
5 Visualizing the Output Space 

Projection methods are a common approach to dimensionality reduction with the aim of trans-
forming high-dimensional data into a low-dimensional space. For data visualization purposes, 
projections into two dimensions are considered here. However, when the output space is limited 
to two dimensions, the low-dimensional similarities cannot completely represent the high-di-
mensional distances, which can result in a misleading interpretation of the underlying struc-
tures. 
Nonetheless, visualization techniques based on scatter plots produced using a projection 
method (usually principal component analysis (PCA)) remain the state of the art in cluster anal-
ysis (e.g., [Everitt et al., 2001, pp. 31-32; Hennig et al., 2015, pp. 119-120, 683-684; Mirkin, 
2005, p. 25; G. Ritter, 2014, p. 223]). Even if one disregards that “PCA remains a rather basic 
method and suffers from many shortcomings” [Lee/Verleysen, 2007, p. 226], visualization 
based on such a scatter plot is questionable in principle. Several two-dimensional scatter plots 
of elementary three-dimensional data sets and one high-dimensional data set (see also Figure 
6.1 in the next chapter) will be presented to illustrate this claim. 
Thereafter, structure preservation will be defined in this chapter to serve as the basis for a new 
method of visualization. This new concept with regard to the visualization of projected points 
in a two-dimensional output space is called the generalized U-matrix approach. In the general-
ized U-matrix approach, similarities between high-dimensional data are represented as valleys, 
and dissimilarities are represented as mountains or ridges. For the computation of the general-
ized U-matrix, the generation of the topographic map (see chapter 5.3) and island visualization 
the CRAN R package GeneralizedUmatrix was used [Thrun/Ultsch, 2017b]. 

5.1 Examples 

In Figure 5.1, the Hepta data set is shown. The Hepta data set [Moutarde/Ultsch, 2005] consists 
of 7 clusters that are clearly separated by distance, which means that the intracluster distances 
are small and the intercluster distances are large (for details, see chapter 9). This gives rise to 
structures that are clearly defined by discontinuity and consequently can be characterized as 
natural clusters. 
Projections of the Hepta data set obtained by applying three of the projection methods intro-
duced in the previous chapter are shown in Figure 5.2: PCA, curvilinear component analysis 
(CCA) and t-distributed stochastic neighbor embedding (t-SNE). In total, four projections are 
evaluated, including two t-SNE projections, denoted by t-SNE (1) and t-SNE (2). PCA yields 
the best representation of the clusters. With the default parameters, CCA adds excessive gaps 
around three points. In t-SNE (1), generated using the default parameter settings of t-SNE, the 
density of the data is overestimated, and wide gaps are added between two points and their 
corresponding cluster. When one parameter of the t-SNE algorithm is changed, resulting in t-
SNE (2), the data clusters are not preserved because many random gaps are added. 
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Figure 5.1:  The three-dimensional Hepta data set consists of 7 clusters that are clearly separated by distance. 
One cluster (green) has a higher density. Every cluster is ball-like in shape. 

 

Figure 5.2:  Visualizations of four cases of the projection of the Hepta data set into a two-dimensional space 
generated with [Thrun et al, 2017b].  
Top left: PCA projects the data without disrupting any clusters. This is the best-case scenario for a 
projection method. Top right: CCA disrupts two clusters by falsely projecting 3 points. This is the 
standard-case scenario.  
Bottom left: t-SNE does not correctly visualize the density of the data set at all, and one cluster is 
disrupted through the false projection of two points. Projection methods are often unable to correctly 
capture the density of data. Bottom right: When one parameter of the t-SNE algorithm is chosen 
incorrectly, all clusters are completely disrupted. This is the worst-case scenario for a projection 
method. 
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Figure 5.3:  Chainlink data set and PCA projection generated with [Thrun et al., 2017]. The projection suffers 
from local backward projection error (BPE) and forward projection error (FPE) only in two small 
areas around a low number of points, but the visualization still shows low structure preservation. 

The Chainlink data set [Ultsch, 2005c] consists of two clusters in Թଷ. Together, both clusters 
form intricate links in a chain and therefore cannot be separated by linear decision boundaries. 
Both rings are intertwined in Թଷ and have the same average distance and density (Figure5.3 
left). The data lie on two well-separated manifolds; however, the global proximities contradict 
the local ones in the sense that the center of each ring is closer to some elements of the other 
class than it is to elements of its own class (for details, see chapter 9). PCA projection com-
pletely fails to preserve the structures in this data set because PCA merely rotates the data set 
and the discontinuities are not linearly separable. 

5.2 Structure Preservation 

Let ݇ ൐ 0, ݇ ∈ Գ, let Γ	be a connected graph, and let	j be a point in a metric space	M; then, 

,௝ሺ݇ܪ ሻܯ,߁ ൌ ሼ݈ ∈ ,ሺ݈ܩ	|ܯ ݆, Γሻ ൑ ݇ሽ ሺ5.1ሻ	

is the neighborhood set of j with k as the neighborhood extent, where ܩሺ݈, ݆, Γሻ is the minimum 
distance among all possible path distances (for details, see chapter 2, Eq. 1). 
Suppose that there exists a pair of similar high-dimensional data points ሺ݈ூ, ݆ூሻ ∈  such that ܫ
ሺ݈ூ, ݆ூሻ ∈ ,ሺ1ܪ ,߁  ሻ. For visualization, the goal of a projection is to match these points to theܫ

low-dimensional space R௕; e.g., data points in close proximity should remain in close proxim-
ity, and remote data points should stay in remote positions. 
Consequently, two kinds of errors exist. The first is forward projection error (FPE), which oc-
curs when similar data points ݈ ∈ ,௝ሺ1ܪ ,߁  ሻ are mapped onto far-separated pointsܫ

݈ ∉ ,௝ሺ1ܪ ,߁ ܱሻ⋀݈ ∈ ௝ሺ݇ܪ ൐ 1, ,߁ ܱሻ. The second is backward projection error (BPE), which 

occurs when a pair of closely neighboring positions ݈ ∈ ,௝ሺ1ܪ ,߁ ܱሻ represents a pair of distant 

data points ݈ ∉ ,௝ሺ1ܪ ,߁ ݈⋀ሻܫ ∈ ௝ሺ݇ܪ ൐ 1, ,߁  ሻ. It should be noted that similar definitions areܫ

found in [Ultsch/Herrmann, 2005], for the case of a Euclidean graph; in [Venna et al., 2010], 
for the case of a KNN graph of binary neighborhoods, where BPE and FPE are referred to as 
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precision and recall; and in [Aupetit, 2007], for the case of a Delaunay graph, where BPE and 
FPE are referred to as manifold stretching and manifold compression. 
Examples of BPE and FPE are shown in Figure 5.2. The PCA projection of the Hepta data set 
has a low FPE but a high BPE. The CCA projection has a very low BPE, but three points have 
high FPEs. The t-SNE (1) projection has a very high FPE, and for the t-SNE (2) projection, 
both the FPE and BPE are very high. 
However, the FPE and BPE are not sufficient measures for evaluating projections if the goal is 
to estimate the number of clusters or to ensure a sound clustering of the data (e.g., Figure 5.3 
right). In such a case, a suitable projection method should be able to preserve discontinuities, 
which occur in regions of the data space where the probability density function becomes very 
small. Discontinuities divide a dataset in the input space I into several clusters of similar ele-
ments represented by points ([Ultsch/Herrmann, 2005] used a similar definition). 
In summary, the quality of structure preservation should be measured based on the preservation 
of high-dimensional discontinuities as gaps in the two-dimensional output space. Structure 
preservation refers to the preservation of input-space discontinuities such that no points are 
allowed to intrude into the corresponding discontinuity regions in the output space. 
Let ݆ ∈  be an arbitrary point, and let I be projected into O by the function proj; then, the	ܫ
projection method proj is structure-preserving for a fixed extent ݇ ∈ Գ if 

ܫ		:݆݋ݎ݌                 → ,௝ሺ݇ܪ	,ܱ ,߁ ሻܫ ↦ ,௝ሺ݇ܪ	 ,߁ ܱሻ	∀݆ ∈ ܫ ሺ5.2ሻ	

The direct neighborhoods are preserved if 

∀݆ ∈ ,௝ሺ1ܪ	:ܫ ,߁ ,௝ሺ1ܪ⋂ሻܫ ,߁ ܱሻ ൌ ∅ ሺ5.3ሻ	

The BPE and FPE are acceptable if the quality of structure preservation is high (e.g., Figure 
5.3). Notably, the preservation of structure critically depends on the chosen concept of similar-
ity. For example, a multidimensional scaling (MDS) technique may be a suitable projection 
method if the structure preservation depends only on a Euclidean graph. This is the case for the 
Hepta data set. By contrast, for the Chainlink data set, a KNN graph with a suitably chosen 
number of nearest neighbors could yield a better result. 
In Chapter 6, it will be demonstrated that many quality criteria exist for evaluating visualiza-
tions. Given the definition of structure preservation, it is possible to group these quality 
measures (QMs) into semantic classes based on graph theory. 
In the last section of this chapter, a visualization method with the specific aim of structure 
preservation is proposed. 

5.3 Generating a Topographic Map from the Generalized U*-matrix 

In this section I introduce an U*-matrix technique that is generally applicable for all projection 
methods and can be used to visualize both distance- and density-based structures. This visualiza-
tion technique is the further development of the idea that the U-matrix can be applied to every 
projection method [Ultsch/Mörchen, 2006].  
In this work, the visualization technique results in a topographic 3D landscape. Here, the re-
quirements are a heavily modified emergent self-organizing map (ESOM) algorithm and a 
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method of high-dimensional density estimation. Contrary to  [Ultsch/Mörchen, 2006], the pro-
cess of computing the resulting topographic map is completely free of parameter dependence 
and accessible by simply by downloading the corresponding R package [Thrun/Ultsch, 2017b].  

5.3.1 Simplified ESOM 

To calculate a U*-matrix for any projection method, a modified ESOM algorithm is required. 
The first step is the computation of the correct lattice size. 
On the x axis, let the lattice begin at 1 and end at a maximal number denoted by Columns C 
(equal to the number of columns in the lattice); similarly, on the y axis, let the lattice begin at a 
maximal number denoted by Lines L and end at 1. Then, the first condition is expressed as 
[Ultsch, 2015] 

           
௅ିଵ

஼ିଵ
ൎ

|୫ୟ୶ሺ௬ሻି୫୧୬ሺ௬ሻ|

|୫ୟ୶ሺ௫ሻି୫୧୬ሺ௫ሻ|
ൌ

ௗ௬

ௗ௬
ൌ Δ ሺܫ. ሻ 

The second condition is that the lattice size should be larger than NN27: 
ܮ              ∗ ܥ ൒ NN ሺܫܫ. ሻ 
The first condition (I.) implies that the lattice size should be as close to equal to the size of the 
coordinate system as possible. The second condition (II.) is required for emergence in our al-
gorithm. For details, see [Ultsch, 1999]. The resulting equation to be solved is 

ଶܮ   ൅ ሺ1ܮ ൅ Δሻ െ NN ∗ Δ ൒ 0 ሺ5.4ሻ	

which yields 

ܮ       ൒ െ ଵା୼

ଶ
൅ ටቀଵା୼

ଶ
ቁ
ଶ
൅ NN ∗ Δ ሺ5.5ሻ	

After the transformation from the projected points28 ݌ ∈ ܱ to points on a discrete lattice, the 
points are called the best-matching units (BMUs) ܾ ݑ݉ ∈ 	ܤ ⊂ Թଶ of the high-dimensional data 
points j, analogous to the case for general SOM algorithms with ݂݃݀݅ݎ:	ܱ → ,ܤ ݌ ↦  ,ݑܾ݉	
where fgrid is surjective when conditions (i) and (ii) are met. 
To develop the algorithm illustrated in Listing 5.1, the idea of [Ultsch/Mörchen, 2006], in which 
it was suggested to “apply Self-Organizing Map training without changing the best match[ing 
unit] assignment”, was adopted. However, in contrast to [Ultsch/Mörchen, 2006], here, the 
transformation fgrid is defined precisely to calculate the BMU positions and the structure of the 
lattice is toroidal; i.e., the borders of the lattice are cyclically connected [Ultsch, 1999]. 
Based on the relevant symmetry considerations29, a simplified version of ESOM (sESOM) is 
introduced here. No epochs or learning rate are required, because the cooling scheme is defined 
by a special neighborhood function h:M ൈ M ൈ Թା → ሾ0,1ሿ. 
Let ܯ ൌ ሼ݉ଵ,… ,݉௡ሽ be a set of neurons (where ݉௜ are the lattice positions) with the corre-
sponding prototype set ܹ ൌ ሼݓଵ,… -௡ሽ, where dim(W)=dim(I) and #W=#M; then, the neighݓ,
borhood function h is defined as 

                                                      
27  In [Ultsch, 1999] the minimum number of 4096 neuros was proposed. 
28 Or DataBot positions on the hexagonal grid of Pswarm (see chapter 8). 
29  See chapter 8 for details. 
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h ൌ ቐ1 െ
dሺj, lሻଶ

πRଶ
, iff	

dሺj, lሻଶ

πRଶ
൏ 1

0, else
ሺ5.6ሻ	

In sESOM, learning is achieved in each step by modifying the weights in a neighborhood as 
follows:  

ሺܴሻݓ߂              ൌ 1 ∗ ݄ሺܾ݉ݑሺ݆ሻ,݉௜, ܴሻ ∗ ሺ݆ െ 	ሺ݉௜ሻሻݓ ሺ5.7ሻ	
In contrast to [Ultsch/Mörchen, 2006], the algorithm does not require any input parameters, and 
the resulting visualization is not a two-dimensional gray-scale map but rather a topographic 
map with hypsometric tints [Thrun et al., 2016a]. The entire algorithm is summarized in Listing 
5.1. 

 

Listing 5.1:  sESOM pseudocode algorithm implements a stepwise iteration from the maximum radius Rmax 
which is given by the lattice size (Rmax = C/6) stepwise with one per step and down to 1. w´(݉௞) 
indicates that the prototype w(݉௞) of neuron ݉௞ is modified by Eq. 5.7 

  Additionally, the search for a new best matching unit still is used and these prototypes may change 
during one iteration. The predefined prototypes are reset to the weights of their corresponding high-
dimensional data points after each iteration. 

5.3.2 U*-Matrix Calculation 

After sESOM projection, the structure of the input data emerges when a visualization technique 
called U-matrix is applied. A U-matrix represents a folding of the high-dimensional space in 
which each receptive field is called a U-height. Let N(j) be the eight immediate neighbors of 
 be the prototype corresponding to ݆݉; then, the average of all distances	ܹ∋݆ݓ and let ,ܯ∋݆݉
between ݆ݓ and the other prototypes ݅ݓ	is called the U-height corresponding to the position ݆݉: 

ሺ݆ሻݑ ൌ
1
݊
෍ ,௜ݓሺܦ ௝ሻݓ
௜∈ேሺ௝ሻ

, ݊ ൌ |ܰሺ݆ሻ| ሺ5.8ሻ	

function (B, I) 

for all ܾ݉ݑሺ݆ሻ߳ B: 

assign the positions ௝݉ ∈  ௝߳ W on the gridݓ with random weightings ܯ

assign to each ܾ݉ݑሺ݆ሻ ൌ ௝݉ the weighting	ݓ௝ ൌ ݆ ∈   ܫ

end for ܾ݉ݑሺ݆ሻ  
for R=Rmax to 1 do 

for all ݆	߳	ܫ: 
ሺ݆ሻݑܾ݉   ൌ argmin

௠∈ெ
ሼܦሺ݆, ሺ݉ሻሻሽݓ  	

,൫ܴݓ߂										 ሺ݆ሻ൯ݑܾ݉ ൌ ݄ሺܾ݉ݑሺ݆ሻ,݉௜, ܴሻ ∗ ሺ݆ െ  ሺ݉௜ሻሻݓ

for all ݓሺ݉௞ሻ ∈ ݄ሺܾ݉ݑሺ݈ሻ,݉௜, ܴሻ  

w´(݉௞) = w(݉௞) + Δw(R,bmu(l)) 

end for w(݉௞)  

end for ݆	߳	ܫ 
for all ܾ݉ݑሺ݆ሻ߳	B: 

assign to each ܾ݉ݑሺ݆ሻ ൌ ௝݉ the weighting	ݓ௝ ൌ ݆ ∈   ܫ

end for R 

end function 
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To explain the visualization technique for the sESOM algorithm, in this section and in section 
5.3.3 below, [Thrun et al., 2016a] is cited: 

“The U-matrix is the display of values ݑሺ݆ሻ through proportional intensities of grey shades [Ultsch, 2003a]. By 
formalizing the displayed structures, [Lötsch/Ultsch, 2014] showed that the U-matrix is an approximation of [the] 
Voronoi borders of the high-dimensional points in the output space” (see chapter 4.2.0).  

Therefore, the generalized U-matrix can be normalized [using] the generalized abstract U-ma-
trix. 

“In addition to the U-matrix, [Ultsch, 2003c] introduced the high-dimensional density visualization technique 
called P-matrix, where P-heights on top of the receptive fields are displayed. The P-height ݌ሺ݉௜ሻ for a position ݉௜ 
is a measure of the density of data points in the vicinity of ݓሺ ௝݉ሻ: 

൫݌             ௝݉൯ ൌ |ሼ݅ ∈ ,൫݅ܦ|ܫ ሺݓ ௝݉ሻ൯ ൏ ݎ ൐ 0, ݎ ∈ Թ	ሽ| ሺ5.9ሻ. 

The P-height is the number of data points within a hypersphere of radius r. Here, we choose the interval ϱ of the 
radius with 

߷	 ∈ 	 ሾ݉݁݀݅ܽ݊൫ܥሺܦሻ൯,݉݁݀݅ܽ݊൫ܣሺܦሻ൯ሿ, ሺ5.10ሻ 

where D [represents] all input space distances and A(D) is the group A of distances calculated by [the] ABC 
analysis [Ultsch/Lötsch, 2015]. ABC analysis30 tries to identify the optimum information that can be validly re-
trieved by using concepts developed in economic sciences. In particular, [these] concepts are used in the search 
for a minimum possible effort that gives the maximum yield [Ultsch/Lötsch, 2015]. The distances are divided into 
three disjoint subsets A, B and C, with subset A comprising [the] largest values (“outer cluster distances”), subset 
B comprising values where the yield equals the effort required to obtain it, and the subset C comprising [] the 
smallest values (“inner cluster distances”). We suggest [choosing] the specific radius r [based on] the [ratio] v of 
[the] inter- versus intracluster distances[,] estimated [as] 

ݒ                          ൌ
௠௔௫൫஼ሺ஽ሻ൯

௠௜௡൫஺ሺ஽ሻ൯
ሺ5.11ሻ 

The radius r is estimated [as] ݎ ൌ ݒ ∗  ሻ is [the] 20-th percentile of [the] input distancesܦ20ሺ݌ ሻ, whereܦ20ሺ݌
[Ultsch, 2003b]. From this starting point, the user may search interactively for the empirical Pareto percentile 
[that] defines the radius r (see [the] R package Umatrix). 

The combination of a U-matrix and a P-matrix is called [a] U*-matrix [Ultsch et al., 2016a]. It can be formalized 
as [a] pointwise matrix [product]: ܷ∗ ൌ ܷ ∗  ሺܲሻ, where F(P) is a matrix of factors f(p) that are determinedܨ
through a linear function f on the P-heights p [in] the P-matrix. The function f is calculated so that f(p) = 1 if p is 
equal to the median and f(p) = 0 if p is equal to the 95-[th] percentile (p95) of the heights in the P-matrix. For         
p(j) > p95, f(p) = 0, which indicates that j is well within a cluster and results in [a height of zero] in the                       
U*-matrix.” [Thrun et al., 2016a] 

5.3.3 Topographic Map with Hypsometric Tints 

The U*-matrix visualization technique produces a topographic map with hypsometric tints 
[Thrun et al., 2016a]. Hypsometric tints are surface colors that represent ranges of elevation 
[Patterson/Kelso, 2004]. Here, a specific color scale is combined with contour lines. 
The color scale is chosen to display various valleys, ridges and basins: blue colors indicate 
small distances (sea level), green and brown colors indicate middle distances (low hills), and 
white colors indicate large distances (high mountains covered with snow and ice). Valleys and 

                                                      
30 For usage see CRAN R package ABCanalysis [Thrun et al. 2015]. 
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basins represent clusters, and the watersheds of hills and mountains represent the borders 
between clusters (Figure 5.1 and Figure 5.4). 
The landscape consists of receptive fields, which correspond to certain U*-height intervals with 
edges delineated by contours. This work proposes the following approach (see [Thrun et al., 
2016a, p. 10]): First, the range of U*-heights is split up into intervals, which are assigned uni-
formly and continuously to the color scale described above through robust normalization [Mil-
ligan/Cooper, 1988]. In the next step, the color scale is interpolated based on the corresponding 
CIELab color space [Colorimetry, 2004]. The largest possible contiguous areas corresponding 
to receptive fields in the same U*-height intervals are outlined in black to form contours. Con-
sequently, a receptive field corresponds to one color displayed in one particular location in the 
U*-matrix visualization within a height-dependent contour. Let u(j) denote the U*-heights, and 
let q01 and q99 denote the first and 99-th percentiles, respectively, of the U*-heights; then, the 
robust normalization of the U*-heights u(j) is defined by 

ሺ݆ሻݑ          ൌ ௨ሺ௝ሻି௤଴ଵ

௤ଽଽି௤଴ଵ
ሺ5.12ሻ	

The number of intervals in is defined by 

1
݅݊
ൌ
01ݍ
99ݍ

ሺ5.13ሻ	

The resulting visualization consists of a hierarchy of areas of different height levels represented 
by corresponding colors (see Figure 5.4). To the human eye, the visualization using the gener-
alized U-matrix tool is analogous to a topographic map; therefore, one can visually interpret the 
presented data structures in an intuitive manner. In contrast to other SOM visualizations, e.g., 
[K. Tasdemir/Merenyi, 2009], this topographic map presentation enables the layman to inter-
pret sESOM results. 
The use of a toroidal map for sESOM computations necessitates a tiled landscape display in the 
interactive U-matrix tool [Thrun et al., 2015], which means that every receptive field is shown 
four times. Consequently, in the first step, the visualization consists of four adjoining images 
of the same U-matrix [Ultsch, 2003a] (the same is true for the U*-matrix). To obtain the 3D 
landscape (island31), [Thrun et al., 2016a, p. 10] proposed to rectangularly cut the tiled U*-
matrix visualization as follows. 
Let ݒ௅௜௡௘௦ and ݒ஼௢௟௨௠௡௦ be the vectors of the row and column sums, respectively, of the U*-
heights, and let ܾ௅௜௡௘௦ (ܾ஼௢௟௨௠௡௦) be the number of BMUs in the corresponding row line of 
then, we define the upper border as up ;(஼௢௟௨௠௡௦ݒ) ௅௜௡௘௦ݒ ൌ max	ሺݒ௅௜௡௘௦/݂ሺܾ௅௜௡௘௦ሻ), the left 
border as lb ൌ maxሺܾ஼௢௟௨௠௡௦/݂ሺݒ஼௢௟௨௠௡௦)) and the other two borders based on the length and 

width of the U*-matrix, where the vector f(b) is the sum ݂ሺܾሻ ൌ ෠ܾ ൅ ܾ ൅ ෰ܾ with 
෠ܾ ൌ ሺܾ௡, ܾଵ, … , ܾ௡ିଵሻ and ෰ܾ ൌ ሺܾଶ, … , ܾ௡ାଵሻ for a toroidal lattice. For better comprehensibility, 
see the axes in [Thrun et al., 2016a, p. 14, Fig. 1], which are defined from one to ݉ܽݔሺݏ݁݊݅ܮሻ 
and from one to ݉ܽݔሺݏ݊݉ݑ݈݋ܥሻ. 

                                                      
31  An island can be also cut interactively (or the the cutting may be improved) and thus may not be rectangular 



Generating a Topographic Map from the Generalized U*-matrix 51 
 

 

Figure 5.4:  Topographic map of the PCA projection of the Chainlink data set. The discontinuities between the 
clusters are misrepresented. 

 

Figure 5.5:  Zoomed-in view of the misrepresentation of the discontinuities in the PCA projection of the Chain-
link data set to better visualize the BPE and FPE. 
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Figure 5.6:  Topographic maps can depict the discontinuities in high-dimensional data sets: clusters lie in valleys 
and are separated by hills. However, the introduction of spurious gaps between projected points (the 
disruption of clusters) cannot be seen using this approach.  
Top: topographic map of CCA projection [Demartines/Hérault, 1995] of the Chainlink data set. 
Middle: topographic map of ESOM projection [Ultsch, 1999] of the Atom data set.  
Bottom: island of NeRV projection [Venna et al., 2010] of the leukemia data set. All results are 
trial-dependent because the projection methods are stochastic. Sometimes, the annealing scheme (in 
CCA or ESOM) or the random initialization process (in NeRV) fails. 
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5.3.4 Limitations 

The generalized U*-matrix visualization by a topographic map is capable of visualizing BPEs 
and FPEs. For example, this is shown in Figure 5.5. The projected points in the output space 
with low BPE/FPE values lie in sea regions. If the BPE/FPE around a projected point is high, 
then the visualization generates a mountain at this point (Figure 5.5). However, the topographic 
map has certain limitations (Figure 5.6). When the default parameters in CCA are used to ana-
lyze the Chainlink data set (see [Thrun et al., 2017]) or when the default ESOM parameters 
([Thrun et al., 2016b]) are used to analyze the Atom data set, clusters are sometimes disrupted 
because additional gaps are added that cause points to intrude into the discontinuity regions 
between clusters. 
Another question that arises in this chapter from the examples of the CCA and ESOM projec-
tions of the Chainlink and Atom data sets, respectively, in Figure 5.6 is the question of how to 
handle stochastic projection methods in which the visualization is trial-dependent. The anneal-
ing schemes used in the ESOM and CCA algorithms may be relevant here. The annealing pro-
cess depends on certain parameters and may not yield structure-preserving projections, as 
shown in the examples in Figure 5.6 The Neighborhood Retrieval Visualizer (NeRV) projection 
of the leukemia data set presented in Figure 5.6 further illustrates the problem of the correct 
choice of parameters, which is typically very challenging. In this case, the NeRV projection is 
sensitive to the initialization parameters, especially to the seed used for the random number 
generator. In chapter 9, an additional example will be presented to demonstrate that NeRV re-
quires the weighting between precision and recall to be correctly chosen for high-dimensional 
structures to be preserved. 
Hence, the next chapter will focus on the search for a QM that may be able to measure structure 
preservation instead of attempting to visualize it.
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