
3 Approaches to Cluster Analysis 

Many data mining methods rely on some concept of the similarity between pieces of 
information encoded in the data of interest. Various names have been applied to these clustering 
methods, depending largely on the field of application in data science. For example, in biology 
the term “numerical taxonomy” is used [Thorel et al., 1990], in psychology the term Q analysis 
is sometimes employed, market researchers often talk about “segmentation” [Arimond/Elfessi, 
2001] and in the artificial intelligence literature, unsupervised pattern recognition is the favored 
label [Everitt et al., 2001, p. 4]. The corresponding methods can be either data-driven or need-
driven. The latter, called also constraint clustering  [Tung et al., 2001] aims at organizing the 
true structure to meet certain application requirements such as energy aware sensor networks, 
privacy preservation, and market segmentation  [Ge et al., 2007, p. 320]. An overview of con-
strained clustering algorithms can be found in [Basu et al., 2008].  
Here, however, the focus is placed on data-driven10 methods, in which patterns present in the 
data are used to identify homogeneous groups of objects [Arabie et al., 1996, p. 8 ff.]. 
Consequently, the term cluster analysis is used to refer to a step in the knowledge discovery 
process (chapter 2, Figure 2.5.).  Let it be assumed that in Figure 3.1 (top left), the first data set 
(I) contains two variables11. The division of this homogeneous data set into different patterns 
would be called dissection [Everitt et al., 2001, p. 7]. By contrast, natural clusters do not require 
dissection; instead, they are clearly separated in the data [Duda et al., 2001, p. 539; The-
odoridis/Koutroumbas, 2009, pp. 579, 600], as shown in the second data set (II) in Figure 3.1 
(top right).  
No generally accepted definition of clusters exists in the literature [Hennig et al., 2015, p. 705]. 
Additionally, Kleinberg showed for a set of three simple properties (scale-invariance, con-
sistency and richness), that there is no clustering function12 satisfying all three [Kleinberg, 
2003]. By concentrating on distance and density based structures13, this work restricts clusters 
to “natural” clusters  (see section 2) and therefore omits the axiom of richness where all 
partitions should be achievable. Consequently, only natural clusters, in which objects are simi-
lar within clusters and dissimilar between clusters [Bouveyron et al., 2012], are considered here. 
For example, the distance distribution in the input space can be bimodal, indicating a distinction 
between the inter- versus intracluster distances: in data set I in Figure 3.1 (bottom left), no large 
intercluster distances exist and the distribution of the distances is unimodal, whereas in data set 
II in Figure 3.1 (bottom right), the distribution of the distances is bimodal because data set II 
contains two natural clusters with a large intercluster distance. Another example is the case in 
which the number of data points in one elementary volume (݀ݒԦ) of the input space is higher 
than that in another elementary volume ݀ -Ԧ, which can be estimated using a nonparametric techݒ
nique for density estimation (e.g., kernel density estimation). In a third example, local proxim-
ities can be defined as structures based on neighborhoods ܪ௝ሺ݇,  .ሻ (see chapter 2.2.1)ܯ,߁

                                                      
10 The progress in an “algorithmic activity” is enforced by data w.r.t. patterns (as opposite to intuition or personal 

experience, e.g. through the setting of parameters). 
11  In fact, this figure shows a CCA projection of the leukemia data set (see chapter 9). 
12  “[A]ny function f that takes a set S of n points with pairwise distances between them, and returns a partition of 

S“ [Kleinberg, 2003, p 2]. 
13 They can be described as patterns identified based on discontinuity. 
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Figure 3.1:  Data set I is an approximately homogeneous data set with patterns that form no natural clusters (left, 
top). The distance distribution in this case is not bimodal (left, bottom). Data set II contains two 
natural clusters with a large intercluster distance (right, top). The distance distribution is bimodal 
here (right, bottom). See Figure 12.2 or supplement B for a high-dimensional example. Distance 
distributions was generated using the AdaptGauss CRAN package [Thrun/Ultsch, 2015; Ultsch et 
al., 2015]. 

3.1 Common Clustering Methods 

Clustering methods can be broadly divided into two groups: hierarchical and partitional meth-
ods [Jain, 2010]. Partitional clustering methods simultaneously divide a set of data points into 
subsets. Because we are concentrating on natural clusters, overlapping clustering is not con-
sidered here. It should be remarked that the choice of the clustering algorithm to be used is 
more important than the choice of the distance calculation [Jain/Dubes, 1988, p. 140]. 
A prominent example of a partitional clustering method is the well-known k-means method of 
[MacQueen, 1967] (originally from [Steinhaus, 1956]). It proceeds as follows: Once the number 
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of clusters has been chosen, a random initialization of cluster centers, called centroids, is per-
formed in the input space.  Then, the nearest data points to each centroid are assigned to that 
centroid. After the mapping of the data points, the centroids are moved such that the distances 
from the assigned points to their corresponding centroids are minimized. This process is per-
formed repeatedly. Figure 3.2 illustrates four iterations of the process. In summary, k-means 
centroids are average points rather than individual data points. Details about the algorithm can 
be found in [Hennig et al., 2015, p. 68ff]. 
By contrast, the clustering method called partitioning around medoids (PAM), introduced in [L. 
Kaufman/Rousseeuw, 1990], minimizes the sum of the distances from the data points within a 
cluster to one chosen data point in the same cluster, called the medoid [Mirkin, 2005, p. 181]. 
In other words, the average distance between a medoid and a subset of data points in the same 
cluster is minimized. Aside from the change from centroids to medoids, the algorithm can be 
formulated analogously to k-means [Mirkin, 2005, p. 182].  
Hierarchical clustering algorithms are based on the “representation of data as a hierarchy of 
clusters nested over set-theoretic inclusion” [Mirkin, 2005, p. 112]. In the agglomerative ap-
proach, such an algorithm begins with each data point in its own cluster and successively 
merges the most similar pairs of clusters to form a cluster hierarchy14. 
A typical visual representation of this process is called a dendrogram (Figure 3.3). A dendro-
gram is a tree showing a hierarchical structure of distance-based connections between subsets 
of points. The similarity between points or groups of points depends on the algorithm. [Bock, 
1974] demonstrated (see chapter 2 for details) that for every dendrogram, an ultrametric space 
can be constructed in which the triangle inequality is redefined as  
,ሺ݈ܦ ݆ሻ 	൑ ,ሺ݈,݉ሻܦሺ	ݔܽ݉	 ,ሺ݉ܦ ݆ሻሻ. 

 

Figure 3.2:  Steps of iteration using the k-means algorithm. After a random initialization of three centroids the 
nearest data points are assigned to each centroid. Then the centroids are moved to minimalize the 
distances. 

                                                      
14  The divisive approach is not considered here (see [Mirkin, 2005, p. 113 ff] for details). 
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Figure 3.3:  Dendrogram of the Hepta data set based on the Ward algorithm. Large changes in fusion levels of 
the ultrametric portion of the Euclidean distance in the Ward algorithm (y-axis) indicate the best cut. 
Seven clusters are indicated by red boxes at the y-axis value of 10. If only small changes in the 
fusion levels exist, it indicates that the algorithm is not able to find a cluster structure. 

One of the most common hierarchical clustering algorithms is called single linkage (SL) [Florek 
et al., 1951; Sokal/Sneath, 1963], in which the clustering process is agglomerative [Jain et al., 
1999]. In SL, the similarity between two subsets of data points is defined as the minimum dis-
tance between data points in these subsets [Duda et al., 2001, p. 553]. 

Let ܦ෩ be the distance between two clusters ܿଵ ⊂ and ܿଶ ܫ ⊂ ,ሺ݈ܦ and let ,ܫ ݆ሻ be the distance 
between two data points in the input space I; then, SL is defined based on (see [Hennig et al., 

2015, p. 9]) ܦ෩ሺܿଵ, ܿଶሻ ൌ min
௟	∈	௖భ,௝∈௖మ

,ሺ݈ܦ ݆ሻ. 

In graph theory terminology, this process generates a tree [Duda et al., 2001, p. 553]. If it is 
allowed to continue until all subsets of points are linked, the result is a (minimal) spanning tree 
(MST) [Duda et al., 2001, pp. 553, 554; Jain/Dubes, 1988, p. 70]. Of all common algorithms 
developed before 1968, only SL satisfies all conditions of a “theoretically valid” clustering (see 
[Jardine/Sibson, 1968] for details).  
Another hierarchical clustering algorithm that will be used here is called the Ward algorithm 
[Ward Jr, 1963]. In the Ward algorithm, the similarity between two subsets of points is based 
on an optimal value of an objective function, which commonly is the sum of squared errors 
(SE). 
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Let ܿ௥ ⊂ and ܿ௤	ܫ ⊂ ,ݎ be two clusters such that ܫ ݍ ∈ ሼ1,… , ݇ሽ and ܿ௥ 	∩ ܿ௤ ൌ ሼ	ሽ for ݎ ്  ,ݍ

and let the data points in the clusters be denoted by ݆௜ ∈ ܿ௤ and ݈௜ ∈ ܿ௥, with the cardinality of 

the sets being ݇	 ൌ 	 หܿ௤ห and ݌	 ൌ 	 |ܿ௥| and with  
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then, the SE is defined as (see [Theodoridis/Koutroumbas, 2009, pp. 661-663]) 
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In Figure 3.3, the ultrametric property of the Ward algorithm is represented in a dendrogram 
(for further details, see [Duda et al., 2001, p. 557; Everitt et al., 2001, p. 68ff; Jain/Dubes, 
1988]). If the values on the y axis “for the levels are roughly evenly distributed throughout the 
range of possible values, then there is no principled argument that any particular number of 
clusters is better or more natural than another” [Duda et al., 2001, p. 551]. “Large changes in 
fusion levels are taken to indicate the best cut” [Everitt et al., 2001, p. 76]. The cut depicted in 
Figure 3.3 generates a clustering consisting of seven clusters of roughly equal size. 
The next clustering method used in this work is called spectral clustering. 

“[It] is a class of graph-based techniques that unravel the structure properties of a graph using information con-
veyed by the spectral decomposition [eigendecomposition [see [Goodfellow et al., 2016, pp. 42-44]]] of an asso-
ciated [Laplacian] matrix. The elements of this matrix code the underlying similarities among nodes [data points] 
of the graph” [Theodoridis/Koutroumbas, 2009, p. 772]. 

 “The K principal eigenvectors of the Laplacian matrix provide a mapping of the objects into K dimensions. To 
obtain clusters, the resulting K-dimensional vectors are clustered by standard methods, usually K-means. There 
are various interpretations of this. […]. For these [Euclidean] data, spectral clustering acts as a remarkably robust 
linkage method.” [Hennig et al., 2015, p. 10].  

There is a close resemblance between spectral clustering and manifold learning methods [The-
odoridis/Koutroumbas, 2009, p. 779]. Here, the clustering algorithm of [Ng et al., 2002] is used 
to take advantage of the open-source implementation of this method that is available in the R 
language [R Development Core Team, 2008]. 
 “Clustering via mixtures of parametric probability models is sometimes in the literature re-
ferred to as ‘model-based clustering´” [Hennig et al., 2015, p. 10]. With the clustering algorithm 
of [Fraley/Raftery, 2006] in mind, here, this clustering method is called the mixture of Gaussi-
ans (MoG) method. The MoG method uses the expectation maximization (EM) algorithm (for 
further details on the EM algorithm, see [Bishop, 2006]).  

The EM algorithm is “an algorithm of alternating maximization applied to the likelihood function for a mixture 
of distributions model. At each iteration, EM is performed according to the following steps: (1) Expectation: 
Given parameters of the mixture ௞ܲ and individual density functions ܽ௞, find posterior probabilities for obser-
vations to belong to individual clusters ݃௜௞ […]. (2) Maximization: given posterior probabilities ݃௜௞, find pa-
rameters ௞ܲ, ܽ௞ maximizing the likelihood function” [Mirkin, 2005, p. 178].  

The MoG method suffers “from the well-known curse of dimensionality [Bellman, 1957], 
which is mainly due to the fact that model-based clustering methods are over-parametrized in 
high-dimensional spaces” [Bouveyron/Brunet-Saumard, 2014, p. 53]. To solve this problem, 
“for model based clustering, variable selection can be tackled within a Bayesian framework” 
[Bouveyron et al., 2012]. In the case of the MoG clustering method, the optimal model can be 
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calculated according to the Bayesian information criterion [Aho et al., 2014] for parameterized 
Gaussian mixtures that are EM initialized using hierarchical agglomeration [Fraley/Raftery, 
2002, pp. 10-12].  

“In each hierarchical agglomeration, each stage of merging corresponds to a unique number of clusters, and a 
unique partition of data. A given partition can be transformed into indicator variables […] which can then be used 
as conditional probabilities in an M-step of EM for parameter estimation, initializing an EM iteration” [Fra-
ley/Raftery, 2002, p. 11]. Here, the R package mclust is used [Fraley/Raftery, 2006]. 

3.2 Structure of Natural Clusters 

“Clusters can be of arbitrary shapes (structures) and sizes in a multidimensional pattern space. Each clustering 
criterion imposes a certain structure on the data, and if the data happen to conform to the requirements of a par-
ticular criterion, the true clusters are recovered. Only a small number of independent clustering criteria can be 
understood both mathematically and intuitively. Thus the hundreds of criterion functions proposed in the literature 
are related and the same criterion appears in several disguises” [Jain/Dubes, 1988, p. 91].  

This section analyzes common clustering algorithms from the perspective of structures, 
whereas in various other sources, the clustering criterion or objective function has been under-
stood only intuitively. Here, it is argued that the main argument of Jain and Dubes has received 
overall consent from the clustering community: Different clustering methods tend to implicitly 
assume different structures of clusters [Duda et al., 2001, pp. 537, 542, 551; Everitt et al., 2001, 
pp. 61, 177; Handl et al., 2005; Theodoridis/Koutroumbas, 2009, pp. 862, 896; Ultsch/Lötsch, 
2016]. 

3.2.1 Types of Structures Sought by Clustering Algorithms 

The argument of Handl et al. is partially adopted here, in which natural clusters are considered 
to exhibit two types of structures, called compact and connected structures [Handl et al., 2005], 
as depicted in Figure 3.4. Clusters with compact structures show small variations in their intra-
cluster distances; connected structures are based on the idea of neighborhoods of data points 
[Handl et al., 2005]. Here, a compact structure is considered to be mainly defined by inter- 
versus intracluster distances, whereas a connected structure is primarily defined by neighbor-
hoods H of data. Using the definitions presented in section 2.2.1, neighborhoods can be identi-
fied based on graph theory. This can result in connected structures consisting of either unidi-
rectional or direction-based neighborhoods. 

 

Figure 3.4:  Two types of cluster structures, compact (left) and connected (right), taken from [Handl et al., 2005]. 
Here, a compact structure is considered to be mainly defined by intra- versus intercluster distances, 
whereas a connected structure is primarily defined based on neighborhoods ܪ௝	ሺ݇, Γ,ܯሻ and the 
density of the data. 
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An example of an algorithm that seeks compact clusters is the k-means clustering algorithm, 
which imposes a spherical cluster structure [Duda et al., 2001, p. 542; Handl et al., 2005, 
p. 3202; Hennig et al., 2015, p. 61; Mirkin, 2005, p. 108; Theodoridis/Koutroumbas, 2009, 
p. 742] such that the clusters cannot be too elongated [L. R. Kaufman/Rousseeuw, 2005, 
p. 117]. This cluster structure can be found in a data set if “the data points are actually normally 
distributed” (…) because “the sample mean tends to fall in the region where the samples are 
most densely concentrated” [Duda et al., 2001, p. 537]. The k-means algorithm is sensitive to 
noise and outliers [Theodoridis/Koutroumbas, 2009, p. 744]. “This drawback […] gave rise to 
the k-medoids algorithms […].” The PAM algorithm is less sensitive to outliers. Because of its 
strong similarity to the k-means algorithm, it is assumed here that PAM also yields a compact 
spherical cluster structure. 
Examples of algorithms that seek connected clusters include density-based methods such as 
DBscan [Ester et al., 1996] and SL [Handl et al., 2005]. Because SL searches for nearest neigh-
bors [Cormack, 1971, p. 331], it tends to produce connected and chain-like structures [Duda et 
al., 2001, p. 554; Everitt et al., 2001, p. 67; Hartigan, 1981; Jain/Dubes, 1988, pp. 64-65; The-
odoridis/Koutroumbas, 2009, p. 660]. A nearest neighbor is also a Delaunay neighbor (Figure 
3.4), leading to a direction-based connected structure of clusters. Spectral clustering is based 
on graph theory and consequently searches for connected structures [Ng et al., 2002, p. 5] of 
clusters with “chain-like or other intricate structures” [Duda et al., 2001, p. 582]. This indicates 
that such an algorithm also searches for direction-based connected clusters (see also [Hennig et 
al., 2015, p. 10]). “They [spectral clustering methods] are well-suited for the detection of arbi-
trarily shaped clusters, but can lack robustness when there is little spatial separation between 
the clusters” [Handl et al., 2005, p. 3202]. 
The Ward algorithm is sensitive to outliers and tends to find compact clusters of equal size 
[Everitt et al., 2001, p. 61, Tab. 1] that are ellipsoidal in structure [Ultsch/Lötsch, 2016]. The 
MoG method uses a mixture-of-distributions approach, which leads to connected clusters. Con-
trary to [Handl et al., 2005], it is argued here that the MoG method should be able to separate 
clusters that are non-linear separable (e.g., Chainlink [Ultsch/Vetter, 1995]). Jains and Dubes 
report that “fitting a mixture density model to patterns” creates clusters with hyper-ellipsoidal 
shapes [Jain/Dubes, 1988, p. 92]. [Handl et al.] report that the MoG method is very effective 
for well-separated clusters [Handl et al., 2005, p. 3202].  
In the case of self-organizing mapping (SOM)15, the structures have been reported to be of “very 
general shapes” [Duda et al., 2001, p. 582; Ultsch/Lötsch, 2016]. Similarly to the emergent 
SOM (ESOM)/U-matrix clustering method [Ultsch et al., 2016a], the Databionic swarm (DBS) 
method that is discussed later in this work also uses the concept of emergence16, through which 
novel properties can arise in a system. Emergence leads to clusters whose structures are not 
predefined. 
To summarize, the cluster structures that are theoretically sought by various methods are visu-
alized in Figure 3.5. It should be noted that clustering methods that search for clusters with 
connected structures should also be able to find compact clusters as long as the distance between  

                                                      
15  However, for k-means-SOM of the batch type, spherical or well-separated structures have been reported [Handl 

et al., 2005, p. 3202] (see the SOM section in chapter 4 for the differences between ESOM and k-means-SOM). 
16  Definition, see chapter 7.3, p. 81-82 
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Figure 3.5:  Overview of the cluster structures that common clustering algorithms tend to find. It is based on the 
literature, except for the MoG algorithm17, for which an educated guess is made. The subgroup of 
DBscan clustering is characterized based on arguments presented in section 3.2.1, for the definition 
of emergent see chapter 7.3. 

clusters is large or the density between clusters is very low (see also [Handl et al., 2005, 
p. 3202]); e.g., “single-linkage clusters detect high-density clusters if there is a low enough 
valley separating them” [Hartigan, 1981]. However, methods that search for compact and spher-
ical structures cannot be expected to find connected structures. 

3.2.2 Quality of Clustering 

“[The quality of clustering is measured using a] “procedure for validating a cluster structure […]. This can be 
based on an internal index, an external index or resampling. An internal index scores the degree of correspondence 
between the data and the cluster structure. An external index compares the cluster structure with a structure given 
externally. A resampling is used to see whether the cluster structure is stable with respect to data change” [Mirkin, 
2005, p. 205] (see also [Jain/Dubes, 1988, p. 161ff]).  

Internal and external indices are also often called intrinsic or extrinsic indices, respectively; 
here, they are referred to as supervised or unsupervised indices, respectively. 
The simplest example of a supervised index is the accuracy, which is defined as follows: 

Accuracy	ሾ%ሿ ൌ
ሾNo.	of	true	positivesሿ

ሾNo.	of	casesሿ
ሺ3.1ሻ	

In Eq. 3.1, the number of true positives is the number of labeled data points for which the label 
defined by a prior classification is identical to the label defined after the clustering process. 
To determine either the number of clusters or the clustering quality, two approaches are gener-
ally possible. Covariance matrices can be calculated, or the intra- versus intercluster distances 
can be compared to evaluate the homogeneity versus heterogeneity of the clusters. In the liter-
ature, a sufficient overview of 15-30 indices has already been provided [Charrad et al., 2012; 
Dimitriadou et al., 2002], and these indices will not be further discussed here. A special type of 
unsupervised indices, referred to as quality measures for projection methods, will be separately 

                                                      
17  Also known as model-based clustering. 
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introduced in chapter 6. Two unsupervised indices and corresponding visualizations are pre-
sented in the following sections. 

3.2.2.1 Heatmaps 

A heatmap is an example of an unsupervised index. For the ordering of the data points in 
heatmaps, dendrograms are often used. They enable the visualization of high-dimensional in-
formation and dissimilarity matrices without projecting them into a lower-dimensional space. 
Their use strongly depends on the sequence of the observations. For cluster validation, it is 
desirable to plot observations that are in the same cluster together [Hennig et al., 2015].  

“[A heatmap] consists of a rectangular tiling, with each tile shaded on a color scale to represent the value of the 
corresponding element of the data set. The rows (columns) of the tiling are ordered such that similar rows (col-
umns) [in the sense that they are in the same cluster] are near each other“ [Wilkinson/Friendly, 2012]. “The 
cluster heat map is a rectangular tiling of a data matrix with cluster trees appended to its margins. Within a rela-
tively compact display area, it facilitates inspection of joint cluster structure” [Wilkinson/Friendly, 2009].  

Unlike in [Wilkinson/Friendly, 2009; Fig. 1], in Figure 3.7, the dendrogram between the varia-
bles is disregarded and only the ݊݊ݔ heat map of the distance matrix is shown. 

3.2.2.2 Silhouette plots 

The Silhouette plot is a common unsupervised index for visual evaluation of a clustering [L. R. Kauf-
man/Rousseeuw, 2005].  

“A score function s: ܺ	 → 	 ሾെ1, 1ሿ evaluates the positioning of data objects inside their assigned cluster. Let a(x) 
denote the average distance between x and all other objects of the same cluster, and b(x) denotes the smallest 
average distance between x and all objects of another cluster. The silhouette score follows as ሺݔሻ 	ൌ 	

௕ሺ௫ሻି௔ሺ௫ሻ

௠௔௫ሼ௔ሺ௫ሻ,௕ሺ௫ሻሽ
	. 

Silhouette scores similar to 1 indicate objects that have been assigned to an appropriate cluster, whereas −1 indi-
cates objects that have been badly classified. Silhouette scores similar to 0 indicate objects that lie in between 
clusters. Each cluster is represented by one silhouette, showing which objects lie within the cluster and which 
objects merely hold an intermediate position. The entire clustering is displayed by plotting all silhouettes into a 
single diagram, from which the quality of the clusters can be compared” [Herrmann, 2011, pp. 91-92]. 

A reasonable clustering is characterized by a silhouette width of greater than 0.5, and an average 
width below 0.2 should be interpreted as indicating a lack of any substantial cluster structure 
[Everitt et al., 2001, p. 105]. However, it is evident that silhouette scores assume clusters that 
are spherical or Gaussian in shape [Herrmann, 2011, pp. 91-92]. 

3.3 Problems with Clustering Methods 

To illustrate several problems encountered when using common clustering methods, a domain 
expert measured genetic data for subjects who were known either to be healthy or to have one 
of 3 subtypes of leukemia. Here, a typical knowledge discovery task could be to identify pat-
terns in the cancer subtypes based on the four diagnoses leading to the prior classification. 

 “[I]t is a common practice among researchers to employ a variety of different clustering techniques to analyse a 
dataset, and to use visual inspection18 and prior biological knowledge to select what is considered the most ‘ap-
propriate’ result” [Handl et al., 2005, pp. 3202-3203]. 

 Consequently, the first step would be to confirm that the structure defined by the classification 
distinguishing the healthy patients from the non-healthy ones does indeed exist in this data set. 

                                                      
18  The application of visual inspection will be reported in chapter 6, Fig. 1, resulting in arbitrary projections. 
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The data set used as an example to illustrate the general problem described above contains data 
representing 7747 variables for 554 subjects (see chapter 9 for details). Of the subjects, 109 are 
healthy, 15 have acute promyelocytic leukemia (APL), 266 have chronic lymphocytic leukemia 
(CLL), and 164 have acute myeloid leukemia (AML). There is a possibility that some subjects 
might be misclassified, but a future publication will address this diagnostic. 
The heatmap and the silhouette plot presented in Figure 3.7 and 3.6 show that this data set is 
defined by discontinuities because the intracluster distances are small and the intercluster dis-
tances large. Hence, the leukemia data set is a high-dimensional data set with natural clusters 
that are specified by the illness status and defined by discontinuities19. 
Table 3.1 shows the accuracies of common clustering algorithms computed by comparing the 
clustering results with the prior classification made available by the domain expert. The default 
settings were used for all algorithms, and the number of clusters was assumed to be four. The 
MoG algorithm cannot be applied without first using dimensionality reduction methods because 
the dimensionality of the data set is too high. Only one algorithm (Ward) is able to fully repro-
duce the prior classification. However, a classification should typically be reproduced using 
more than one algorithm, and the reproduction of a classification with 100% accuracy is unu-
sual. 
This example illustrates that “Clustering algorithms will create clusters whether the data are 
naturally clustered or purely random” [Jain/Dubes, 1988, p. 201] and “By imposing a prede-
fined shape on the clusters, classical algorithms occasionally suggest a cluster structure in ho-
mogenously distributed data or assign points to incorrect clusters” [Ultsch/Lötsch, 2016]. 
To summarize, the unsupervised indices, namely, the heatmap and the silhouette plot, agree 
with the prior classification provided by the domain expert, whereas the external index of ac-
curacy and the projections of the data5 disagree with the domain expert. The question arises 
whether this data set contains natural clusters and, if so, how the structure of these natural clus-
ters can be correctly identified or how the optimal clustering (or projection) algorithm can be 
chosen for the knowledge discovery task. This work will propose approaches and solutions to 
these problems. 

 

Figure 3.6:  Silhouette plot of the leukemia data set indicates a cluster structure. 
                                                      
19 It should be remarked that common data-driven methods as well as the heatmap and Silhouette plot do not 

reproduce the (sub) classification(s) of AML (like FAB subtypes) or CLL of research in this area, e.g. [Bene et 
al., 1995; Bennett et al., 1985; Vardiman et al., 2009; Haferlach et al., 2010], for CLL [Rosenwald et al., 2001]. 
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Table 3.1:  Accuracy results for common clustering algorithms.  
  No result could be calculated for the MoG algorithm (also known as model-based clustering). 

Algorithm Ward SL k-means MoG PAM Spectral 

Accuracy in % 100 80.1 76.53 Not Computable 78.3 59.0 

 

Figure 3.7:  The heatmap of the leukemia data set with at least one outlier (red line). The intracluster distances 
are distinctively smaller than the intercluster distances. Cls1 =APL, Cls2= healthy, Cls3=CLL, 
Cls4=AML. 
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