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Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central 
nervous system of unknown etiology, but a disease in which immunopathologic 
events are likely important [1]. It is a chronic disease, frequently with an clinically 
relapsing course [2], but the pathologic processes may actually be continuous, 
although accentuated at times [3]. It also has a restricted age distribution, with the 
peak onset between 20 and 40 years of age. In addition to the inflammation, which is 
predominantly made up of monocyte-macrophage-microglia and lymphocytes and/ 
or their progeny, and demyelination, the other characteristic pathologic feature is 
gliosis [4]. This gliosis relates to the astrocytes, although there is some controversy 
as to whether these cells become more prominent, increase in number, or both. 

There has been considerable interest in the possibility that MS is an autoimmune 
immunopathologic disease with a component of myelin/oligodendrocyte, the target 
for an antibody and/or cellular response. To date, the evidence is indirect [5, 6] and 
the antigen has certainly not been unambiguously identified [7]. More recently, 
there has been increasing interest in other interactions between the immune and 
nervous systems. This has been made possible by several scientific advances, 
including the ability to identify, purify, and study the function of subsets of cells of 
both the immune and nervous system as well as to purify and characterize secretory 
products of cells of both systems. In addition, genetic engineering has allowed the 
production of single products of inflammatory cells, and the use of monoclonal 
antibodies allows the unequivocal identification of epitopes of important surface and 
cytoplasmic components of cells of the nervous system on the immune system. Much 
of this recent activity has centered on interactions between products of activated 
inflammatory cells (cytokines=lymphokines+monokines) and glial cells [oligoden­
drocytes, astrocytes, macrophages, microglia (brain phagocytic cells)] and brain 
vascular endothelial cells [8, 9]. These cytokines are clearly present in the nervous 
system and CSF of patients with MS [10]. An extension of this line of investigation is 
the study of glial cells serving functions traditionally associated with celIs of the 
immune system such as presentation of antigen [11], production of monokines [12, 
13], phagocytosis [14], and production of enzymes such as proteases which could 
contribute to myelin breakdown and even act as stimulators of B-cell proliferation 
and differentiation [15]. Although much has been learned, there are many unans­
wered questions of considerable neurobiologic, immunologic, and pathologic im­
portance. 
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Which products of activated inflammatory cells are mitogenic for which types and 
subtypes of glial cells? 

The work of several groups [8, 9, 16, 17] makes it clear that unfractionated 
supernatants from activated inflammatory cells induce proliferation of astrocytes 
and CNS origin fibroblasts in vitro. As noted earlier, there is clearly gliosis 
associated with long-standing lesions of patients with MS, with the suggestion that 
astrocytes may undergo swelling, show an increase in intermediate filaments, and 
perhaps proliferate. In acute experimental allergic encephalomyelitis (EAE) as well 
as in the chronic and relapsing forms of the disease, astrocytes are also similarly 
affected. We do not know whether all astrocytes are affected equally [18]. Type II 
astrocytes, which in rats seem to arise from the same precursor glioblasts as 
oligodendrocytes [19, 20], are more numerous in white matter and some may be 
intimitely related to the paranodal region of the myelinated CNS axon [21]. Thus, it 
is conceivable that changes in this subclass of astrocyte, including proliferation. 
changes in phenotypic markers and functions, swelling, and failure to perform 
normal astrocytic functions, could lead to changes in CNS nerve conduction and 
result in symptoms. If the changes do not lead to demyelination or gliosis, it is 
possible that there might be rapid improvement in symptomatology. Could this be 
one of the mechanisms responsible for the rapid and often clinically complete 
recovery seen after exacerbations, especially during early phases of the disease? 

Fontana's group [8, 16, 22, 23] performed preliminary studies on activated 
supernatants and identified a factor which seemed to induce astrocyte proliferation. 
There has been no further published work characterizing the factor further, which 
seemed to be a product of T cells, nor do we know is it has any effect on 
oligodendrocytes, microglia, or Schwann cells. Is it the only mitogen for astrocytes 
produced by T cells? It most likely is not the only mitogen produced by inflammat­
ory cells since it has been shown that interleukin-l (IL-1) (produced by macro phages 
and perhaps microglia and astrocytes themselves) induces astrocyte proliferation 
[17, 24]. It is of some interest that Schwann cells, at least cells from neonatal rat 
sciatic nerves, do not proliferate in direct response to IL-1 in vitro [25]. 

It has been reported that T-cell products stimulate oligodendrocytges to prolifer­
ate in vitro [26]. A 30000 mol. wt. protein is said to induce proliferation of 
oligodendrocytes and no other CNS, PNS, or non-NS cells [27]. Based on the mol. 
wt. of 30000, as well as its reported very restricted selectivity as a mitogen, it seems 
unlikely to be IL-1, interleukin-2 (IL-2), or Fontana's glial proliferative factor. We 
have been unable to demonstrate that unfractioned activated supernatants, IL-2, or 
y-interferon (y-IF) induce proliferation of oligodendrocytes [28]. Others have 
reported that IL-2 is mitogenic for oligodendrocytes [29], but at a very high 
concentration. Although cloned IL-2 has been used by both our group as well as 
those who detect a proliferative effect, the results differ. The need for very high 
concentrations to induce proliferation suggests either an effect of some carrier 
material or that oligodendrocytes have either very low density of IL-2 receptors or 
low-avidity receptros. Neonatal Schwann cells do not proliferate in vitro in response 
to IL-2, although they proliferate in response to the unfractionated supernatants of 
activated inflammatory cells [30]. It is not clear why these differences in results 
occur, but species and in vivo age of animals as well as in vitro age of cultures may 
explain some but not all of the conflicts. The question of the effect of age may be 
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important in consideration of which products of activated inflammatory mononuc­
lear cells are capable of induction of major histocompatibility complex (MHC) 
antigens and which glial cells are susceptible to MHC antigen induction. Since the 
onset of MS shows age restriction and the pattern of clinical disease may differ in 
part related to the patient's age, the possible effect of age and the response to 
cytokines may be important. 

Supernatants obtained from activated mononuclear cells have been reported to 
induce MHC type I antigens (HLA-A, B, C in man) on oligodendrocytes, astrocy­
tes, and microglia-macrophages [28, 31-35]. The demonstration that type I antigens 
can be induced on a cell type which ordinarily does not bear such antigens is not 
trivial since it has been demonstrated that T-cell-mediated antigen-specific cytotoxic 
reactions against cellular antigens, including viral antigens in such cells, can only 
occur if the cells bear MHC type I antigens [36]. If glial cells serve as targets for such 
antigen-specific cytotoxic reactions in MS and other diseases, it would be required 
that type I MHC antigens be induced by a lymphokine, such as y-IF, or by a viral 
infection [37]. There is much written about the search for type II (Ia) MHC antigens 
on glial cells in lesions of patients with MS but little about type I antigens on such 
glial cells. Parenthetically, such studies are likely forthcoming and we will need to 
remember that in a disease like MS that has periods of varying activity and a chronic 
course we may expect variable reports from different groups. The may be studying 
different lesions in different patients, or indeed different lesions in the same patient 
[38]. 

There is also interest in the question of which cells in the CNS naturally bear or 
can be induced to bear MHC type II (Ia) antigens (DR, DQ in man). It has been 
reported that activated antigen-specific T-cell lines, which would be capable of 
production and secretion of lymphokines including y-IF, and y-IF itself can induce Ia 
on astrocytes [8, 9, 11) which are ordinarily la negative [39]. These astrocytes can 
then present myelin basic protein (MBP) to the T-cells. It is a "requirement" for 
antigen-presenting cells to have type II on their surface. Recently, it has been 
reported that oligodendrocytes can have an accessory function on in vitro T-cell 
mitogenesis [40], but this is a different phenomenon from specific antigen presen­
tation and antigen-specific proliferation. There is little evidence, if any, that 
oligodendrocytes become la positive in vitro or in vivo [39, 41, 42]. It has been 
reported, however, that astrocytes in MS and EAE lesions are type II MHC positive 
[10,43]. Based on the earlier described in vitro evidence, it has been postulated that 
antigen presentation by astrocytes may contribute to propagation of inflammatory 
lesions in the CNS. Astrocyte lysis by MBP-specific T-cells has also been described 
[44]. 

The situation regarding astrocytes is not as straight forward as it had seemed. In 
EAE lesions in rats, macrophages become strongly positive before a relatively small 
percentage of astrocytes become Ia positive [45,46]. We and others have Qot found 
induction of Ia on most astrocytes in vitro [28, 35]. Microglia-macrophages are the 
predominant la-positive cells in normal cultures [35,39] and after induction [28, 35]. 
MHC antigens are glycoproteins and may be found on cells adjacent to the cell that 
is actually producing la; i. e., it may be very difficult to localize la [35]. Disparity 
between immunofluorescence and immunoperoxidase techniques, and light and 
electron microscopic localization of Ia has been reported in other organs [47]. Cells 



16 R. P. Lisak 

which are passively la positive likely do not function as antigen-presenting cells. 
Therefore, it will be important to determine, both in vitro and in vivo, if astrocytes 
or even oligodendrocytes actually can be induced to become la positive and which 
cytokines induce the antigens. It will likely require molecular biologic techniques, 
such as in situ hybridization combined with immunohistology, ultimately to settle 
the question. 

What is the role of vascular endothelial cells in the initiation of and self­
propagation of immunopathologic reactions with the CNS? 

There is growing evidence that the endothelial cells of cerebral blood vessels may 
play an active rather than passive role in immunopathologic reactions within the 
CNS [9]. There have been reports of DR (Ia) on CNS endothelial cells in the CNS of 
animals with EAE [45, 46]. However, this has not been a universal finding and, 
more recently, it has been suggested that it is actually perivascular dendritic 
(microglia) that are the positive cells in the CNS vessels [49]. It has been reported 
that similar la localization is seen in MS lesions [50, 51], but, again, the exact nature 
of the positive cells in uncertain. It would not be surprising if a macrophage­
microglial cell among the endothelial cells were induced to become la positive and 
interact with circulating T-cells, even presenting antigen [52]. It should be noted that 
how T-cells circulating at a high flow rate interact with endothelial or dendritic cells 
is still not clear. Changes in the endothelium could also allow passage of nonspecific 
inflammatory cells or serum proteins which could induce demyelination [53-55]. On 
the other hand, some of the changes reported in CNS vasculature in MS are seen in 
classic passive transfer delayed hypersensitivity reactions. Further comparative 
studies of passive and active EAE are clearly of importance here as are in vitro 
studies of endothelial cell-cytokine interactions and lymphocyte-endothelial cell 
interactions. It must also be remembered that the frequency of CNS antigen-specific 
T-cells is probably very different in animals with actively induced EAE, passively 
transferred EAE, and EAE passively transferred with T-cell lines or clones. 
Moreover, T-cell lines and clones, especially after reactivation or restimulation, may 
differ quantitatively and qualitatively from "normal" T-cells in many in vitro and in 
vivo characteristics. 

For the most part, I have emphasized the potential pathogenic importance of the 
interactions of cytokines and glial cells, and I belive we are just beginning to 
understand this important area. Clearly, there are tremendous therapeutic implica­
tions. It has been traditional to consider how drugs and modifiers of biologic 
reactions would interact with the classic cells of immunopathologic reactions (T­
cells, B-cells, monocyte-macrophages, and, more recently, K and NK-cells). The 
reports of some [56-59] but not all groups [60-62] of a defect of NK-cell function 
associated with (or perhaps caused by) a decreased y-IF production in patients with 
MS lead to the suggestion that y-IF might be of benefit in MS. Recently, a 
therapeutic study demonstrated that y-IF was associated with an increase in exacer­
bations [63]. This might relate to activation of circulating cells of the immune 
system, but it is also possible that immunologic cells within the nervous system or 
glial cells were affected directly by y-IF crossing a damaged blood-brain barrier [64]. 
Since glial cells have been postulated to produce IL-1 [8, 12] and proteases (which 
could interact with B-cells) [15], activation of glial cells by systemically administered 
lymphokines could also have a deleterious effect in an indirect fashion. Rather than 



Glial Cells and products of Activated Inflammatory Cells 17 

looking for biologic modifiers for treatment of MS, we may need antibodies directed 
against the modifier or its receptor. 

There are other possible cytokine-glial cell interactions that have therapeutic 
implications. a- and ~-IF inhibit cellular proliferation, as does y-IF, under certain 
circumstances [65]. If the astrocytic response in MS is deleterious, then an inhibitory 
effect by one of the interferons or other biologic modifier might have a long-term 
beneficial effect in MS. However, if oligodendrocyte or oligodendrocyte precursor 
proliferation were inhibited by an exogenously administered agent, that might prove 
to be harmful. It has been reported that IL-2 induces synthesis of myelin-specific 
constituents, such as MBP, by oligodendrocytes [29]. Thus, inhibition of IL-2 
production or blocking of IL-2 receptors, if present, on glial cells would be 
potentially harmful, even if inhibition of the effect of IL-2 on T or B-cells might be 
potentially helpful. Until we know more about the in vivo and in vitro effects of the 
many cytokines, as well as the effects of inhibition of the cytokines and their 
receptors, we are guessing in planning therapeutic studies. 

Although there is no substitute for eventually performing well-controlled studies 
in patients, we need to learn much more about in vitro and in vivo effects of various 
potential biologic agents on glial cells before embarking on more and more treat­
ment studies in patients. 
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