to perform translations to Maple. For example, sums or products were
not supported directly but required the semantically enhanced macros from the DRMF [77,
78]. The source of LACAST is not yet publicly available20 due to the dependency to the POM
tagger [402] and the semantic LATEX macros [260, 403] but accessible via open API endpoints21.

18As of 2021-10-1.
19The first version of LACAST was the subject of my Master’s thesis and laid the foundation for a reliable translation

from semantic LATEX to multiple CAS.
20As of 2021-10-01.
21The API contains a Swagger UI and is reachable at https://vmext-demo.formulasearchengine.com

[accessed 2021-10-01]. LACAST is available under math/translation path (in the math controller). The experimental

Chapter 2

Mathematical Information Retrieval
29

https://vmext-demo.formulasearchengine.com


Section 2.2. Mathematical Formats and Their Conversions

� Definition 2.1: The elements of a semantic macro

A semantic LATEX macro is a LATEX macro with a unique name followed by a number
of arguments. Certain elements of the following arguments are optional but the order
remains the same. While a caret and primes are interchangeable, each order would have
a different meaning, as it can be seen in the example below.

A semantic macro and its arguments:
\macro The unique semantic macro name with a backslash
[optPar] An optional parameter in square brackets
{par} Parameters in curly brackets
’ or ^ Optional prime symbols or a caret for power notations
@ A number of @ symbols to control the visualization of the macro
{var} Variables in curly brackets

Examples:

\sin@{x} −→ sin(x)
\sin@@{x} −→ sin x
\BesselJ{\nu}’’^2@{z} −→ J ′′2

n (z)
\BesselJ{\nu}^2’’@{z} −→ (J2

n)′′(z)
\genhyperF{2}{1}@{a,b}{c}{z} −→ 2F1(a, b; c; z)
\genhyperF{2}{1}@@{a,b}{c}{z} −→ 2F1

(
a,b
c ; z

)
\genhyperF{2}{1}@@@{a,b}{c}{z} −→ 2F1(z)

Apart from LACAST, LATExml [257] is another tool that supports semantic LATEX and provides
conversions to LATEX, MathML, and a variety of image formats. LATExml was also developed by
B. Miller with the original goal to support the development of DLMF [133]. LATExml is a general
LATEX to XML converter. However, in order to support the development of the DLMF, LATExml
is able to fully load semantic LATEX definition files to convert semantic LATEX into semantically
appropriate content MathML. With this ability, LATExml is generally capable of converting other
LATEX encodings too, such as the following STEX.

2.2.2.3 sTeX

STEX refers to semantic TEX and should not be confused with B. Miller’s semantic LATEX. STEX was
developed around 2008 [194, 195, 200] with the goal to semantically annotate LATEX documents
with semanticmacros. Specifically, STEX should serve as a source format to generate the semantic
document format OMDoc. While the underlying motivation and technical solution of STEX and
semantic LATEX are very similar, there are some core differences between both formats. Semantic
LATEX was developed specifically for the DLMF and, therefore, provide semantic macros for
OPSF. In particular, a semantic macro in the DLMF represents a specific unique function. In
turn, STEX aim to cover general mathematical notations and provide a logic to semantically
annotate general functions and symbols. Consider the aforementioned example π(x + y). If
π is referring to the prime counting function, we can resolve the ambiguity with semantic
LATEX via \nprimes@{x+y} since the semantic macro \nprimes is referring to that function.

flag performs pattern matching approaches described later in this thesis. The label allows to specify a DLMF equation
label to perform specific assumptions (e.g., that i is an index and not the imaginary unit).

30 Chapter 2

Mathematical Information Retrieval



Section 2.2. Mathematical Formats and Their Conversions

In STEX, an author can use modules and IDs to define the function and set the notation via
\symdef{\pi}[1]{\prefix{\pi}{#1}}. While this makes the interpretation of π(x + y)
unambiguous, an underlying definition is still missing. Hence, STEX provides the option to link
symbols with their definitions in the document. This definition linking underlines the original
motivation and connection to the semantic document format OMDoc.

Since STEX is not limited to specific domains, we could define any notation we want in our
semantic document. On the other hand, this generalizability of STEX makes the format more
verbose and somehow similar to a programming language. In STEX, we need to define and
declare symbols explicitly. In addition, a defined new symbol still needs to be manually linked
to an underlying definition. In semantic LATEX, the macro itself is linked to the appropriate
definition in the DLMF. STEX provide access to predefined sets of macros that aim to cover K-14
mathematics [195].

In conclusion, STEX is flexible but verbose. The format is useful when it comes to annotating
a general mathematical document semantically. However, the strength of STEX, for example,
the ability to define any symbol with specific semantics, is generally not very important for
translations to CAS. CAS have a fixed set of supported functions and often try to mimic common
notation styles, e.g., one does not need to define − as a unary postfix operator in −2. In turn, a
translation from LATEX to CAS faces the issue of identifying the name of the functions involved,
its arguments, and the appropriate mappings to counterparts in CAS syntax. Semantic LATEX,
on the other hand, provides a syntax that makes it easy to solve these issues. The name of the
function is directly encoded in the name of the macro, the arguments are explicitly declared
and distinguishable (by curly brackets), and a mapping to an appropriate counterpart in the
CAS can be more easily found due to the large overlap of functions in the DLMF and supported
functions in CAS.

As previouslymentioned, LATExml [257] is able to load TEX definition files and support conversion
to XML encodings. Hence, LATExml can transform STEX expressions to content MathML[200].
The ability to link STEX symbols with their definitions in a document or external source further
makes it to a source for generating entire semantic enhanced OMDoc documents [195]. STEX
could be also used as an alternative to semantic LATEX for translations to CAS. However, due to
the natural overlap of functions in the DLMF and CAS, at some point in the development of a
translation process on STEX, we would create semantic enhanced macros for OPSF similar to
the existing semantic LATEX macros. Hence, using STEX in comparison to semantic LATEX has no
direct advantages to perform translations towards CAS. The higher flexibility of STEX makes it
a good candidate for translations beyond OPSF.

2.2.2.4 Template Editors

Since LATEX is an interpretable language with over ten thousand mathematical symbols
alone [280], learning LATEX syntax is often simply too time-consuming and complex for many
users. To provide an easier access to rendered mathematics, especially in so-called what you see

is what you get (WYSIWYG) editors, such as Microsoft’s Office programs22 orWikipedia’s visual
article editor23, template editors become the norm. Template editors provide visual templates

22https://support.microsoft.com/en-us/office/
equation-editor-6eac7d71-3c74-437b-80d3-c7dea24fdf3f [accessed 2021-10-01]

23The wikipedia’s article about formula editors (https://en.wikipedia.org/wiki/Formula_editor
[accessed 2021-10-01]

Chapter 2

Mathematical Information Retrieval
31

https://support.microsoft.com/en-us/office/equation-editor-6eac7d71-3c74-437b-80d3-c7dea24fdf3f
https://support.microsoft.com/en-us/office/equation-editor-6eac7d71-3c74-437b-80d3-c7dea24fdf3f
https://en.wikipedia.org/wiki/Formula_editor


Section 2.2. Mathematical Formats and Their Conversions

Figure 2.2: The math template editor of Microsoft’s Word [395].

of standard mathematical notations so that the user only needs to fill in the remaining spaces.
Figure 2.2 shows the template editor of Microsoft’s Word [395] for a snippet of the templates for
sums. Modern graphic interfaces of CAS also often contain such template editors to improve
the user experience further. In comparison to LATEX, template editors are generally easier to use
but limited to the offered templates. Hence, for more complex expressions, template editors
are often described as confining [273]. Template editors do not introduce a new math format.
The editors only provide a different input method but encode the mathematical formulae in
system-specific formats, such as MathML in Microsoft’s Word or Maple syntax in Maple.

2.2.3 Computable Formats

So far, we have covered the major formats that focus on the presentation of mathematical
expressions and on formats that capture the semantics. Even though formats like content
MathML, OpenMath, and the semantic LATEX extensions can resolve the ambiguity of math
formulae, they are not computable formats, i.e., we cannot perform actual calculations and
computations on them. The syntax of a computable format is a formal language in which every
word is linked to specific subroutines. Much like programming languages, computable formats
are semantically unambiguous and interpretable. In turn, computable formats are generally
part of a larger software package that ships an interpreter to parse inputs and an engine that
performs the computations. In the following, we briefly discuss CAS and theorem prover
formats as examples of computable formats. We will not specifically focus on math packages
for specific programming languages, such as C++ [168], Python [252] or Java [79]. Most CAS
and theorem provers, however, internally rely on those lower-level packages to some degree.

2.2.3.1 Computer Algebra Systems

A CAS is a mathematical software that can perform a variety of mathematical operations on
math inputs, such as symbolic manipulations, numeric calculations, plotting and visualization,
simplification, and many more [76, 81, 128, 413]. With the increasing power of computers, CAS
became a crucial part of the modern scientific world [32, 262, 352, 356] and are widely used
for mathematical problem solving [49, 51, 127, 216, 414], simulations [46, 142, 166, 265, 294],
symbolic manipulations [115, 325], and even for teaching students from schools to universities
[158, 237, 244, 350, 363, 365, 389, 390]. Due to their complexity, CAS are often large and expen-
sive proprietary software packages [36, 164, 393]. However, there are several well-known open

32 Chapter 2

Mathematical Information Retrieval



Section 2.2. Mathematical Formats and Their Conversions

source options available [42], such as SymPy [252], Axiom24 [176], and Reduce25 [151]. Many
CAS focus on specific domains or mathematical tasks, such as Cadabra [289, 290, 291] (tensor
field theory), FORM [372] (particle physics), GAP [177] (group theory and combinatorics), PAR-
I/GP [283] (number theory), or MATLAB [164] (primarily for numeric computation). In contrast,
general-purpose CAS, including Mathematica [393], Maple [36], Axiom [176], SymPy [178,
252], Maxima [264, 324], or Reduce [151], aim to provide a large set of tools and algorithms that
are beneficial for many mathematical applications. Therefore, general-purpose CAS support
a large number of OPSF, since these functions and polynomials are used in a large variety
of different scientific fields, from pure and applied mathematics to physics and engineering.
Therefore, we primarily focus on translations to general-purpose CAS in this thesis rather than
to domain-specific CAS.

The input formats of general-purpose CAS are often multi-paradigm programming lan-
guages [88], i.e., they combine multiple standard programming features, such as functional,
mathematical, and procedural approaches. Major CAS generally use their own input language,
such as the Wolfram Language in Mathematica [392]. Like any programming language,
the input format must be unambiguous to the underlying parser of the CAS so that every
keyword is uniquely linked to subroutines in the CAS engine. This link to a subroutine makes
the expression computable. In contrast, the semantic LATEX macros are linked to theoretical
mathematical concepts defined in the DLMF but not with specific implementations. Hence, a
translation to a CAS syntax requires to link mathematical notations, e.g., Γ(z), that refer to
specific mathematical concepts, e.g., the Gamma function, to the correct sequence of keywords
in the CAS, e.g., GAMMA(z) in Maple.

Since computable languages naturally encode the highest level of semantic information in
their expressions, a translation towards other systems that encode less semantic information
is possible with a comprehensive list of simple mapping rules. Many CAS therefore provide
a variety of different output formats, from LATEX to MathML (including content MathML) and
images. Translations between CAS or other mathematical software, such as theorem prover,
require more sophisticated mappings due to system-specific implementations [110]. From 2006
to 2011, a joint research project funded by the European Unionwith over 3Million Euro launched
intending to improve the symbolic computation infrastructure for Europe26. The result of the
SCIEnce project was the Symbolic Computation Software Composability Protocol (SCSCP) [119,
361], which uses the OpenMath encoding to transfer mathematical expressions. Using the
SCSCP, interfaces for GAP [206], KANT [120], Maple [243], MuPAD [155], Mathematica [44],
and Macaulay2 [311] were implemented.

Note that there are solutions available that do not require any translation between LATEX and
CAS. For example, the CAS syntax of Cadabra [291] is a subset of TEX itself. Similarly, SageTeX27

is a LATEX package that allows authors to enter SageMath [317] expressions into LATEX documents,
turning the document into an interactive document [201] to some degree. SageMath is a general-
purpose CAS that relies on existing solutions for domain-specific tasks, such as GAP [177] for
group theory or PARI/GP [283] for number theory problems. These solutions do not require

24Open source since 2001 (first released in 1965).
25Open source since 2008 (first released in 1963).
26EU FP6 project 026133: https://cordis.europa.eu/project/id/26133/ [accessed 2021-10-01]
27https://doc.sagemath.org/html/en/tutorial/sagetex.html [accessed 2021-10-01]

Chapter 2

Mathematical Information Retrieval
33

https://cordis.europa.eu/project/id/26133/
https://doc.sagemath.org/html/en/tutorial/sagetex.html


Section 2.2. Mathematical Formats and Their Conversions

translations since the input must be provided in the syntax of the CAS. Hence, a translation
must be performed manually or via external tools.

In the introduction, we mentioned potential issues of CAS with multi-valued functions. Multi-
valued functions map values from a domain to multiple values in a codomain and frequently
appear in the complex analysis of elementary and special functions [8]. Prominent examples
are the inverse trigonometric functions, the complex logarithm, or the square root. All modern
CAS28 compute multi-valued functions on their principle branches which makes these functions
effectively single-valued (e.g., a calculator always returns 2 for

√
4 rather than ±2 or just −2).

The correct properties of multi-valued functions on the complex plane may no longer be valid by
their counterpart functions on CAS, e.g., (1/z)w = 1/(zw) for z, w ∈ C and z �= 0 is no longer
valid within CAS. The positioning and handling of branch cuts in CAS is often discussed in
scientific articles and generally prominantly noticed in CAS handbooks [83, 84, 91, 108, 171, 172].
However, especially in more complex scenarios, it is easy to lose track of branch cut positioning
and evaluate expressions on incorrect values. We provide a more complex example and a more
detailed explanation of branch cuts in Appendix A available in the electronic supplementary
material. To the best of our knowledge, no available translation tool from, to, or between CAS
(including the SCSCP solutions) consider branch cut positions.

2.2.3.2 Theorem Prover

The idea of automated reasoning and deduction systems is as old as computers [147]. With
the power of computers and a strict axiomatic approach as in Principia Mathematica [385],
computers can perform automatic reasoning steps to discover and proof new mathematical
theorems. Up until today, automated theorem proving and verifying is an extensive research
area with an ever-growing interest [266, 354, 384]. There are numerous theorem provers and
proof assistants systems available, such as HOL Light [146], HOLF [340], or Isabelle [287].
However, focusing on the deduction, the encoding of theorem provers generally goes beyond
mathematical expressions. The syntax provides specific options for assumptions, links between
multiple concepts, and logical steps. An example of a proof by Isabelle, which clearly visualizes
the different notation of theorem provers and CAS, is given in Appendix C available in the
electronic supplementary material.

Nonetheless, theorem prover formats are computable formats with specific mathematical ap-
plications. Hence, there is a genuine interest in transferring findings and solutions from one
system to the other. There are some translation approaches between theorem prover and CAS
available, from direct translations [28, 148] to translations over OpenMath [57, 338] and OM-
Doc [152]. Theorem provers are generally unable to compute a single mathematical formula
in the sense of numeric computations or symbolic manipulations. Hence, we do not choose
theorem provers as the target computable format for our desired translation process.

2.2.4 Images and Tree Representations

In the following, we briefly discuss formats with the specific visualization focus: images and
tree representations. Especially older literature is often only available in digital scans, and many
copies of publications do not provide access to the original LATEX source. Images can be con-

28The authors are not aware of any example of a CAS which treats multi-valued functions without adopting
principal branches.

34 Chapter 2

Mathematical Information Retrieval



Section 2.2. Mathematical Formats and Their Conversions

sidered as the purest presentational format of mathematical expressions. Tree representations
of math expressions, on the other hand, are more theoretical concepts to visualize the logical
or presentational structure of math. Tree representations are primarily used for explanation
purposes to underline or visualize an idea or concept. Parse trees, as a generated specific tree
format of mathematical string inputs, on the other hand, play a crucial role in almost every
mathematical software tool. Often, digital mathematical formats try to mimic the logical tree
structure of math expressions. This is also one of the reasons why the web formats (MathML
and OpenMath) use XML to encode mathematical content.

Symbolic Layout, Operator, Parse, and Expression Trees Mathematical expressions are
often represented in tree structures. For example, MathML itself is an XML tree data structure.
Moreover, mathematicians often have a logical but theoretical tree representation of a formula
in mind in which numbers and identifiers are terminal symbols (leaves) and children of math
operators, functions, and relations [192, 331]. These so-called expression trees are more or less
a theoretical structure and are mainly used to visualize logical correlations and connections
in mathematical expressions. Schubotz et al. [331] attempted to automate the visualization
process of expression trees based on cross-referenced MathML data which resulted in VMEXT,
a visualization tool for MathML. Figure 2.3 shows a possible expression tree visualization for
the Jacobi polynomial definition in terms of the hypergeometric function.

P (α,β)
n (z) = (α + 1)n

n! 2F1
(
−n, 1 + α + β + n; α + 1; 1

2(1 − z)
)

Relation

Function

Operator

Identifier

Number

Figure 2.3: An expression tree representation of the explicit Jacobi polynomial definition in
terms of the hypergeometric function.

For visualization and education purposes, these tree representations can be beneficial. However,
generating these trees requires a deep understanding of the logical structure of the expression. In
addition, there is no exact definition available for expression trees. Hence, the exact visualization
is often up for discussions, e.g., whether parameters are children similar to variables or part of
the function node itself [9]. A missing standard definition makes expression trees unreliable
and, therefore, less practical for a mathematical encoding.

Parse Trees Parse trees are generated tree representations of source expressions (strings).
These trees are generated by a parser that follows a strict set of rules, e.g., a context-free gram-
mar [101, 188, 298]. Mathematical LATEX (as a subset of TEX) considering a couple simplifications

Chapter 2

Mathematical Information Retrieval
35



Section 2.2. Mathematical Formats and Their Conversions

(e.g., no re-defined standard literals and macros) can also be described in a context-free gram-
mar [402] even though TEX itself is Turing complete [133, 135, 187]. The POM tagger [402],
for example, parses mathematical LATEX following a context-free grammar. Similarly, Chien
and Cheng [71] build a custom context-free grammar parser for their semantic tokenization
of mathematical LATEX expressions. LATExml follows the more sophisticated TEX-like digestion
methods [187] to parse entire TEX files [133, 135]. CAS inputs are parsed internally for further
processing [138, 392]. Maple’s internal parser also generates a parse tree in which equivalent
nodes are merged together for more efficient memory usage (mathematically speaking, this
data structure is no longer a valid tree but instead a directed, acyclic graph, or simply DAG) [3,
13].

In contrast to theoretical tree representations, such as the mentioned expression trees, parse
trees are crucial for many applications because a tree data format is more easy to process due
to their structural logic [93, 242, 286, 406]. While string sequences of commands may contain
ambiguities, tree data structures are unique and provide easy access to single logical nodes,
groups of nodes, and their dependencies. Hence, parsing a mathematical input (such as in
CAS inputs or LATEX expressions) is typically the first step in any processing pipeline. Later
in this thesis, we will also take advantage of tree representations by defining a translation
between math formats as graph transformations on their tree representations. To generate a
tree representation of mathematical LATEX formats, we can either build a custom parser [71]
or rely on existing parsers, such as LATExml [257] or the POM tagger [402]. Parse trees (and
other custom generated tree formats that are generated by analyzing a given input) can also
be categorized into symbol layout trees (for presentational formats) and operator trees (for
content/semantic formats) [406]. For example, parsing LATEX may result in a symbol layout tree
that describes the visual structure of formulae while parsing semantic LATEX (or CAS inputs)
may result in operator trees which describe the logical mathematical structure of the input.

Images From pixel graphics (e.g., JPEG or PNG) to vector graphics (e.g., Scalable Vector
Graphics (SVG)) and document formats (e.g., PDF), mathematical expression can appear in
a variety of different image formats. The two-dimensional structure of mathematics makes
drawing mathematical formulae on a sheet of paper or touch screens the most intuitive input
method for mathematics. In addition, with rising digitization, scans of old scientific articles are
no longer the only source of math images. Handwriting systems are more and more adopted in
offices and educational institutions [411]. In 2016, Wikipedia switched from non-scalable PNG
images to vector graphics for visualizing mathematics [17] (see Appendix B available in the
electronic supplementary material, for a more sophisticated overview of the history of math
formulae in Wikipedia).

However, image formats are not directly interpretable and are, therefore, less machine-readable.
Hence, the first step of analyzing mathematics in images is always converting into a more
machine-readable, digital format. The majority of conversion approaches, including handwrit-
ing recognition and Optical Character Recognition (OCR), focus on translations to MathML
or LATEX [373, 406, 411]. Hence, for our task (translating presentational formats to computable
formats), starting with image formats is not practically useful.

Nonetheless, one particular issue in math OCR is also of interest for our translation task:
detection of inline mathematics. In image formats, detecting inline mathematics is difficult
because formulae may blend into texts [74, 125, 126, 230, 398]. Even a detection of italic fonts

36 Chapter 2

Mathematical Information Retrieval



Section 2.2. Mathematical Formats and Their Conversions

can be a challenging task [66, 112, 113, 233]. A variable can easily be confused with words,
such as the Latin letter ‘a.’ A similar issue raises in other formats, including LATEX documents
and Wikipedia articles when an author does not correctly annotate mathematical formulae.
In Wikipedia, for example, single identifiers in a text are often put in italic font rather than in
mathematical environments. The capability of using UTF-8 encodings incites Wikipedia editors
to put inline mathematics into the text directly, even when special characters are involved.
For example, the mathematical expression 0 ≤ φ ≤ 4π in the English Wikipedia article about
Jacobi polynomials29 is a sequence of UTF-8 characters and thus challenging to identify as
mathematics for MathIR parser. Nevertheless, identifying all mathematical expressions in a
document might be necessary for more reliable translations towards computable formats. For
example, the mentioned relation of φ defines the domain of the Wigner d-matrix and is of
interest for automatic evaluations (see Chapter 5).

2.2.5 Math Embeddings

Word embedding techniques has received significant attention over the last years in the Natural
Language Processing (NLP) community, especially after the publication of word2vec [256].
Therefore, more and more projects try to adapt this knowledge for solving tasks in the MathIR
arena [121, 15, 141, 215, 353, 360, 400, 404]. These projects try to embed math expressions into
natural languages to create a vector representation of the formula. A vector representation is
the data format with the highest machine readability among all other representations of math-
ematical formula. The math embeddings successfully enabled a new approach to measure the
similarity between math expressions, which is especially useful for math search, classification,
and similar tasks [121, 215, 400, 404].

Considering the equation embedding techniques in [215], we devise three main types of math-
ematical embedding: Mathematical Expressions as Single Tokens, Stream of Tokens, and Semantic

Groups of Tokens. In the following we briefly explain each type on an example expression
containing the inequality for Van der Waerden numbers

W (2, k) > 2k/kε. (2.1)

This expression is the first entry in the the MathML benchmark [18] we are going to explain in
detail in Section 2.3.

Mathematical Expressions as Single Tokens So called equation embeddings (EqEmb)
were introduced by Krstovski and Blei [215] and use an entire mathematical expression as one
token. In a one-token representation, the inner structure of the mathematical expression is not
considered. For example, W (r, k) is represented as one single token t1. Any other expression,
such as W (2, k) in the context, is an entirely independent token t2. Therefore, this approach
does not learn any connections between W (2, k) and W (r, k). However, [215] has shown
promising results for comparing mathematical expressions with this approach.

Stream of Tokens As an alternative to embedding mathematical expressions as a single
token, one can also represent an expression through a sequence of its inner elements. For
example, considering only the identifiers in Equation (2.1), it would generate W , k, and ε as a
sequence/stream of tokens. This approachhas the advantage of learning allmathematical tokens.

29https://en.wikipedia.org/wiki/Jacobi_polynomials#Applications [accessed 2021-10-01]

Chapter 2

Mathematical Information Retrieval
37

https://en.wikipedia.org/wiki/Jacobi_polynomials#Applications


Section 2.3. From Presentation to Content Languages

However, this method also has some drawbacks. Complex mathematical expressions may lead
to long chains of elements, which can be especially problematic when the window size of the
trainingmodel is too small. Naturally, there are approaches to reduce the length of chains. Gao et
al. [121] use a continuous bag of words (CBOW) approach and embed all mathematical symbols,
including identifiers and operands, such as +, − or variations of equalities =. Krstovski and
Blei [215] also evaluated the stream of tokens approach but do not cut out symbols. They trained
their model on the entire sequence of tokens that the LATEX tokenizer generates. Considering
Equation (2.1), it would result in a stream of 13 tokens. They use a long short-term memory
(LSTM) architecture to overcome the limiting window size and further limit chain lengths to
20 − 150 tokens. Usually, in word embedding, such behaviour is not preferred since it increases
the noise in the data.

We [15] also use this stream of tokens approach to train our model on the DLMF without any
filters. Thus, Equation (2.1) generates all 13 tokens. Later in Section 3.1, we show another model
trained on the arXiv collection, which uses a stream of mathematical identifiers and cut out
all other expressions, i.e., in case of (2.1), we embed W , k, and ε. We presume this approach
is more appropriate to learn connections between identifiers and their definiens. We will see
later that both of our models trained on math embedding are able to detect similarities between
mathematical objects, but does not perform well on detecting connections to word descriptors.

Semantic Groups of Tokens The third approach of embedding mathematics is only the-
oretical. Current MathIR and Machine Learning (ML) approaches would benefit from a basic
structural knowledge of mathematical expressions, such that variations of function calls (e.g.,
W (r, k) and W (2, k)) can be recognized as the same function. Instead of defining a unified
standard, current techniques use their ad-hoc interpretations of structural connections. We
assume that an embedding technique would benefit from a system that can detect the parts of
interest in mathematical expressions before any training process. However, such a system still
does not exist. Later in Section 3.2, we will introduce a new concept to interpret logical groups
of mathematical objects that may enable a semantic embedding in the future.

It is important to mention that it remains unclear to what degree math semantic information
can be embedded in a vector representation [9]. Since there is no answer to this question, we
have not included math embeddings (i.e., vector representations of formulae) to Figure 2.1.
Nonetheless, a vector representation can be decoded into a CAS syntax representation again
to perform a ML based translation [296]. We will elaborate on such an approach more in
Chapter 4.

2.3 From Presentation to Content Languages

We introduced several different formats for encoding mathematical formulae digitally and
provided an overview of several existing conversion tools between these formats. Considering
Figure 2.1, the goal of this thesis, i.e., making presentational math computable, requires to
convert mathematical formats from the most left of the figure to the most right. We have
chosen LATEX as the source format and general-purpose CAS syntaxes for the target formats.
Considering the merit of communicating knowledge in sciences, it comes to no surprise that
there are numerous of translation tools and theoretical approaches available to convert math
formulae between multiple formats, including our goal translation from LATEX to CAS syntaxes.

38 Chapter 2

Mathematical Information Retrieval



Section 2.3. From Presentation to Content Languages

Since MathML is the web standard which is supported by several CAS at least partially [57,
110, 303, 338] (or OpenMath respectively), a translation from LATEX to CAS could be performed
over MathML (preferably content MathML). In this section, we analyze state-of-the-art LATEX to
MathML converters to study the applicability of using MathML as an intermediate format for
translations from LATEX to CAS syntaxes. This section was previously published [18].

2.3.1 Background

In the following, we use the Riemann hypothesis (2.2) as an example to explain typical challenges
of converting different representation formats of mathematical formulae:

ζ(s) = 0 ⇒ �s = 1
2 ∨ 
s = 0. (2.2)

We will focus on the representation of the formula in LATEX and in the format of the CAS
Mathematica. LATEX is a common language for encoding the presentation of mathematical
formulae. In contrast to LATEX, Mathematica’s representation focuses on making formulae
computable. Hence the content must be encoded, i.e., both the structure and the semantics of
mathematical formulae must be taken into consideration.

In LATEX, the Riemann hypothesis can be expressed using the following string:

� Riemann hypothesis in LATEX

1 \zeta(s) = 0 \Rightarrow \Re s = \frac 12 \lor \Im s=0

In Mathematica, the Riemann hypothesis can be represented as:

� Riemann hypothesis in Mathematica

1 Implies [Equal[Zeta[s], 0], Or[Equal[Re[s], Rational [1, 2]],
Equal[Im[s], 0]]]

The conversion between these two formats is challenging due to a range of conceptual and
technical differences.

First, the grammars underlying the two representation formats greatly differ. LATEX uses the
unrestricted grammar of the TEX typesetting system. The entire set of commands can be re-
defined and extended at runtime, which means that TEX effectively allows its users to change
every character used for the markup, including the \ character typically used to start commands.
The large degree of freedom of the TEX grammar significantly complicates recognizing even
the most basic tokens contained in mathematical formulae. In difference to LATEX, CAS use a
significantly more restrictive grammar consisting of a predefined set of keywords and set rules
that govern the structure of expressions. For example in Mathematica, function arguments
must always be enclosed in square brackets and separated by commas.

Second, the extensive differences in the grammars of the two languages are reflected in the
resulting expression trees. Similar to parse trees in natural language, the syntactic rules of
mathematical notation, such as operator precedence and function scope, determine a hierarchical

Chapter 2

Mathematical Information Retrieval
39



Section 2.3. From Presentation to Content Languages

structure for mathematical expressions that can be understood, represented, and processed as a
tree. The mathematical expression trees of formulae consist of functions or operators and their
arguments. We used nested square brackets to denote levels of the tree and Arabic numbers
in a gray font to indicate individual tokens in the markup. For the LATEX representation of the
Riemann hypothesis, the expression tree is:

� Representation tree of Riemann hypothesis in LATEX[
ζ1
l (2

l s3
l )4

l =5
l 06

l ⇒7
l �8

l s9
l =10

l

[
11·
·

112
l 213

l

]
∨14
l 
15

l s16
l =17

l 018
l

]
.

The tree consists of 18 nodes, i.e., tokens, with a maximum depth of two (for the fraction
command \frac12). The expression tree of the Mathematica expression consists of 16 tokens
with a maximum depth of five:

� Representation tree of Riemann hypothesis in Mathematica⎡⎣19
⇒

[
20
=

[
21
ζ s22

l

]
023
n

] [
24
∨

[
25
=

[26
� s27

l

] [
28
Q129

n 230
n

] ] [
31
=

[32
� s33

l

]
034
n

] ]⎤⎦ .

The higher complexity of the Mathematica expression reflects that a CAS represents the content
structure of the formula, which is deeply nested. In contrast, LATEX exclusively represents the
presentational layout of the Riemann hypothesis, which is almost linear.

For the given example of the Riemann hypothesis, finding alignments between the tokens
in both representations and converting one representation into the other is possible. In fact,
Mathematica and other CAS offer a direct import of TEX expressions, which we evaluate in
Section 2.3.3.

However, aside from technical obstacles, such as reliably determining tokens in TEX expressions,
conceptual differences also prevent a successful conversion between presentation languages,
such as TEX, and content languages. Even if there was only one generally accepted presentation
language, e.g., a standardized TEX dialect, and only one generally accepted content language,
e.g., a standardized input language for CAS, an accurate conversion between the representation
formats could not be guaranteed.

The reason is that neither the presentation language, nor the content language always provides
all required information to convert an expression to the respective language. This can be
illustrated by the simple expression: F (a + b) = Fa + Fb. The inherent content ambiguity of
F prevents a deterministic conversion from the presentation language to a content language. F
might, for example, represent a number, a matrix, a linear function or even a symbol. Without
additional information, a correct conversion to a content language is not guaranteed. On the
other hand, the transformation from content language to presentation language often depends
on the preferences of the author and the context. For example, authors sometimes change the
presentation of a formula to focus on specific parts of the formula or improve its readability.

Another obstacle to conversions between typical presentation languages and typical content
languages, such as the formats of CAS, are the restricted set of functions and the simpler

40 Chapter 2

Mathematical Information Retrieval



Section 2.3. From Presentation to Content Languages

grammars that CAS offer. While TEX allows users to express the presentation of virtually
all mathematical symbols, thus denoting any mathematical concept, CAS do not support all
available mathematical functions or structures. A significant problem related to the discrepancy
of the space of concepts expressible using presentation markup and the implementation of
such concepts in CAS are branch cuts. Branch cuts are restrictions of the set of output values
that CAS impose for functions that yield ambiguous, i.e., multiple mathematically permissible
outputs. One example is the complex logarithm [98, ( 4.2.1)], which has an infinite set of
permissible outputs resulting from the periodicity of its inverse function. To account for this
circumstance, CAS typically restrict the set of permissible outputs by cutting the complex
plane of permissible outputs. However, since the method of restricting the set of permissible
outputs varies between systems, identical inputs can lead to drastically different results [3].
For example, multiple scientific publications address the problem of accounting for branch cuts
when entering expressions in CAS, such as [109] for Maple.

Our review of obstacles to the conversion of representation formats for mathematical formulae
highlights the need to store both presentation and content information to allow for reversible
transformations. Mathematical representation formats that include presentation and content
information can enable the reliable exchange of information between typesetting systems and
CAS.

MathML offers standardized markup functionality for both presentation and content informa-
tion. Moreover, the declarative MathML XML format is relatively easy to parse and allows for
cross references between Presentation Language (PL) and Content Language (CL) elements.
Listing 2.3 represents excerpts of the MathML markup for our example of the Riemann hypoth-
esis (2.2). In this excerpt, the PL token 7 corresponds to the CL token 19, PL token 5 corresponds
to CL token 20, and so forth.

� Riemann hypothesis in MathML

1 <math><semantics><mrow>. . .
2 <mo id="5" xref="20">=</mo>
3 <mn id="5" xref="21">0</mn>
4 <mo id="7" xref="19">⇒</ci>. . .</mrow>
5 <annotation-xml encoding="MathML-Content">
6 <apply><implies id="19" xref="7"/>
7 <apply><eq id="20" xref="5"/>. . .
8 <apply><csymbol id="21" xref="1" cd="wikidata">Q187235</csymbol>. . .
9 </annotation-xml></semantics></math>

Listing 2.3: MathML representation of the Riemann hypothesis (2.2) (excerpt).

Combined presentation and content formats, such as MathML, significantly improve the access
to mathematical knowledge for users of digital libraries. For example, including content infor-
mation of formulae can advance search and recommendation systems for mathematical content.
The quality of these mathematical information retrieval systems crucially depends on the accu-
racy of the computed document-query and document-document similarities. Considering the
content information of mathematical formulae can improve these computations by:

Chapter 2

Mathematical Information Retrieval
41

https://dlmf.nist.gov/ 4.2.1
https://www.wikidata.org/w/index.php?title=Q187235&oldid=616744815


Section 2.3. From Presentation to Content Languages

1. enabling the consideration of mathematical equivalence as a similarity feature. Instead
of exclusively analyzing presentation information as indexed, e.g., by considering the
overlap in presentational tokens, content information allows modifying the query and
the indexed information. For example, it would become possible to recognize that the

expressions a( b
c + d

c ) and a(b+d)
c have a distance of zero.

2. allowing the association of mathematical tokens with mathematical concepts. For exam-
ple, linking identifiers, such as E, m, and c, to energy, mass, and speed of light, could
enable searching for all formulae that combine all or a subset of the concepts.

3. enabling the analysis of structural similarity. The availability of content information
would enable the application of measures, such as derivatives of the tree edit distance,
to discover structural similarity, e.g., using λ-calculus. This functionality could increase
the capabilities of math-based plagiarism detection systems when it comes to identifying
obfuscated instances of reused mathematical formulae [253].

Content information could furthermore enable interactive support functions for consumers and
producers of mathematical content. For example, readers of mathematical documents could be
offered interactive computations and visualizations of formulae to accelerate the understanding
of STEM documents. Authors of mathematical documents could benefit from automated editing
suggestions, such as auto completion, reference suggestion, and sanity checks, e.g., type and
definiteness checking, similar to the functionality of word processors for natural language texts.

2.3.1.1 Related Work

A variety of tools exist to convert format representations of mathematical formulae. However,
to our knowledge, Stamerjohanns et al. [351] presented the only study that evaluated the
conversion quality of tools. Unfortunately, many of the tools evaluated by Stamerjohanns et
al. are no longer available or out of date. Watt presents a strategy to preserve formula semantics
in TEX to MathML conversions. His approach relies on encoding the semantics in custom TEX
macros rather than to expand the macros [380]. Padovani discusses the roles of MathML and
TEX elements for managing large repositories of mathematical knowledge [278]. Nghiem et al.
used statistical machine translation to convert presentation to content language [271]. However,
they do not consider the textual context of formulae. We will present detailed descriptions and
evaluation results for specific conversion approaches in Section 2.3.3.

Youssef addressed the semantic enrichment of mathematical formulae in presentation language.
They developed an automated tagger that parses LATEX formulae and annotates recognized
tokens very similarly to Part-of-Speech (POS) taggers for natural language [402]. Their tagger
currently uses a predefined, context-independent dictionary to identify and annotate formula
components. Schubotz et al. proposed an approach to semantically enrich formulae by analyzing
their textual context for the definitions of identifiers [329, 330].

With their ‘math in the middle approach’, Dehaye et al. envision an entirely different approach
to exchanging machine readable mathematical expressions. In their vision, independent and
enclosed virtual research environments use a standardized format for mathematics to avoid
computions and transfers between different systems. [94].

For an extensive review of format conversion and retrieval approaches for mathematical for-
mulae, refer to [326, Chapter 2].

42 Chapter 2

Mathematical Information Retrieval



Section 2.3. From Presentation to Content Languages

2.3.2 Benchmarking MathML

This section presents MathMLben - a benchmark dataset for measuring the quality of MathML
markup of mathematical formulae appearing in a textual context. MathMLben is an improve-
ment of the gold standard provided by Schubotz et al. [329]. The dataset considers recent
discussions of the International Mathematical Knowledge of Trust30 working group, in par-
ticular the idea of a ‘Semantic Capture Language’ [165], which makes the gold standard more
robust and easily accessible. MathMLben:

• allows comparisons to prior works;

• covers a wide range of research areas in STEM literature;

• provides references to manually annotated and corrected MathML items that are compli-
ant with the MathML standard;

• is easy to modify and extend, i.e., by external collaborators;

• includes default distance measures; and

• facilitates the development of converters and tools.

In Section 2.3.2.1, we present the test collection included in MathMLben. In Section 2.3.2.2, we
present the encoding guidelines for the human assessors and describe the tools we developed
to support assessors in creating the gold standard dataset. In Section 2.3.2.3, we describe the
similarity measures used to assess the markup quality.

2.3.2.1 Collection

Our test collection contains 305 formulae (more precisely, mathematical expressions ranging
from individual symbols to complex multi-line formulae) and the documents in which they
appear.

Expressions 1 to 100 correspond to the search targets used for the ‘National Institute of
Informatics Testbeds and Community for Information access Research Project’ (NTCIR) 11
Math Wikipedia Task [329]. This list of formulae has been used for formula search and content
enrichment tasks by at least 7 different research institutions. The formulae were randomly
sampled from Wikipedia and include expressions with incorrect presentation markup.

Expressions 101 to 200 are random samples taken from the NIST DLMF [98]. The DLMF
website contains 9,897 labeled formulae created from semantic LATEX source files [77, 78]. In
contrast to the examples from Wikipedia, all these formulae are from the mathematics research
field and exhibit high quality presentation markup. The formulae were curated by renowned
mathematicians and the editorial board keeps improving the quality of the formulae’s markup31.
Sometimes, a labeled formula contains multiple equations. In such cases, we randomly chose
one of the equations.

Expressions 201 to 305 were chosen from the queries of the NTCIR arXiv and NTCIR-12
Wikipedia datasets. 70% of these queries originate from the arXiv [22] and 30% from aWikipedia
dump.

30http://imkt.org/ [accessed 2021-08-03]
31http://dlmf.nist.gov/about/staff [accessed 2021-08-03]

Chapter 2

Mathematical Information Retrieval
43

http://imkt.org/
http://dlmf.nist.gov/about/staff


Section 2.3. From Presentation to Content Languages

All data is openly available for research purposes and can be obtained from: https://mathm
lben.wmflabs.org32.

2.3.2.2 Gold Standard

We provide explicit markup with universal, context-independent symbols in content MathML.
Since the symbols from the default content dictionary of MathML33 alone were insufficient to
cover the range of semantics in our collection, we added the Wikidata content dictionary [328].
As a result, we could refer to all Wikidata items as symbols in a content tree. This approach has
several advantages. Descriptions and labels are available in many languages. Some symbols
even have external identifiers, e.g., from the Wolfram Functions Site, or from stack-exchange
topics. All symbols are linked to Wikipedia articles, which offer extensive human-readable
descriptions. Finally, symbols have relations to other Wikidata items, which opens a range of
new research opportunities, e.g., for improving the taxonomic distance measure [336].

Our Wikidata-enhanced, yet standard-compliant MathML markup, facilitates the manual cre-
ation of content markup. To further support human assessors in creating content annotations,
we extended the VMEXT visualization tool [331] to develop a visual support tool for creating
and editing the MathMLben gold standard.

Table 2.3: Special content symbols added to LATExml for the creation of the gold standard.

No. Rendering Meaning Example IDs

1 [x, y] commutator 91

2 xy
z tensor 43, 208, 226

3 x† adjoint 224, 277

4 x
′

transformation 20

5 x◦ degree 20

6 x(dim) contraction 225

For each formula, we saved the source document written in different dialects of LATEX and
converted it into content MathML with parallel markup using LATExml [135, 257]. LATExml is a
Perl program that converts LATEX documents to XML and HTML. We chose LATExml, because
it is the only tool that supports our semantic macro set. We manually annotated our dataset,
generated the MathML representation, manually corrected errors in the MathML, and linked
the identifiers to Wikidata concept entries whenever possible. Alternatively, one could initially
generate MathML using a CAS and then manually improve the markup.

Since there is no generally accepted definition of expression trees, we made several design
decision to create semantic representations of the formulae in our dataset using MathML trees.
In some cases, we created new macros to be able to create a MathML tree for our purposes
using LATExml

34. Table 2.3 lists the newly created macros. Hereafter, we explain our decisions
and give examples of formulae in our dataset that were affected by the decisions.

32Visit https://mathmlben.wmflabs.org/about for a user guide [accessed 2021-08-03].
33http://www.openmath.org/cd [accessed 2021-08-03]
34http://dlmf.nist.gov/latexml/manual/customization/customization.latexml.html#SS1.

SSS0.Px1 [accessed 2021-08-03]

44 Chapter 2

Mathematical Information Retrieval

https://mathmlben.wmflabs.org
https://mathmlben.wmflabs.org
https://www.wikidata.org/wiki/2989763
https://mathmlben.wmflabs.org/91
https://www.wikidata.org/wiki/188524
https://mathmlben.wmflabs.org/43
https://mathmlben.wmflabs.org/208
https://mathmlben.wmflabs.org/226
https://www.wikidata.org/wiki/2051983
https://mathmlben.wmflabs.org/224
https://mathmlben.wmflabs.org/277
https://www.wikidata.org/wiki/Q12202238
https://mathmlben.wmflabs.org/20
https://www.wikidata.org/wiki/Q28390
https://mathmlben.wmflabs.org/20
https://www.wikidata.org/wiki/Q5165685
https://mathmlben.wmflabs.org/225
https://mathmlben.wmflabs.org/about
http://www.openmath.org/cd
http://dlmf.nist.gov/latexml/manual/customization/customization.latexml.html#SS1.SSS0.Px1
http://dlmf.nist.gov/latexml/manual/customization/customization.latexml.html#SS1.SSS0.Px1


Section 2.3. From Presentation to Content Languages

• not assignWikidata items to basic mathematical identifiers and functions like factorial,
\log, \exp, \times, \pi. Instead, we left these annotations to the DLMF LATEX macros,
because they represent the mathematical concept by linking to the definition in the DLMF
and LATExml creates valid and accurate content MathML for these macros [GoldID 3, 11,
19, ...];

• split up indices and labels of elements as child nodes of the element. For example, we
represent i as a child node of p in p_i [GoldID 29, 36, 43, ...];

• create a special macro to represent tensors, such as for Tαβ [GoldID 43], to represent
upper and lower indices as child nodes (see table 2.3);

• create a macro for dimensions of tensor contractions [GoldID 225], e.g., to distinguish
the three dimensional contraction of the metric tensor in g(3) from a power function (see
table 2.3);

• chose one subexpression randomly if the original expression contained lists of expressions
[GoldID 278];

• remove equation labels, as they are not part of the formula itself. For example, in

E = mc2, (	)

the (	) is the ignored label;

• remove operations applied to entire equations, e.g., applying the modulus. In such cases,
we interpreted the modulus as a constraint of the equation [GoldID 177];

• use additional macros (see table 2.3) to interpret complex conjugations, transformation
signs, and degree-symbols as functional operations (identifier is a child node of the
operation symbol), e.g., * or \dagger for complex conjugations [GoldID 224, 277], S’ for
transformations [GoldID 20], 30^\circ for thirty degrees [Gold ID 30];

• for formulae with multiple cases, render each case as a separate branch [GoldID 49];

• render variables that are part of separate branches in bracket notation. We implemented
theDirac Bracket commutator [] (omitting the index _\text{DB}) and an anticommutator
by defining new macros (see table 2.3). Thus, there is a distinction between a (ring)
commutator [a,b] = ab - ba and an anticommutator {a,b} = ab + ba, without
further annotation of Dirac or Poisson brackets [GoldID 91];

• use the command \operatorname{} for multi-character identifiers or operators [GoldID
22]. This markup is necessary, because most LATEX parsers, including LATExml, interpret
multi-character expressions as multiplications of the characters. In general, this inter-
pretation is correct, since it is inconvenient to use multi-character identifiers [54].

Some of these design decisions are debatable. For example, introducing a new macro, such as
\identifiername{}, to distinguish between multi-character identifiers and operators might
be advantageous to our approach. However, introducing many highly specialized macros is
likely not a viable approach and exaggerated. A borderline example in regard to this prob-
lem is Δx [GoldID 280]. Formulae of this form could be annotated as \operatorname{},
\identifiername{} or more generally as \expressionname{}. We interpret Δ as a differ-
ence applied to a variable, and render the expression as a function call.

Chapter 2

Mathematical Information Retrieval
45

https://mathmlben.wmflabs.org/3
https://mathmlben.wmflabs.org/11
https://mathmlben.wmflabs.org/19
https://mathmlben.wmflabs.org/29
https://mathmlben.wmflabs.org/36
https://mathmlben.wmflabs.org/43
https://mathmlben.wmflabs.org/43
https://mathmlben.wmflabs.org/225
https://mathmlben.wmflabs.org/278
https://mathmlben.wmflabs.org/177
https://mathmlben.wmflabs.org/224
https://mathmlben.wmflabs.org/277
https://mathmlben.wmflabs.org/20
https://mathmlben.wmflabs.org/49
https://mathmlben.wmflabs.org/91
https://mathmlben.wmflabs.org/22
https://mathmlben.wmflabs.org/280


Section 2.3. From Presentation to Content Languages

Figure 2.4: Graphical User Interface (GUI) to support the creation of our gold standard. The
interface provides several TEX input fields (left) and a mathematical expression tree rendered
by the VMEXT visualization tool (right).

Similar cases of overfeeding the dataset with highly specialized macros are bracket notations.
For example, the bracket (Dirac) notation, e.g., [GoldID 209], is mainly used in quantum physics.
The angle brackets for the Dirac notation, 〈 and 〉, and a vertical bar | is already interpreted
correctly as "latexml - quantum-operator-product". However, a more precise distinction between
a twofold scalar product, e.g., 〈a|b〉, and a threefold expectation value, e.g., 〈a|A|a〉, might
become necessary in some scenarios to distinguish between matrix elements and a scalar
product.

We developed a Web application to create and cultivate the gold standard entries, which is
available at: https : / / math m lben . w m flabs . org/. The GUI provides the following
information for each Gold ID entry.

• Formula Name: the name of the formula (optional)

• Formula Type: either definition, equation, relation or General Formula (if none of the
previous names fit)

• Original Input TEX: the LATEX expression extracted from the source

• Corrected TEX: the manually corrected LATEX expression

• Hyperlink: the hyperlink to the position of the formula in the source

• Semantic LATEX Input: the manually created semantic version of the corrected LATEX
field. This entry is used to generate our MathML with Wikidata annotations.

46 Chapter 2

Mathematical Information Retrieval

https://mathmlben.wmflabs.org/209
https://mathmlben.wmflabs.org/


Section 2.3. From Presentation to Content Languages

• Preview of Corrected LATEX: a preview of the corrected LATEX input field rendered as
an SVG image in real time using Mathoid [335], a service to generate SVGs and MathML
from LATEX input. It is shown in the top right corner of the GUI.

• VMEXT Preview: the VMEXT field renders the expression tree based on the content
MathML. The symbol in each node is associated with the symbol in the cross referenced
presentation MathML.

Figure 2.4 shows the GUI that allows to manually modify the different formats of a formula.
While the other fields are intended to provide additional information, the pipeline to create and
cultivate a gold standard entry starts with the semantic LATEX input field. LATExml will generate
content MathML based on this input and VMEXT will render the generated content MathML
afterwards. We control the output by using the DLMF LATEX macros [260] and our developed
extensions. The following list contains some example of the DLMF LATEX macros.

• \EulerGamma@{z}: Γ(z): gamma function,

• \BesselJ{\nu}@{z}: Jν(z): Bessel function of the first kind,

• \LegendreQ[\mu]{\nu}@{z}: Qμ
ν (z):

associated Legendre function of the second kind,

• \JacobiP{\alpha}{\beta}{n}@{x}: P
(α,β)
n (x):

Jacobi polynomial.

The DLMF web pages, which we use as one of the sources for our dataset, were generated
from semantically enriched LATEX sources using LATExml. Since LATExml is capable to interpret
semantic macros, generates content MathML that can be controlled with macros, and is easily
extensible by new macros, we also used LATExml to generate our gold standard. While the DLMF
is a compendium for special functions, we need to annotate every identifier in the formula with
semantic information. Therefore, we extended the set of semantic macros.

In addition to the special symbols listed in Table 2.3, we created macros to semantically enrich
identifiers, operators, and other mathematical concepts by linking them to their Wikidata items.
As shown in Figure 2.4, the annotations are visualized using yellow info boxes appearing on
mouse over. The boxes show the Wikidata QID, the name, and the description (if available) of
the linked concept.

Aside from naming, classifying, and semantically annotating each formula, we performed three
other tasks:

• correcting the LATEX string extracted from the sources;

• checking and correcting the MathML generated by LATExml

• visualizing the MathMl using VMEXT

Most of the extracted formulae contained concepts to improve human readability of the source
code, such as commented line breaks, %\n, in long mathematical expressions, or special macros
to improve the displayed version of the formula, e.g., spacing macros, delimiters, and scale
settings, such as \!, \, or \>. Since they are part of the expression, all of the tested tools
(also LATExml) try to include these formating improvements into the MathML markup. For our

Chapter 2

Mathematical Information Retrieval
47



Section 2.3. From Presentation to Content Languages

gold standard, we focus on the pure semantic information and forgo formating improvements
related to displaying the formula. The corrected TEX field shows the cleaned mathematical LATEX
expression.

Using the corrected TEX field and the semantic macros, we were able to adjust the MathML
output using LATExml and verify it by checking the visualization from VMEXT.

2.3.2.3 Evaluation Metrics

To quantify the conversion quality of individual tools, we computed the similarity of each
tool’s output and the manually created gold standard. To define the similarity measures for
this comparison, we built upon our previous work [336], in which we defined and evaluated
four similarity measures: taxonomic distance, data type hierarchy level, match depth, and
query coverage. The measures taxonomic distance and data type hierarchy level require the
availability of a hierarchical ordering of mathematical functions and objects. For our use case,
we derived this hierarchical ordering from the MathML content dictionary. The measures assign
a higher similarity score if matching formula elements belong to the same taxonomic class.
The match depth measure operates under the assumption that matching elements, which are
more deeply nested in a formula’s content tree, i.e., farther away from the root node, are less
significant for the overall similarity of the formula, hence are assigned a lower weight. The
query coverage measure performs a simple ‘bag of tokens’ comparison between two formulae
and assigns a higher score the more tokens the two formulae share.

In addition to these similarity measures, we also included the tree edit distance. For this purpose,
we adapted the robust tree edit distance (RTED) implementation for Java [288]. We modified
RTED to accept any valid XML input and added math-specific ‘shortcuts’, i.e., rewrite rules that
generate lower distance scores than arbitrary rewrites. For example, rewriting a

b to ab−1 causes
a significant difference in the expression tree: Three nodes (∧, −, 1) are inserted and one node
is renamed ÷ → ·. The ‘costs’ for performing these edits using the stock implementation of
RTED are c = 3i + r. However, the actual difference is an equivalence, which we think should
be assigned a cost of e < 3i + r. We set e < r < i.

2.3.3 Evaluation of Context-Agnostic Conversion Tools

This section presents the results of evaluating existing, context-agnostic conversion tools for
mathematical formulae using our benchmark datasetMathMLben (cf. Section 2.3.2). We compare
the distances between the presentation MathML and the content MathML tree of a formula
yielded by each tool to the respective trees of formulae in the gold standard. We use the
tree edit distance with customized weights and math-specific shortcuts. The goal of shortcuts
is eliminating notational-inherent degrees of freedom, e.g., additional PL elements or layout
blocks, such as mrow or mfenced.

2.3.3.1 Tool Selection

We compiled a list of available conversion tools from the W3C35 wiki, from GitHub, and from
questions about automated conversion of mathematical LATEX to MathML on Stack Overflow.
We selected the following converters:

35https://www.w3.org/wiki/Math_Tools [accessed 2021-08-03]

48 Chapter 2

Mathematical Information Retrieval

https://www.w3.org/wiki/Math_Tools


Section 2.3. From Presentation to Content Languages

• LATExml: can convert generic and semantically annotated LATEX expressions to XML/
HTML/MathML. The tool is written in Perl [257] and is actively maintained. LATExml was
specifically developed to generate the DLMF web page and can therefore parse entire TEX
documents. LATExml also supports conversions to content MathML.

• LaTeX2MathML: is a small python project and is able to generate presentation MathML
from generic LATEX expressions [245].

• Mathoid: is a service developed using Node.js, PhantomJS and MathJax (a javascript
display engine for mathematics) to generate SVGs andMathML from LATEX input. Mathoid
is currently used to render mathematical formulae on Wikipedia [335].

• SnuggleTeX: is an open-source Java library developed at the University of Edin-
burgh [251]. The tool allows to convert simple LATEX expression to XHTML and
presentation MathML.

• MathToWeb: is an open-source Java-based web application that generates presentation
MathML from LATEX expressions36.

• TeXZilla: is a javascript web application for LATEX to MathML conversion capable of
handling Unicode characters37.

• Mathematical: is an application written in C and wrapped in Ruby to provide a fast
translation from LATEX expressions to the image formats SVG and PNG. The tool also
provides translations to presentation MathML38.

• CAS: we included Mathematica, which is capable of parsing LATEX expressions.

• Part-of-Math (POM) Tagger: is a grammar-based LATEX parser that tags recognized tokens
with information from a dictionary [402]. The POM tagger is currently under develop-
ment. In this paper, we use the first version. In [3], this version was used to provide
translations LATEX to the CAS Maple. In its current state, the program offers no export to
MathML. We developed an XML exporter to be able to compare the tree provided by the
POM tagger with the MathML trees in the gold standard.

2.3.3.2 Testing framework

We developed a Java-based framework that calls the programs to parse the corrected TEX input
data from the gold standard to presentation MathML, and, if applicable, to content MathML. In
case of the POM tagger, we parsed the input string to a general XML document. We used the
corrected TEX input format instead of the originally extracted string expressions, see 2.3.2.2.

Executing the testing framework requires the manual installation of the tested tools. The POM
tagger is not yet publicly available.

2.3.3.3 Results

Figure 2.5 shows the averaged structural tree edit distances between the presentation trees
(blue) and content trees (orange) of the generated MathML files and the gold standard. To

36https://www.mathtowebonline.com [accessed 2021-08-03]
37https://fred-wang.github.io/TeXZilla [accessed 2021-08-03]
38https://github.com/gjtorikian/mathematical [accessed 2021-08-03]

Chapter 2

Mathematical Information Retrieval
49

https://www.mathtowebonline.com
https://fred-wang.github.io/TeXZilla
https://github.com/gjtorikian/mathematical


Section 2.3. From Presentation to Content Languages

305 305
288 295 305

229

290
305 305

0

50

100

150

200

250

300

0
10
20
30
40
50
60
70
80

Su
cc

es
sf

ul
ly

 P
ar

se
d 

Ex
pr

es
sio

ns

Tr
ee

 E
di

t D
ist

an
ce

Average Distance of Presentation Subtree
Average Distance of Content Subtree
Successfully Parsed LaTeX Expressions

Average of Structural Distances & Successfully 
Parsed Expressions

Figure 2.5: Overview of the structural tree edit distances (using r = 0, i = d = 1) between the
MathML trees generated by the conversion tools and the gold standard MathML trees.

calculate the structural tree edit distances, we used the RTED [288] algorithm with costs of
i = 1 for inserting, d = 1 for deleting and r = 0 for renaming nodes. Furthermore, the Figure
shows the total number of successful transformations for the 305 expressions (black ticks).
Note that we also consider differences of the presentation tree to the gold standard as deficits,
because the mapping from LATEX expressions to rendered expressions is unique (as long as the
same preambles are used). A larger number indicates that more elements of an expression were
misinterpreted by the parser. However, certain differences between presentation trees might be
tolerable, e.g., reordering commutative expressions, while differences between content trees are
more critical. Also note that improving content trees may not necessarily improve presentation
trees and vice versa. In case of f(x + y), the content tree will change depending whether f
represents a variable or a function, while the presentation tree will be identical in both cases. In
contrast, a

b ,
a/b, and a/b have different presentation trees, while the content trees are identical.

Figure 2.6 illustrates the runtime performance of the tools. We excluded the CAS from the
runtime performance tests, because the system is not primarily intended for parsing LATEX ex-
pressions, but for performing complex computations. Therefore, runtime comparisons between
a CAS and conversion tools would not be representative. We measured the times required to
transform all 305 expressions in the gold standard and write the transformed MathML to the
storage cache. Note that the native code of LaTeX2MathML, Mathematical and LATExml were
called from the Java Virtual Machine (JVM) and Mathoid was called through local web-requests,
which increased the runtime of these tools. The figure is scaled logarithmically. We would
like to emphasize that LATExml is designed to translate sets of LATEX documents instead of single
mathematical expressions. Most of the other tools are lightweight engines.

50 Chapter 2

Mathematical Information Retrieval



Section 2.4. Mathematical Information Retrieval for LaTeX Translations

372,76

29,65

20,77

9,57

4,17

3,69

1,79

1,41

1,00 10,00 100,00 1000,00

LatexML

Mathoid

Mathematical

Latex2MML

MathToWeb

POM

SnuggleTeX

TeXZilla

Performance of Tools

 Duration in Seconds

Figure 2.6: Time in seconds required by each tool to parse the 305 gold standard LATEX expressions
in logarithmic scale.

In this benchmark, we focused on the structural tree distances rather than on distances in
semantics. While our gold standard provides the information necessary to compare the extracted
semantic information, we will focus on this problem in future work.

2.3.4 Summary of MathML Converters

We make available the first benchmark dataset to evaluate the conversion of mathematical
formulae between presentation and content formats. During the encoding process for our
MathML-based gold standard, we presented the conceptual and technical issues that conversion
tools for this task must address. Using the newly created benchmark dataset, we evaluated
popular context-agnostic LATEX-to-MathML converters. We found that many converters simply
do not support the conversion from presentation to content format, and those that did often
yielded mathematically incorrect content representations even for basic input data. These
results underscore the need for future research on mathematical format conversions.

Of the tools we tested, LATExml yielded the best conversion results, was easy to configure,
and highly extensible. However, these benefits come at the price of a slow conversion speed.
Due to its comparably low error rate, we chose to extend the LATExml output with semantic
enhancements.

2.4 Mathematical Information Retrieval for LaTeX Translations

In the following, we will briefly discuss related work in the Mathematical Information Retrieval
(MathIR) arena in order to find existing practical approaches for a translation from presen-
tational to computable formats. MathIR is the research area that aims to retrieve additional
(generally semantic) information about mathematical content [141]. In turn, the task of trans-
lating mathematical presentational formats to computable formats is part of this research area

Chapter 2

Mathematical Information Retrieval
51



Section 2.4. Mathematical Information Retrieval for LaTeX Translations

since it requires a context-dependent semantification39, i.e., the semantic enhancement or en-
richment of mathematical objects with additional information. One of the most well-studied
tasks in MathIR40 is searching for relevant mathematical expressions or content [21, 22, 241, 346,
405, 408]. However, successful solutions in this area focus on similarity measures and do not
necessarily require a deep understanding of the meaning and content of a formula. Likewise,
other tasks in MathIR, such as entity linking, use similarity measures to retrieve connections
between entities rather than semantic relatedness [208, 319, 321]. Thus, many related work in
MathIR is not particularly beneficial for translating presentational encodings to computable
formats. One of the reasons for this research gap is presumably a semantic version of the chicken
or the egg causality dilemma. On the one hand, semantically enriching mathematical objects in
an expression require identifying the meaningful objects. On the other hand, identifying those
meaningful objects requires semantic information about those objects. In other words, if we

want to annotate P
(α,β)
n (x) with Jacobi polynomial in our use case equation (1.1), we need to

know that P
(α,β)
n (x) refers to the Jacobi polynomial.

Figure 2.7 illustrates this issue by splitting a math expression into four layers of mathematical
objects. The identifier layer contains all identifiers (which may include general symbols and
numbers too). The arithmetic layer contains arithmetic structures that combine tokens from
the identifier layer to mathematical terms. This layer may include logic terms, sets, and other
mathematical concepts with specific notations. The function layer combines elements from the
lower layers to entire function calls. The top expression layer contains entire expressions in
documents which are often a composition of elements in the previous layers. The difference of
elements in the function and arithmetic layer is the ambiguity of the notations. Elements in
the arithmetic layer generally do not need to be mapped to specific keywords in CAS because
they are often semantically unique. In contrast, elements in the function layer are potentially
ambiguous. However, a clear distinction between both layers is not always necessary and
may even confuse in other MathIR related scenarios. For our task, the distinction is beneficial
because elements in the function layer must be mapped to specific keywords in the CAS syntax,
while elements in the arithmetic layer can be mostly ignored.

Existing MathIR tasks focus on semantically enhancing either the expression [208, 209, 215],
arithmetic [93, 242, 339], or the identifier [121, 279, 329, 330, 339, 400] layer, missing the
important function layer entirely. An algorithm needs to understand the involved functions to
identify objects in the function layer. This dilemma is usually avoided in MathIR tasks since
objects in the other layers can be extracted primarily context-independently. The meaning of
arithmetic operators usually does not change (e.g., +, −, or /) and math identifiers can often be
presumed to be Latin or Greek letters. The function layer, however, contains the most crucial
objects for the translation task. Identifiers generally represent mutable objects, such as variables
or parameters, and do not require specific mapping rules. Similarly, arithmetic operations are
natively supported by most mathematical software. Finally, objects in the expression layers are
often too abstract (because they are compositions of multiple objects) and cannot be mapped
as a whole to a single logic procedure in a computable format.

There are approaches available that try to semantically enrich elements in the function layer.
However, most of these semantic enrichment approaches focus solely on mathematical ex-
pressions themselves and do not analyze textual information [159, 259, 270, 339, 364, 374].

39Also often called semantic enrichment.
40For an extensive review of retrieval approaches for mathematical formulae, see also [326, Chapter 2].

52 Chapter 2

Mathematical Information Retrieval



Section 2.4. Mathematical Information Retrieval for LaTeX Translations

Expression
Layer

Identifier
Layer

Function
Layer

Arithmetic
Layer

Figure 2.7: Four different layers of math objects in a single mathematical expression. The red
highlights in the function and arithmetic layer refer to the fixed structure (or stem) of the
function or operator. Gray tokens are mutable. Elements in the arithmetic layer are generally
understood without further mappings and are mostly context-independent while elements in
the function layer must be mapped to specific procedures in CAS and require disambiguation.
However a strict distinction is not always required and might be even confusing. For example,
n! is mostly understood by CAS and context-independent but can (and sometimes should) be
mapped to the specific factorial procedure making it more to an element of the function layer.

Approaches that take the textual context of a formula into account, on the other hand, do not
semantically enrich objects in the function layer. Instead, they focus on other specific appli-
cations, including math embeddings with the goal of a semantic vector representation [121,
215, 360, 400, 404], entity linking [208, 212, 316, 321], math word problem solving [285, 409],
semantic annotation [183, 214, 279, 329, 330], and context-aware math search engines [93, 122,
124, 145, 210, 211, 232, 273, 314, 315, 366]. Regarding translating mathematical expressions from
a lower level of semantics to a higher level, relevant literature is limited. The main relevant
related literature for our task include semantic tagging [71, 402], annotations [139, 183, 214, 279,
329, 330], and term disambiguations [339]. In the following, we distinguish semantic tagging
(the task of precisely tagging math objects with a pre-defined set of semantic tags) and semantic
annotation (the task of adding any number of relevant descriptions to math objects).

Semantic Tagging and Term Disambiguation Semantic tagging of mathematical tokens
has rarely been studied in the past and has not reached a well-established reliability level yet. To
the best of our knowledge, only Chien et al. [71] (2015) and Youssef [402] (2017) addressed the
issue for semantic tokenization of math formulae. Youssef [402] created the POM tagger, which
tags tokens in the LATEX parse tree with additional information from a manually crafted lexicon.
The POM tagger is still a work in progress and does not perform disambiguation steps yet. In the
future, it is planned to reduce the number of possible tags for a token by analyzing the textual
context and eliminating false tags. Ideally, the extracted context information results in a single,
unique tag for each token. However, no update of the POM tagger, including the disambiguation
steps, has been published so far. Recently, however, Shan and Youssef [339] presented several
machine learning approaches as the first step towards disambiguation of mathematical terms.
They trained different models on the semantic DLMF dataset and successfully disambiguated

Chapter 2

Mathematical Information Retrieval
53



Section 2.4. Mathematical Information Retrieval for LaTeX Translations

prime notations with an F1 score of 0.83. However, if the models only adapted the relatively
strict DLMF notation style for primes or if they are also able to disambiguate other real-world
data has not been discussed.

Chien et al. [71] proposed a probabilistic model on entire document collections to conclude
semantic tags of mathematical tokens. They focused on tagging single identifiers (i.e., no groups
of tokens). They constituted that the consistency property and user habits are critical aspects for
successful tag disambiguation. With user habits, the authors referred to the different education
levels and expertise of users so that a model can predict the preferred notation for specific
semantics. The consistency property refers to the assumption that the meaning of a single
term does not change within a certain context, e.g., a document. Recent efforts on annotating
mathematical symbols by Asakura et al. [1], however, indicate that the scope of consistent tags
could be significantly smaller than an entire document or a document collection. The semantics
of frequently used symbols, such as x or t, may even change within single paragraphs. Another
interesting counterexample is the connection between Euler numbers and Euler polynomials [98,
(24.2.9)] in

En = 2n En

(1
2

)
. (2.3)

While clearly connected, the first E refers to the Euler number but the second E refers to Euler
polynomials. This underlines that under special circumstances, even within the scope of a single
equation, an identifier may refer to two different mathematical concepts. Chien et al. reported
a maximum accuracy of 0.94.

Semantic Annotation Task While the task of semantic annotation has been studied more
comprehensively, none of these existing approaches tried to convert the source expressions
into a computable format [139, 183, 214, 279, 329, 330]. Grigore et al. [139], Nghiem et al. [269],
Pagel et al. [279], Schubotz et al. [329, 330], and Kristianto et al. [214] analyze nouns or noun
phrases in the surrounding context of a formula to semantically annotate an entire expression
or parts of an expression. Only Grigore et al. [139] tried to use this information to perform a
translation to a semantically enhanced format, here content MathML. The authors deduced a
CD entry for a math symbol by calculating the similarity of the nouns surrounding the symbol
and the textual description (or more precisely: the cluster of nouns in that description) of the
CD entry. They measured the similarity with distributional properties fromWordNet [261]. The
other approaches either use the gained semantic information to improve search engines [214,
269] or enable entity linking [279, 329, 330]. While other semantification approaches exist that
elevate source presentational formats to a semantically enriched format [245, 251, 257, 270, 271,
364, 391], none of them take the textual context into account. Some of them, however, perform
disambiguation steps by considering other mathematical expressions in the same document
(again presuming a semantic consistency ofmath notation within a single document as proposed
by Chien et al. [71]) [270, 271]. None of the previous work considered the possibility of an
identifier that has multiple meanings within a single formula, as shown in equation (2.3).

Summary In summary, semantic enriching approaches avoid the essential function layer [159,
259, 270, 364, 374], ignore the textual context surrounding a formula [71, 245, 251, 257, 270, 271,
296, 364, 391], or does not use the extracted information for a translation towards a semantic
enhanced format [183, 214, 279, 329, 330, 402]. Nonetheless, the related work underlines the
benefits of analyzing the textual context of a formula. More importantly, the research has

54 Chapter 2

Mathematical Information Retrieval

https://dlmf.nist.gov/24.2.9


Section 2.4. Mathematical Information Retrieval for LaTeX Translations

shown that even simple noun phrase extraction provide viable information for numerous of
applications [139, 183, 214, 279, 329, 330]. Thismotivated us to apply these promising approaches
for our semantification pipeline too.

Regarding the final translations towards computable formats, our comprehensive analysis of
LATEX to MathML conversion tools in the previous section revealed that we probably gain no
benefits from translating LATEX to MathML in an intermediate step. While many CAS provide
import functions forMathML, there is no substantial support forOpenMath CDs. Another option
would be OpenMath, since the SCSCP protocol uses OpenMath for inter-CAS communications.
However, the SCSCP is relatively complex for our task and difficult to extend for new CAS if
we do not have access to the internal libraries. Additionally, there are no translation tools from
LATEX to OpenMath even though LATExml can be exploited to realize rule-based translations.

In a previous research project, we developed LACAST, a semantic LATEX to CAS translator, specifi-
cally for the DLMF [3, 13]. The goal of LACAST was to translate DLMF formulae, given in semantic
LATEX, to the CAS Maple. The semantic LATEX macros reduced the ambiguity in mathematical
expressions and enabled LACAST to focus on other translation issues, such as definition disparity
between the DLMF and Maple. Hence, we already established a reliable and expandable trans-
lation pipeline from semantic LATEX to Maple. As a consequence, we focus our efforts on the
more promising semantification of LATEX to semantic LATEX rather than from LATEX to content
MathML in this thesis41.

41Since the original development of LACAST was part of my Master’s thesis, the content of the associated early
publications [3, 13] is not reused in this thesis. For more details about LACAST, see [13].

Chapter 2

Mathematical Information Retrieval
55

This Chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License 

(http://creativecommons.org/licenses/by/4.0/).


	CHAPTER 2
Mathematical Information Retrieval
	2.1 Background and Overview
	2.2 Mathematical Formats and Their Conversions
	2.2.1 Web Formats
	2.2.1.1 MathML
	2.2.1.2 OpenMath
	2.2.1.3 OMDoc

	2.2.2 Word Processor Formats
	2.2.2.1 LATEX
	2.2.2.2 Semantic/Content LaTeX
	2.2.2.3 sTeX
	2.2.2.4 Template Editors

	2.2.3 Computable Formats
	2.2.3.1 Computer Algebra Systems
	2.2.3.2 Theorem Prover

	2.2.4 Images and Tree Representations
	2.2.5 Math Embeddings

	2.3 From Presentation to Content Languages
	2.3.1 Background
	2.3.1.1 Related Work

	2.3.2 Benchmarking MathML
	2.3.2.1 Collection
	2.3.2.2 Gold Standard
	2.3.2.3 Evaluation Metrics

	2.3.3 Evaluation of Context-Agnostic Conversion Tools
	2.3.3.1 Tool Selection
	2.3.3.2 Testing framework
	2.3.3.3 Results

	2.3.4 Summary of MathML Converters

	2.4 Mathematical Information Retrieval for LaTeX Translations




