
241

Version Management in a Distributed
Infrastructure for Open Educational
Resources

Nadine Schroeder

Abstract

One concern of Open Educational Resources (OER) is to establish infra-
structures, such as repositories, where learning materials can be uploaded
and exchanged. Various initiatives all over the world are currently investi-
gating technical developments for finding and sharing OER in higher educa-
tion. In this context, the consolidation of individual solutions in a distributed
infrastructure must be considered. When creating and editing content, modi-
fications and adjustments can result in new versions of a resource and fur-
ther developments of other users can lead to derivatives. Managing versions
in terms of tracking changes and learning about new versions available is not
only an issue for OER repository development, but also for interaction and
discoverability in a distributed infrastructure. Therefore, version management
can be considered as an approach to potentially improve the reuse and revi-
sion OER. This contribution discusses use cases of OER in the context of ver-
sion management and presents approaches to managing educational material
in a distributed infrastructure resulting in a concept of version management for
OER.

© The Author(s) 2023
D. Otto et al. (eds.), Distributed Learning Ecosystems,
https://doi.org/10.1007/978-3-658-38703-7_13

N. Schroeder ()
Department of Educational Sciences, Learning Lab, University of Duisburg-Essen, Essen,
Germany
e-mail: nadine.schroeder2@uni-due.de

https://doi.org/10.1007/978-3-658-38703-7_13#DOI
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-38703-7_13&domain=pdf

242 N. Schroeder

1 Introduction

A central issue of Open Educational Resources (OER) to establish infrastructures,
such as repositories, where learning materials can be uploaded and exchanged.
In higher education, various initiatives are currently investigating technical devel-
opments for finding and sharing OER. In addition to single OER repositories,
distributed infrastructures, in which individual solutions are brought together to
make OER more discoverable, also matter (see Sect. 2). When designing infra-
structures for OER, version management is one relevant topic, as new versions
occur when materials are created, reused, or edited.

To manage versions, version control is one solution which is widely used in
software development as a concept for working on source code collaboratively
as well as storing versions, tracking changes, and copying content for further
development. Version control systems like GitHub are openly accessible host-
ing platforms for software code and allow developing and providing open
source code. This aspect also applies to openly licensed educational materials.
Although OER cover different types of material and file formats than software
code, version management functions can be transferred as use cases for OER
(see Sect. 3). When creating and editing OER, modifications and adjustments
can result in new versions of a resource. Therefore, displaying an overview of
versions with details of their differences are helpful for better comprehensibil-
ity. Especially when content is created collaboratively, the advantages of version
management become clear. There is no overlap of changes and revisions can be
transparently assigned to people so they can prove their involvement in the crea-
tion of the content. Furthermore, other users can modify content and develop
it as their own resource. Thus, implementing the idea of OER, that materials
can be used by others. In addition, the original author can receive recognition
for a high-quality resource based on the number of reuses. Therefore, version
management can be considered as an approach to potentially improving to the
reuse and revision of OER. Still, transferring the versioning of OER onto plat-
forms used for software development, such as GitHub, faces barriers. Users of
OER without a technical background might find the procedures and application
of these functionalities challenging and discouraging so that user-friendly inter-
faces are needed.

A further challenge concerns a distributed infrastructure for OER, where dif-
ferent aspects of connecting and referencing versions need to be considered to
maintain consistent version information (see Sect. 4). The distributed and modifi-
able nature of OER results in users creating and sharing materials on different
platforms so that the issue of duplicates needs to be considered. Besides, with a

243Version Management in a Distributed Infrastructure for Open …

possibly high number of versions for one resource, search functionalities of a dis-
tributed infrastructure need to consider the consolidation of versions.

Consequently, this contribution aims at discussing OER in the context of ver-
sion management and presenting approaches to managing OER in a distributed
infrastructure, resulting in a concept of version management for OER. After
describing the theoretical background of technical OER infrastructure and distrib-
uted version control (see Sect. 2), functions of version management are linked to
possible use cases for OER (see Sect. 3). Finally, a concept for managing versions
of OER in a distributed infrastructure, addressing issues such as metadata and
persistent identifiers, tracking changes, further developments, as well as availabil-
ity of new versions will be presented (see Sect. 4).

2 Theoretical Background

2.1 Technical Infrastructures of OER

The topic of OER is part of theoretical discussions and practical developments
of technical infrastructures that enable educators and learners to find and share
educational materials (Clements et al., 2015; Heck et al., 2020; Santos-Hermosa
et al., 2017). OER repositories for storing OER are predominantly created by and
for higher education institutions in Europe as well as the USA and are mainly
designed for multidisciplinary educational resources (Santos-Hermosa et al.,
2017). As the structure of educational systems is decentralized in most countries,
higher education institutions have already established infrastructures to store
OER. In Germany, institutional repositories exist at individual universities and
in some federal states. Some repositories that enable the provision of OER for
higher education teachers are already operating at certain institutions, others are
still under development. To bring these individual solutions together, a common
metadata standard is being discussed (see chapter Menzel). A distributed learning
ecosystem can be seen as one solution for connecting OER services and improv-
ing aggregation of content and resources (see chapter Otto & Kerres). The idea of
a distributed infrastructure for OER is based on a concept where different reposi-
tories and platforms containing OER are connected to a Core Hub through which
the exchange of metadata takes place (Kerres et al., 2019). This cross-linked sys-
tem aims at supporting findability and accessibility of OER.

Beyond the availability and accessibility of materials, the collaborative crea-
tion and use of teaching and learning materials are also part of the OER concept.
This is reflected in the four elements Search, Share, Reuse, and Collaborate,

244 N. Schroeder

which should be supported by an infrastructure (Atenas & Havemann, 2014).
However, current repositories are mainly designed for storing and finding OER
rather than fostering collaboration and social interaction between users, even
though collaborative instruments enable users to participate in repositories and to
develop OER together (Clements et al., 2015). Alongside collaborative features
an active user community is needed to enhance the quality of OER and reposito-
ries (Zervas et al., 2014).

2.2 Version Management and OER

A version management system is a system used to record changes to documents
or files (Franzetti, 2019). For each version of a file, information such as author
name, time of change, and change notes is stored as the current status. In this
way, changes can be tracked and older versions can be accessed or restored
(Vijayakumaran, 2019). The advantage of distributed version control, such as Git,
is that several users can asynchronously change the same version of a file, as the
local changes are synchronised to a new version on the central server (Zolkifli
et al., 2018). Particularly through the popular hosting platform GitHub, distrib-
uted version management has become publicly possible and simplifies collabora-
tive work, thereby significantly supporting the open source movement. Software
developers use version management to jointly create and edit code both internally
and with external collaborators. Contributors to a project can propose changes
that can be accepted or rejected by the maintainer and merged into the previous
version. Changes can be tracked transparently and assigned to individual people.

In the context of reusable learning objects, version management was dis-
cussed (Brooks et al., 2003) and exemplarily realised for course content on
a platform designed for creating, sharing, and reusing course content based on
markdown (Salas, 2020). However, in this case, the course material was not pub-
lished in an open repository, but within an access-restricted institutional platform.
If content is not shared publicly, then licensing issues do not play a dominant role
and collaboration is facilitated by the fact that authors highly likely know each
other.

There are just a few use cases in the literature for the version control sys-
tem GitHub as a collaborative learning environment where teachers and learn-
ers can interact within a course (Zagalsky et al., 2015). In another example,
a research project showed that GitHub is used for the provision and storage of
educational resources and that changes are mainly made by the project owners.
However, other advantages of version management, such as copying and editing

245Version Management in a Distributed Infrastructure for Open …

of materials by external people, are only used to a small extent (Schroeder &
Pfaender, 2020). To exploit the potential of version management for the use of
OER, one possible solution may be to transfer the version management processes
into a user-friendly interface that facilitates access for users without technical
background as GitHub, seems to be challenging for them (Ovadia, 2019).

3 Adaptation of Version Management for OER

The idea of OER is related to the 5R-concept according to Wiley (2014). These
user rights describe options of open licenses when dealing with learning and
teaching materials: Access to materials and the permission to save materials and
their files as a personal copy (retain) are the prerequisite for the other rights to
use, edit, and share OER. When dealing with version management, the aspects of
reuse, revise, and remix matter while creating and editing new versions of OER.
Reuse is possible by integrating content without changing it, while revising can
be done by removing, adding, or rearranging content before using it in one's own
material. Remixing means combining and changing different OER into new mate-
rial. As a last step, creators or editors can share original or adapted content with
others (redistribute).

First, the application of version management to OER is reflected in two use
cases before discussing challenges related to scope and type of materials and for-
mats. Using the example of GitHub possible adaptation of version management
functions to OER are presented. Furthermore, educational tools applying such
functions are described.

3.1 Use Cases of OER and Version Management

When version management is applied to the creation and modification of OER,
two use cases can be distinguished. The difference lies in whether the adaptations
are made to a resource or whether further materials are edited by external users
independently of the original resource.

New versions of a material are created when content is changed, e.g., by addi-
tions or updates. This can be done by one author as well as by several people
collaboratively. A clear presentation of the versions with options for comparing
versions and changes plays an important role for comprehensibility. Changes to
learning resources can be of various types and scopes. Formal changes may be
minor corrections of grammatical or spelling errors or linguistic improvements.

246 N. Schroeder

Content changes can refer to updates and additions, but also to adaptations to
individual contexts with different subject and local requirements. Didactic or
technical changes in the arrangement of learning content or the use of tools are
also conceivable. These changes can lead to a variety of new versions.

According to the idea of OER, the possibility of using and editing materials
of others is a second use case which can be connected with version management.
Users can adapt the material of an author to their individual contexts and make it
available again so that besides the original resource, derivatives by different users
might exist. Version management functions can support this use case by linking
the original resource to the modified derivatives. This connection leads to the
original resource being linked to the derivative and, at the same time, all deriva-
tives being listed consolidated with the original resource.

3.2 Material Types and File Formats

To apply these use cases to version control, types and formats of materials need
to be considered. OER comprise different scopes and types of materials which
extend to different levels (Kerres, 2016). Firstly, single materials such as pres-
entation slides, images, audios, videos, exercises, or interactive elements are
learning objects that can be directly reused and integrated into materials and
used in teaching. Secondly, there are teaching units that consist of a collection
of materials, for example, text documents together with exercises, as in an h5p1
or SCORM element. Also, online textbooks or notebooks, such as Jupyter Note-
book,2 contain several collected materials. Finally, the third level contains entire
courses from a learning management system or a MOOC platform.

These levels of granularity and modularity influence the practical application
of OER. Reusing and sharing resources becomes more effective and flexible when
learning objects consist of single resources. (Salas, 2020). This is also evident from
the fact that teachers prefer to reuse materials with a smaller scope (Schroeder &
Krah, 2021). Therefore, it is necessary that OER repositories enable the provision
and subdivision of resources into thematic units showing single elements.

Besides material types, open file formats play an important role in OER in the
context of version management. On the one hand, the idea of OER is that content
can be further processed without technical restrictions using openly accessible

1 https://h5p.org/.
2 https://jupyter.org/.

https://h5p.org/
https://jupyter.org/

247Version Management in a Distributed Infrastructure for Open …

tools. On the other hand, open text files enable utilising the advantages of version
control, such as the display of differences between versions.

3.3 Principles of Data Versioning

Besides software code, versioning has been applied to several use cases of data
management (Klump et al., 2020a). The Research Data Alliance developed prin-
ciples of data versioning (Klump et al., 2020b) oriented to version control of soft-
ware code. These principles of data versioning can also be considered relevant for
learning resources since they can be revised, released as new versions containing
several materials in one resource or different file formats, as well as derived from
other resources.

A changed instance of a dataset that is produced during data production is
called a revision, whereas a release indicates a new data product after several
revisions during the production of a dataset. The nature and significance of the
change should be described. As part of the data versioning principles data reposi-
tories should consider different granularities and manifestations of data. Datasets
may be combined into collections containing different sub-collections. There-
fore, both granularities, collections, and datasets, need to be identified and ver-
sioned. Likewise, the same dataset may be occurred in different file formats so
that the same content has different manifestations that need to be identified and
connected. Furthermore, a release should contain information on its provenance
when it is derived from other data products.

3.4 Version Management Functions for OER

GitHub, as a platform using functions of Git, enables version management dur-
ing collaborative software development. GitHub functions can be presented as a
workflow (see Fig. 1), where a creator initiates a project for producing material
(black process). This content can be modified by contributors as part of the pro-
ject and fed back into the main material (blue process). In addition, a material
can be copied by other users, modified, and reported back to the original author
(green process).

In addition to making source code available, GitHub can also be used for ver-
sion management of documents, so that application scenarios for OER are possi-
ble. Some processes presented below can be transferred to different scenarios for
educational resources (see Table 1).

248 N. Schroeder

Fig. 1 GitHub workflow of selected processes. (Own illustration)

The main function of version control is saving changes with commits and
maintaining a history of those changes as well as assigning them to authors. This
is essential, especially for the development of software, to be able to revert to

249Version Management in a Distributed Infrastructure for Open …

Table 1 Git(Hub) functions and transfer to OER (Own illustration)

Function Relevance for software develop-
ment

Transfer to educational resources

Release Providing an interim state/stable
version

Providing updated or corrected
content as a new version

Commit Save changes Overview and transparency of
changes

Diff Display and comparison of differ-
ences and deviations (esp. for source
code)

Display and comparison of differ-
ences and deviations (esp. for text
files)

Fork Splitting off a project for own devel-
opment

Copy a resource for reuse

Branch Ramification within a project for
separate development

Subdivision of a resource into
individual elements

Pull Request Returning improvements or further
developments to maintainer

Returning improvements or further
developments to creator of a
resource

Merge Accepting changes and joining
requests to original project

Accepting changes and joining
requests to original resource

a previous, stable version in case of identified errors. However, individual or
several authors working collaboratively with documents also benefit from con-
sidering older versions of a resource and restoring them if necessary. Change
comments, known as commit messages, can be a valuable support in tracking
changes between versions. However, social coding generates many more changes
than revisions or adaptations of learning resources. Especially providing several
revisions consolidated in a new version in as a release seems to be relevant for
OER (see Sect. 3.3) and can be associated to the first use case (see Sect. 3.1). To
illustrate the types of changes that have occurred among versions for users, the
concept of semantic versioning (Preston-Werner, n. d.) uses a notation of three
digits, e.g., 1.2.3. The first digit indicates major revisions, e.g., incompatible API
changes. Minor revisions are made by adding functionalities to a new version,
marked by increasing the second digit. Corrections such as bug fixes are tagged
by a patch with the third digit.

With the Diff functionality, deviations in text files are displayed character by
character, which is indispensable for the traceability of source code. Especially
in the collaborative creation of learning resources, viewing exact deviations can

250 N. Schroeder

contribute to quality control. However, OER are predominantly binary files, e.g.,
images, which are formatted and need to be interpreted by a programme. In con-
trast, text files just need a simple editor to be readable. That is why conversions
from binary files to text files would be necessary, for example via Pandoc,3 to
be able to compare content of different files. This option exists for documents
(docx, odt), books (epub) or tables (csv) with the target format Markdown, among
others. However, this option is not feasible for many file formats. Special pro-
grammes such as pdftotext offer the conversion option for other file formats,
but these are lossy and only give a rough overview of changes (Haenel & Plenz,
2014). For other file formats, such as image, video, and audio files, matching is
technically possible but resource-intensive, for example, transcribing spoken
audio content and comparing the transcripts automatically to highlight the differ-
ences.

A branch creates ramification within a project, creating different working
environments for developments that can be fed back into the project (see Fig. 1,
blue process). This functionality can be applied to learning resources when a
material can be divided into individual elements in terms of a smaller granular-
ity, for example, book chapters or learning units of a course. These elements can
be edited or added in a single branch by individual users and integrated into the
entire material if necessary.

A project can be split off to expand or test one’s own development based on
the code. The copy remains linked to the original so that further developments
can be displayed with the original record. This fork method can be adapted for
learning resources to create the basis for a derivative as described in the second
use case (see Sect. 3.1). In this way, a material can be adapted to individual con-
texts (see Fig. 1, green process). Authors can trace who copied and edited their
materials and other users have an overview of further versions of this material.

Pull requests can be used so that editors can inform the creator of the original
resource about changes. It is up to the creator of the project to decide whether
they want to integrate the improvements or adaptations into their materials and
versions in the sense of a merge. In this way, learning resources can be linked or
integrated into each other, for example, in the case of independently created text
parts.

3 https://pandoc.org/.

https://pandoc.org/

251Version Management in a Distributed Infrastructure for Open …

Table 2 Tools for creating and editing learning materials

Tool Link Description Collaborative
editing

Version his-
tory + commit
messages

Diff Fork

Wikibooks https://
de.wikibooks.
org/wiki/
Hauptseite

Open Text-
books

x x x

HackMD https://
hackmd.io/

Etherpad x x x

Scratch https://scratch.
mit.edu/

Programming x

LearningApps https://learnin-
gapps.org/

Interactive
learning
content

x

GeoGebra https://www.
geogebra.org/

Apps for
Maths

x

SlideWiki https://slide-
wiki.org

Presentation
files

x x x

Tutory www.tutory.de Work sheets x

Memucho www.memu-
cho.de

Exercises x x x x

3.5 Educational Tools Using Version Management
Functions

For a first insight into possibilities of transferring and using version manage-
ment functions for OER, tools used in the educational context were analysed. It
was found that these tools used for different material types and scenarios partly
applied version management functions (see Table 2).

Collaborative writing and editing tools like Etherpads, e.g., HackMD, or Wikis
provide an overview of version history and change messages as well as compari-
sons of differences. For example, Wikibooks enables the collaborative creating of
open textbooks based on the Wiki software Mediawiki.

Several learning resources adapt the fork method to allow users to copy
resources of others and modify or develop content for their individual needs and
ideas. Examples for tools applying these functions are Scratch for learning pro-

https://de.wikibooks.org/wiki/Hauptseite
https://de.wikibooks.org/wiki/Hauptseite
https://de.wikibooks.org/wiki/Hauptseite
https://de.wikibooks.org/wiki/Hauptseite
https://hackmd.io/
https://hackmd.io/
https://scratch.mit.edu/
https://scratch.mit.edu/
https://learningapps.org/
https://learningapps.org/
https://www.geogebra.org/
https://www.geogebra.org/
https://slidewiki.org
https://slidewiki.org
http://www.tutory.de
http://www.memucho.de
http://www.memucho.de

252 N. Schroeder

gramming, Learning Apps for interactive learning content, SlideWiki for presen-
tation files, Tutory for work sheets, or Memucho for learning exercises.

Some OER-repositories in Germany are based on the software edu-sharing4
which, like others, focusses on storing resources rather than collaborative editing
or exchanging content. New versions can be created for authors in their work-
space, viewed, and restored if necessary. The last modification date gives external
users an indication of new versions, but further modification details are not vis-
ible.

4 Version Management in a Distributed OER
Infrastructure

Transferring version management functions to OER can be included in a concept
of version management for OER in a distributed infrastructure which addresses
issues such as metadata and persistent identifiers, tracking changes, further devel-
opments, as well as availability of new versions. Selected functions for managing
versions and reusing, editing, and sharing materials are presented below. Special
attention is paid to specifications of a distributed infrastructure that focus on dis-
coverability and display of materials and their versions. Besides, it needs to be
considered that a distributed infrastructure is based on the collection of metadata
from various sources and repositories containing materials. Therefore, no content
or files are available on a central platform, so that some processes of version man-
agement cannot be implemented as on an individual platform.

4.1 Persistent Identifiers

Persistent Identifiers (PIDs) are established for scientific publications, but OER
are not usually assigned to this category. Also, the concept of OER, changeability
through edits and adaptations does not correspond to long-term availability and
permanent accessibility at first glance. However, to enable referencing and link-
ing between repositories in a distributed infrastructure, PIDs are a necessary and
useful integration.

Digital Object Identifiers (DOI) are widely used for scientific articles to per-
manently refer to digital objects. A DOI assigned to a digital object will remain

4 https://edu-sharing.com/produkt/.

https://edu-sharing.com/produkt/

253Version Management in a Distributed Infrastructure for Open …

Fig. 2 Example for Zenodo DOI-Versioning. (Zenodo website of Czerniewicz et al., 2017)

throughout the object’s existence, even when the location changes. As DOIs are
meant to be permanent, they cannot be changed or deleted. Using the state “reg-
istered”, the DOI will not be found unless someone knows the exact DOI string
(DataCite, 2020).

In order to reference to individual versions as well as to connect all versions to
one resource, the Zenodo platform uses a versioning concept (see Fig. 2) in which
each version is assigned a DOI and the entire work is assigned a “concept DOI”
that refers to all versions (Zenodo, n. d.).

Zenodo’s DOI versioning appears to be a good way of representing different
versions of OER, in that both individual versions and the entire dataset as a total
resource receive a DOI. Adaptations of teaching materials lead to a large number
of versions that are classified as no longer up to date or incorrect and would nor-
mally be deleted so that they do not remain in circulation. However, PIDs ensure
that they and associated content cannot be deleted. One possible solution is to
archive these versions so that the DOI remains up to date but is redirected to the
“concept DOI” and other available versions can be accessed here. This solution
can also be an option for users who want to assign a DOI only to selected ver-
sions Thus, it could be integrated as an optional feature.

254 N. Schroeder

Following this concept, various versions would be consolidated in a dataset of
one resource so that users have a better search experience as they do not find sev-
eral similar results for one resource. It makes sense to find only the most recent
version and display it in the results list. As a requirement for search functions, it
is therefore necessary that older versions are no longer integrated in the search
index.

4.2 Metadata

Metadata for OER are based on standards such as Dublin Core, a general descrip-
tion of electronic resources, as well as LOM (Learning Object Metadata) for the
description of learning objects. With regards to versioning, Dublin Core offers
the property relation (DCMDI, 2021) with sub-properties such as has Version /
is Version Of and references / is Referenced By. LOM contains version within the
element lifecycle, which describes properties of the history and current status of
the learning object and identifies the people and organisations involved in its cre-
ation (IEEE Std, 2020). Whereas version in LOM presents the status in terms of a
version number, Dublin Core allows specifically linking of versions and records.
Therefore, Dublin Core provides appropriate elements for applying version man-
agement.

New versions of one’s own material can be linked to the metadata field has
Version – is Version Of. Since some OER repositories, such as the edu-shar-
ing software, offer the function of uploading a new version, these can also be
included in a distributed infrastructure. Other repository software does not offer
this function of adding a new version to a record. Instead, users can create a new
record and link it to the previous source record with appropriate metadata. This
new record needs to be recognised as a new version of the original record and
mapped to it which can be seen as a requirement for a distributed infrastructure.

To connect the derivative with the original resource, the metadata field refer-
ences / is Referenced By can be used as a link. As this possibility is missing in
connected systems, the distributed infrastructure has to serve as a central place to
hold this information. Describing and connecting underlying resources of a remix
with metadata appears to be a complex matter that cannot be adequately mapped in
a distributed infrastructure, so this has not been considered further in this context.

In case a new version or derivative is uploaded a second time in another exter-
nal system, the infrastructure would need to have a duplicate check, which is not
exclusively an issue of version management, but rather a general concern of map-
ping records of different sources in a distributed infrastructure environment.

255Version Management in a Distributed Infrastructure for Open …

Fig. 3 Version history. (Own illustration)

4.3 Concepts and Functions of Version Management

As previously shown, functions and processes of version management can partly
be adapted for OER (see Sect. 3) and are, therefore, integrated into this approach.
Moreover, this concept is based on empirical findings from an interview study
with higher education teachers aimed at identifying practices and behaviours in
working with OER where requirements and relevant functions for OER infra-
structures can be derived from (Schroeder & Krah, 2021).

In contrast to version control in software development, changes to educational
material are not usually made live in online-editors. Rather updated material
is uploaded as a new file. Therefore, releases can be seen as new versions pro-
vided with a new PID rather than single modifications as revisions (see Sect. 3.3).
Releases can serve as basis for a version history to obtain an overview of different
versions of a resource. This includes information such as DOI, person, date, and
details of version changes (see Fig. 3). As described, the concept comprises that
the entire resource receives a DOI automatically, while authors can optionally
assign a DOI when uploading a new version. Version numbers can be realised as
single counted digits rather than using the concept of semantic versioning. Since
not every single change is saved as a new release, the transparency of changes is
saved and realised through commits.

To be able to track differences between versions, change comments serve as
a reference point (Schroeder & Krah, 2021). Authors can add these commits as

256 N. Schroeder

Fig. 4 Added derivative. (Own illustration)

release messages while uploading a new version. Tracking character-specific
changes using the function Diff to compare two versions with colour markings are
hardly to realisable in a distributed infrastructure as content is not stored.

According to the Data Versioning Principles, granularity and manifestation of
materials and files need to be considered. Therefore, a filtering option within each
dataset might be a possibility for individual repositories. Especially for materi-
als with a larger scope, it is possible to select different material types to show a
subdivision into separate content elements. In addition, uploading different file
formats is relevant.

Higher education teachers reported that they were very interested in learn-
ing about the external use, editing and further dissemination of their materials
(Schroeder & Krah, 2021). To be able to trace which derivative is based on which
resource, it is important to maintain a connection to the original material. The
GitHub-function Fork can be used for this process (see Sect. 3) and is realised
in this concept. Applying this, an editor copies a resource into a new dataset by
clicking on “Add own version”, where the connection to the original resource
remains visible and own versions can be added and uploaded by the new owner
of the resource (see Fig. 4). At the same time, this new resource is added to the
original under “Further versions” in order to provide an overview of reused and
edited materials. This can give both the original author and external visitors indi-
cations about further developments and possible uses (see Fig. 5).

Version control also offers functions for cooperative development and usage
of content, for example, returning improvements to the creator of a resource via
pull requests or merging requests to the original resource. These aspects are more

257Version Management in a Distributed Infrastructure for Open …

Fig. 5 Overview of derivatives. (Own illustration)

 relevant for a stand-alone platform, therefore, they are not focused on in present-
ing a distributed infrastructure.

4.4 Availability of New Versions and Derivatives

When authors upload new versions, the difficulty is how users become aware of
this since they usually download and store resources in personal environments
rather than consulting repositories or websites. Especially when thinking of a dis-
tributed infrastructure, finding out about new versions and derivatives is a major
problem because resources are stored in disseminated repositories and users may
no longer be aware of their place of origin or do not look for the specific dataset.
However, it may be interesting for users to know if new versions exist of a mate-
rial. A sensible solution for this concern will be a central contribution to realising
version management for OER in a distributed infrastructure.

In the context of scientific publications, Crossref has addressed these issues
with its service Crossmark, where a “button gives readers quick and easy access
to the current status of an item of content, including any corrections, retractions,
or updates to that record” (Vickery, 2020). This allows users to identify published
versions of scholarly content. Readers click on the button Check for updates on
the publisher’s website or within the PDF file, whereupon a popup box appears
showing the current status of the document. In case an article has updates, a
Crossref DOI link directs readers to the current version on the publisher’s web-
site (Meyer, 2011). When a correction replaces the earlier version completely, the
DOI of the corrected content will be the same as the DOI for the original Crossref
deposit (Lamney, 2014).

258 N. Schroeder

Fig. 6 Availability of new versions and derivatives. (Own illustration)

This concept can be seen as a solution to be adopted for OER, when users
check if new versions or derivatives of a resource are available and are directed
to the appropriate repository the resource is stored in. An adaptation of the Cross-
mark button can be integrated into suitable materials as well as into datasets in
case versions of a resource are stored in different locations. By clicking on the
“availability button”, four different views related to four use cases may appear
(see Fig. 6). A resource can be original and current so that no further updates will
be indicated (1.). If a new version is available, a link is added to get to the corre-
sponding resource in the current version (2.). For an archived version, which is no
longer available, a link to the most recent version is provided (3.). This check for
the availability of new versions can also be applied for derivatives. In this case, all
connected resources are linked (4.). This concept enables users to check directly

259Version Management in a Distributed Infrastructure for Open …

against the material at hand whether new versions or derivatives are available,
regardless of their location. Therefore, this contribution provides a solution for
managing versions and derivatives in a distributed infrastructure.

5 Conclusion

This contribution discussed use cases of OER in the context of version manage-
ment and presented approaches to managing educational materials in a distributed
infrastructure, resulting in a concept of version management for OER. It could be
shown that version management functions and processes from software develop-
ment are already partly adapted by some educational tools and can be transferred
to OER. In addition, concepts related to the publication of scientific articles and
the management of research data may also be applied to OER. The presented
ideas on version management for OER represent an approach for further develop-
ment, taking into account the challenges of a distributed infrastructure.

Overall, infrastructures need to be well designed to make it easy for users
to find and share OER in higher education. Especially, the exchange of materi-
als and cooperation in communities should be given greater focus and support by
infrastructures.

References

Atenas, J., & Havemann, L. (2014). Questions of quality in repositories of open educa-
tional resources: A literature review. Research in Learning Technology, 22, 1–13.
https://doi.org/10.3402/rlt.v22.20889

Brooks, C., Cooke, J., & Vassileva, J. (2003). Versioning of learning objects. In Proceed-
ings 3rd IEEE international conference on advanced technologies (pp. 296–297).
https://doi.org/10.1109/ICALT.2003.1215091

Clements, K., Pawlowski, J., & Manouselis, N. (2015). Open educational resources
repositories literature review – Towards a comprehensive quality approaches frame-
work. Computers in Human Behavior, 51, 1098–1106. https://doi.org/10.1016/j.
chb.2015.03.026

Czerniewicz, L., Deacon, A., Walji, S., & Glover, M. (2017). OER in and as MOOCs. In C.
Hodgkinson-Williams & P. B. Arinto (Eds.), Adoption and impact of OER in the Global
South (pp. 349–386). https://doi.org/10.5281/zenodo.1094854.

DataCite. (2020). DOI states. https://support.datacite.org/docs/doi-states, Accessed: 22.
Nov. 2021.

DCMDI. (2021). Dublin Core Metadata Initiative: Relation. https://www.dublincore.org/
specifications/dublin-core/dcmi-terms/elements11/relation/. Accessed: 22. Nov. 2021.

http://dx.doi.org/10.3402/rlt.v22.20889
http://dx.doi.org/10.1109/ICALT.2003.1215091
http://dx.doi.org/10.1016/j.chb.2015.03.026
http://dx.doi.org/10.1016/j.chb.2015.03.026
http://dx.doi.org/10.5281/zenodo.1094854
https://support.datacite.org/docs/doi-states
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/elements11/relation/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/elements11/relation/

260 N. Schroeder

Franzetti, C. (2019): Essenz der Informatik. Springer Vieweg
Haenel, V., & Plenz, J. (2014). Git – verteilte Versionsverwaltung für Code und Dokumente.

Open Source Press.
Heck, T., Kullmann, S., Hiebl, J., Schroeder, N., Otto, D., & Sander, P. (2020). Design-

ing open informational ecosystems on the concept of open educational resources. Open
Education Studies, 2(1), 252–264. https://doi.org/10.1515/edu-2020-0130

IEEE Std. (2020): 1484.12.1-2020 - IEEE Standard for Learning Object Metadata. https://
doi.org/10.1109/IEEESTD.2020.9262118.

Kerres, M. (2016). Open educational resources (OER). In N. Gronau, J. Becker, E. J. Sinz,
L. Suhl, & M. Leimeister (Eds.). Enzyklopädie der Wirtschaftsinformatik (9. Aufl.).
http://www.enzyklopaedie-der-wirtschaftsinformatik.de/lexikon. Accessed: 22. Nov.
2021.

Kerres, M., Hoelterhof, T., Scharnberg, G., & Schroeder, N. (2019). EduArc. Eine
Infrastruktur zur hochschulübergreifenden Nachnutzung digitaler Lernmaterialien. Syn-
ergie. Fachmagazin für Digitalisierung in der Lehre, 7, 66–69. https://doi.org/10.25592/
issn2509-3096.007.014

Klump, J., Wyborn, L., Downs, R., Asmi, A., Wu, M., Ryder, G., & Martin, J. (2020a).
Compilation of data versioning use cases from the RDA data versioning working group.
Version 1.0. Research Data Alliance. https://doi.org/10.15497/RDA00041.

Klump, J., Wyborn, L., Downs, R., Asmi, A., Wu, M., Ryder, G., & Martin, J. (2020b).
Principles and best practices in data versioning for all data sets big and small. Version
1.1. Research Data Alliance. https://doi.org/10.15497/RDA00042

Lamney, R. (2014). How to apply CrossMark and FundRef via CrossRef extensible markup
language. Sci Ed. 2014;1 (2): 84–90 https://doi.org/10.6087/kcse.2014.1.84

Meyer, C. A. (2011). Distinguishing published scholarly content with CrossMark. Learned
Publishing, 24, 87–93. https://doi.org/10.1087/20110202

Ovadia, S. (2019). Addressing the technical challenges of Open Educational Resources. Por-
tal: Libraries and the Academy, 19(1), 79–93. https://doi.org/10.1353/pla.2019.0005.

Preston-Werner, T. (n. d.). Semantic Versioning 2.0.0 http://semver.org. Accessed: 22. Nov.
2021.

Salas, R. P. (2020). Reusable learning objects: An agile approach. IEEE Frontiers in Edu-
cation Conference (FIE), 2020, 1–6. https://doi.org/10.1109/FIE44824.2020.9273947

Santos-Hermosa, G., Ferran-Ferrer, N., & Abadal, E. (2017). Repositories of open edu-
cational resources: An assessment of reuse and educational aspects. The International
Review of Research in Open and Distributed Learning, 18(5), 84–120. https://doi.
org/10.19173/irrodl.v18i5.3063.

Schroeder, N., & Krah, S. (2021). Anwendung von Open Educational Resources in der Hoch-
schullehre. In H.-W. Wollersheim, M. Karapanos, & N. Pengel (Eds.), Bildung in der digi-
talen Transformation (pp. 121–130). Waxmann. https://doi.org/10.31244/9783830994565.

Schroeder, N., & Pfaender, P. (2020). Nutzung von GitHub für Open Educational
Resources. In R. Zender, D. Ifenthaler, T. Leonhardt, & C. Schumacher (Eds.),
DELFI 2020 – Die 18. Fachtagung Bildungstechnologien der Gesellschaft für Infor-
matik e.V. (pp. 337–342). Gesellschaft für Informatik e.V., Bonn. https://dl.gi.de/han-
dle/20.500.12116/34180.

Vickery, B. (2020). Crossmark. https://www.crossref.org/services/crossmark/. Accessed:
22. Nov. 2021.

http://dx.doi.org/10.1515/edu-2020-0130
http://dx.doi.org/10.1109/IEEESTD.2020.9262118
http://dx.doi.org/10.1109/IEEESTD.2020.9262118
http://www.enzyklopaedie-der-wirtschaftsinformatik.de/lexikon
http://dx.doi.org/10.25592/issn2509-3096.007.014
http://dx.doi.org/10.25592/issn2509-3096.007.014
http://dx.doi.org/10.15497/RDA00041
http://dx.doi.org/10.15497/RDA00042
http://dx.doi.org/10.6087/kcse.2014.1.84
http://dx.doi.org/10.1087/20110202
http://dx.doi.org/10.1353/pla.2019.0005
http://semver.org
http://dx.doi.org/10.1109/FIE44824.2020.9273947
http://dx.doi.org/10.19173/irrodl.v18i5.3063
http://dx.doi.org/10.19173/irrodl.v18i5.3063
http://dx.doi.org/10.31244/9783830994565
https://dl.gi.de/handle/20.500.12116/34180
https://dl.gi.de/handle/20.500.12116/34180
https://www.crossref.org/services/crossmark/

261Version Management in a Distributed Infrastructure for Open …

Vijayakumaran, S. (2019). Versionsverwaltung mit Git. mitp Verlag.
Wiley, D. (2014). The access compromise and the 5th R. Iterating toward openness. http://

opencontent.org/blog/archives/3221. Accessed: 22. Nov. 2021.
Zagalsky, A., Feliciano, J., Storey, M.-A., Zhao, Y., & Wang, W. (2015). The Emer-

gence of GitHub as a collaborative platform for education. In D. Cosley, A. Forte,
L. Ciolfi, & D. McDonald (Eds.), Proceedings of the 18th ACM conference on com-
puter supported cooperative work & social computing (pp. 1906–1917). https://doi.
org/10.1145/2675133.2675284.

Zenodo. (n. d.). DOI Versioning. https://help.zenodo.org/#versioning. Accessed: 22. Nov.
2021.

Zervas, P., Alifragkis, C., & Sampson, D. G. (2014). A quantitative analysis of learning
object repositories as knowledge management systems. Knowledge Management &
E-Learning, 6(2), 156–170. https://doi.org/10.34105/j.kmel.2014.06.011.

Zolkifli, N. N., Ngah, A., & Deraman, A. (2018). Version control system: A review. Proce-
dia Computer Science, 135, 408–415. https://doi.org/10.1016/j.procs.2018.08.191

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Crea-
tive Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

http://opencontent.org/blog/archives/3221
http://opencontent.org/blog/archives/3221
http://dx.doi.org/10.1145/2675133.2675284
http://dx.doi.org/10.1145/2675133.2675284
https://help.zenodo.org/#versioning
http://dx.doi.org/10.34105/j.kmel.2014.06.011
http://dx.doi.org/10.1016/j.procs.2018.08.191
http://creativecommons.org/licenses/by/4.0/

	Version Management in a Distributed Infrastructure for Open Educational Resources
	Abstract
	1	Introduction
	2	Theoretical Background
	2.1	Technical Infrastructures of OER
	2.2	Version Management and OER

	3	Adaptation of Version Management for OER
	3.1	Use Cases of OER and Version Management
	3.2	Material Types and File Formats
	3.3	Principles of Data Versioning
	3.4	Version Management Functions for OER
	3.5	Educational Tools Using Version Management Functions

	4	Version Management in a Distributed OER Infrastructure
	4.1	Persistent Identifiers
	4.2	Metadata
	4.3	Concepts and Functions of Version Management
	4.4	Availability of New Versions and Derivatives

	5	Conclusion
	References

