Skip to main content

Experimental Investigations of the Top Land Volume

  • Conference paper
  • First Online:
21. Internationales Stuttgarter Symposium

Part of the book series: Proceedings ((PROCEE))

  • 2467 Accesses

Abstract

With the necessity to a further reduction in fuel consumption or CO2, the late combustion phase is of high importance throughout the range of operation. Because of the high differences in density between burnt and unburnt zones, a relatively large unburnt mass is concentrated in a relatively small volume near the wall and the top land volume.

To investigate the thermodynamic interactions between the boundary zones of the combustion chamber and the flame front, a state-of-the-art Mercedes-Benz-single-cylinder research engine was equipped with extensive measurement technology. To detect the piston movement and the top land volume, eddy-current distance sensors were applied to the cylinder. The radial pressure distribution in the top land volume is detected with four miniature pressure transducers. As main part, surface thermocouples were applied in two layers around the top land volume with additional surface thermocouples in the boundary zones of the cylinder head as a reference.

Based on a wide range of operating points and a spark timing variation, the temperature distribution in the different top land levels is investigated in comparison with the cylinder head temperatures. Lastly, two different top land volumes, realized by a piston variation, are compared. Thereby, the temperatures in the bigger top land volume indicate a slightly lower compared to the standard geometry. This difference even increases for the lower top land level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DI:

Direct injection

SI:

Spark ignition.

TDC:

Top dead center.

FTDC:

Fired top dead center

IV:

Intake valve

EV:

Exhaust valve

IMEP:

Net indicated mean effective pressure

rpm:

Revolutions per minute

MFB50:

50% Mass fraction burned

CO2:

Carbon dioxide

CO:

Carbon monoxide

UHC:

Unburnt hydrocarbon

RON:

Research octane number

a/b:

After/before

TS:

Thrust side

ATS:

Anti-thrust side

DS:

Distance sensor

d:

Distance

T:

Wall temperature

References

  1. Yoshida, M.: Einfluß der Spaltgeometrie und der Temperatur auf die Kohlenwasserstoffemission bei einem Ottomotor. Dissertation, Universität Hannover (1978)

    Google Scholar 

  2. Sterlepper, J.: HC-Emissionen und Flammenausbreitung im Feuerstegbereich beim Ottomotor. Dissertation, RWTH Aachen (1992)

    Google Scholar 

  3. Borrmeister, J., Hübner, W.: Einfluß der Brennraumform auf HC-Emissionen und den Verbrennungsablauf. In: Motortechnische Zeitschrift (MTZ), 07/08 (1997)

    Google Scholar 

  4. Bignion, E., Spicher, U.: Investigation of the influence of top land crevice geometry on hydrocarbon emissions from SI engines. In: SAE Technical Paper. SAE International (1998)

    Google Scholar 

  5. Janssen, C.: Möglichkeiten zur Prädiktion von unverbrannten Kohlenwasserstoffen in einem direkteinspritzenden Ottomotor. Dissertation, Universität Rostock (2010)

    Google Scholar 

  6. Wenworth, J.T.: The Piston crevice volume effect on exhaust hydrocarbon emission. Combust. Sci. Technol. 4, 97–100 (1971). https://doi.org/10.1080/00102207108952475

    Article  Google Scholar 

  7. Boam, D.J., Finlay, I.C., Biddulph, T.W., et al.: The sources of unburnt hydrocarbon emissions from spark ignition engines during cold starts and warm-up. Proc. Inst. Mech. Eng. Part D: J. Automobile Eng. 208, 1–11 (1994). https://doi.org/10.1243/PIME_PROC_1994_208_152_02

    Article  Google Scholar 

  8. Janas, P., Ribeiro, M.D., Kempf, A., et al.: Penetration of the flame into the top-land crevice - large-Eddy simulation and experimental high-speed visualization. In: SAE Technical Paper. SAE International (2015)

    Google Scholar 

  9. Waltner, A., Altenschmidt, F., Kaden, A., et al.: BlueDirect ‐ the technology for a globalized market. In: Bargende, M., Reuss, H.-C., Wiedemann, J. (eds.) 14. Internationales Stuttgarter Symposium. Springer Fachmedien Wiesbaden, Wiesbaden, pp. 1075–1089 (2014)

    Google Scholar 

  10. Künzel, R.: Untersuchung der Kolbenbewegung in Motorquer- und Motorlängsrichtung. PhD, Universität Stuttgart (1997)

    Google Scholar 

  11. Offner, G., Herbst, H.M., Priebsch, H.H.: A methodology to simulate piston secondary movement under lubricated contact conditions. In: SAE Technical Paper. SAE International (2001)

    Google Scholar 

  12. MICRO-EPSILON MESSTECHNIK GmbH & Co. KG (ed.): eddyNCDT // Induktive Sensoren auf Wirbelstrombasis (2020)

    Google Scholar 

  13. Kistler Gruppe (ed.): Miniatur-Messsonde: für ungekühlte Zylinderdruckmessung, M5-Gewinde (2011)

    Google Scholar 

  14. Burkhardt, C.: Bargende M Thermoschockkorrektur bei Druckindizierungen mit Zünd- und Glühkerzenadaptern. MTZ Motortechnische Zeitschrift 56(12), 736–741 (1995)

    Google Scholar 

  15. Heinle, M.: Ein verbesserter Berechnungsansatz zur Bestimmung der instationären Wandwärmeverluste in Verbrennungsmotoren. Dissertation, Universität Stuttgart (2013)

    Google Scholar 

  16. Hügel, P.: Untersuchungen zum Wandwärmeübergang im Teillastbetrieb an einem Einzylinder-Forschungsmotor mit Benzin-Direkteinspritzung. Dissertation, KIT Karlsruhe (2016)

    Google Scholar 

  17. Burger, B., Bargende, M.: The isochoric engine. In: SAE Technical Paper. SAE International (2020)

    Google Scholar 

  18. Motortechnische Zeitschrift (MTZ)

    Google Scholar 

Download references

Acknowledgments

The studies presented in this paper are results of the research project “Thermodynamics Top Land Volume” of the Forschungsvereinigung für Verbrennungskraftmaschinen e. V. (FVV) conducted at the Institute of Automotive Engineering Stuttgart (IFS, University of Stuttgart). This project was funded by the “Bundesministerium für Wirtschaft und Technologie” (BMWi) via the “Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF) and the FVV. The authors would like to thank the FVV, the AiF, the BMWi as well as all other industrial partners involved in this project for their support. Special thanks goes to the Daimler AG for providing the single-cylinder research engine, the distance sensors and the capacity in their single-cylinder workshop, the KS Kolbenschmidt GmbH for providing the prototype pistons and its variations, the Kistler Instrumente AG for providing the prototype pressure transducers for the top land and the Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart (FKFS) for providing the financial and personal resources for the application of the measurement technology.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koch, M., Dingel, O., Altenschmidt, F., Berner, HJ., Bargende, M. (2021). Experimental Investigations of the Top Land Volume. In: Bargende, M., Reuss, HC., Wagner, A. (eds) 21. Internationales Stuttgarter Symposium. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-33466-6_33

Download citation

Publish with us

Policies and ethics