
Detecting Code Reuse in Android Applications

Using Component-Based Control Flow Graph

Xin Sun, Yibing Zhongyang, Zhi Xin, Bing Mao, and Li Xie

State Key Laboratory for Novel Software Technology
Department of Computer Science and Technology

Nanjing University, China
{sunxin508,Sophie.xuer,zxin.nju}@gmail.com, {maobing,xieli}@nju.edu.cn

Abstract. Recently smartphones and mobile devices have gained in-
credible popularity for their vibrant feature-rich applications (or apps).
Because it is easy to repackage Android apps, software plagiarism has
become a serious problem. In this paper, we present an accurate and
robust system DroidSim to detect code reuse. DroidSim calculates sim-
ilarity score only with component-based control flow graph (CB-CFG).
CB-CFG is a graph of which nodes are Android APIs and edges rep-
resent control flow precedence order in each Android component. Our
system can be applied to detect repackaged apps and malware variants.
We evaluate DroidSim on 121 apps and 706 malware variants. The re-
sults show that our system has no false negative and a false positive of
0.83% for repackaged apps, and a detection ratio of 96.60% for malware
variants. Besides, ADAM is used to obfuscate apps and the result reveals
that ADAM has no influence on our system.

Keywords: Mobile Applications, Code Reuse, Repackaging, Malware
Variants.

1 Introduction

Smartphones have played a more and more important role in people’s life due
to abundant and feature-rich smartphone applications (or apps) that people can
download and experience from app repositories such as Apple’s App Store [2] and
Google’s Google Play [3]. Recent statistics show that till the second quarter of
2013, Android dominates the mobile device market with 79.3% of market shares
while the next closest platform iOS accounts for 13.2% of overall share [1]. Now
Google Play has officially reached over 1 million apps and it has finally outgrown
App Store [4]. Since users are no longer satisfied with a few functionalities like
making phone calls or sending messages, they are willing to browse and download
apps which can meet their other various demands.

Code reuse occurs when different apps share the same code. It is often found
in repackaged apps and malware variants.

Users browse and download apps from markets. Developers submit apps to
markets to make them available to users and accordingly gain profits from sub-
mitted apps. Therefore, a healthy ecosystem comes into being. Unfortunately,

N. Cuppens-Boulahia et al. (Eds.): SEC 2014, IFIP AICT 428, pp. 142–155, 2014.
c© IFIP International Federation for Information Processing 2014

Detecting Code Reuse in Android Applications Using CB-CFG 143

this ecosystem is mostly threatened by repackaged apps. A repackaged app
emerges when a plagiarist unpacks a legitimate app, modifies certain code and
redistributes it violating the intellectual property of original developer. Devel-
opers can directly charge for their apps, but many instead offer free apps and
gain monetary profits from in-app billing or third-party ad libraries. Apps are
repackaged for two motivations. First, a plagiarist can modify the ad library’s
client ID or embed new ad libraries to steal or re-route ad revenues [10]. Second,
malicious payloads or exploits may be injected into popular apps to increase
propagation. Once installed, this kind of apps can leak privacy, send messages to
premium numbers and even turn the infected phones into bots. A recent work
indicates that 86% of Android malwares repackage other legitimate (popular)
apps [11], which is the main vehicle for propagation. Malware authors tend to
enclose malicious payloads to as many apps as possible, which leads to different
variants that should be classified into one malware family.

Due to the huge amount of Android apps, researchers have proposed several
detection algorithms based on static analysis [12] [13] [14] [17] [18]. Till now, no
dynamic algorithm has been proposed because dynamic detection is too slow to
bear and Android specific input is hard to feed. While static analysis is fast, it
is not robust enough to detect repackaged apps or malware variants especially
when they are obfuscated. These algorithms generally sacrifice robustness for
scalability. Simple obfuscation techniques can cause considerable false negative
rates [15]. In practice, several obfuscation techniques have been used to success-
fully evade 10 state-of-the-art commercial mobile anti-malware products [16].
Without doubt, these obfuscation techniques can be easily applied to hinder the
existing algorithms.

In this paper, we propose an accurate and robust system called DroidSim
to effectively detect code reuse. DroidSim performs pare-wise comparison based
on component-based control flow graph (CB-CFG). CB-CFGs are generated by
static analysis for every component. Nodes in them are Android APIs and edges
reflect the control flow precedence relationship of APIs. We propose CB-CFG
based on three insights. First, Android APIs can represent semantic information.
All the sensitive behaviors must interact with Android phone hardware through
different APIs. Hence, Android APIs are effective to denote behaviors. Second,
there are no superfluous APIs. It is hard to modify APIs without modifying the
original behaviors. Third, the control flow can clearly clarify the relationship
between two APIs. We notice that several problems occur when constructing
CB-CFGs. Java inheritance and reflection usually make us ambiguous about
which method is to invoke. Multi-threading and callbacks are also big challenges
for static analysis.

We present DroidSim and apply it to detect repackaged apps and malware
variants. For repackaged app detection, a dataset which contains 25 pairs of
repackaged apps and other 61 irrelevant apps is customized from the Android
Malware Genome Project [11] and the Internet. Our system shows that all the
repackaged apps are detected and only 1 irrelevant app is falsely detected as
repackaged, indicating a false negative of 0.00% and a false positive of 0.83%.

144 X. Sun et al.

For malware variant detection, we evaluate our system on 706 variants and gain
a detection ratio of 96.60%.

Our contributions are two folds:

� We propose a novel approach to detect code reuse in Android. DroidSim
performs the pair-wise comparison and computes the similarity score only
by CB-CFGs. CB-CFGs consist of Android APIs and reflect the relationship
between different APIs. It can represent the semantic information of apps
and is able to denote the behaviors of a component. Our system can be
applied to detect repackaged apps and malware variants.

� Since an app has no superfluous APIs and the Android system has no redun-
dant API to replace, we believe CB-CFG is not easy to modify and is able
to resist common obfuscations. In our experiment, we leverage ADAM [22]
to obfuscate the samples and the result shows that ADAM has no influence
on our system.

The rest of the paper is organized as follows: section 2 introduces the system
overview. In section 3, we describe the design and implementation for static
code reuse detection, followed by evaluation in section 4. Section 5 presents the
limitations of DroidSim and future work. Finally we describe related work in
Section 6 and conclude in section 7.

2 System Overview

2.1 Threat Model

We aim to detect code reuse in Android apps. For repackaged apps, plagiarists
usually don’t modify the functionalities of legitimate apps, so the code must
be very similar to the legitimate apps intuitively. A similarity score can be cal-
culated to discern the repackaged apps. Malware variants in one family share
the same malicious code snippets in most cases. And these shared code can be
extracted as the signature of one malware family. With the evolution some ob-
fuscation techniques are applied to repackaged apps and malware variants to
escape detection. For instance, a real-world malware Gamex [6] has been found
to apply some simple obfuscation techniques.

2.2 Assumption

In this paper we consider only classes.dex and the author information of an
app. To detect repackaged apps, two assumptions must be satisfied. First, the
signing key of a developer is not leaked. Once guaranteed, the repackaged app
must be signed by a different key from the original one. Second, we measure
the similarity score based on the DEX code and leave native code alone because
native code only occupies a small portion of real-world apps and is much harder
to modify than dalvik bytecode.

Detecting Code Reuse in Android Applications Using CB-CFG 145

2.3 Methodology

DroidSim contains 4 steps as depicted in Figure 1. First, it pre-processes the
whole dataset (section 3.1). For each app, it extracts two key features: classes.dex
and the author information. Classes.dex is the main basis to calculate the simi-
larity score while the author information is used to mark each app for excluding
similarity comparison from the same author. Second, it constructs CB-CFGs
from classes.dex (section 3.2). In general, Android apps consist of different
components (e.g. Activity, Service, Broadcast Receiver and Content Provider).
DroidSim generates CB-CFG for each component. Finally, it computes the sim-
ilarity score according to the former features (section 3.3).

Fig. 1. Overview of our design

3 Design and Implementation

3.1 Pre-processing

Android apps are distributed in markets in the form of APK. An APK is a
compressed archive of the program’s Dalvik bytecode, resources and a XML
manifest file. Two features are extracted first. One is classes.dex which contains
the Dalvik bytecode for execution. The other is META− INF which contains
the detailed author information.

DroidSim utilizes Keytool utility [8] (included in the Android SDK) to extract
the author information from cert.rsa in META− INF and uses the public key
as the identifier for each developer. In the following steps, this identifier will be
integrated into signatures and used to determine whether two apps are from the
same author.

For ease of constructing CB-CFGs, we leverage baksmali [7] to disassemble
the DEX format. After disassembling, the DEX files are transformed to smali
files. Disassembling is lossless. However, it may fail in rare circumstances. The
smali files support the full functionality of the original dex format and are much
friendlier to read. DroidSim takes advantage of Android-apktool [5], a tool that
already integrates baksmali and is able to decompress APKs. At the end of this
step, DroidSim transforms an APK into a developer identifier and a set of smali
files which will simplify the next few steps.

146 X. Sun et al.

3.2 Constructing Component-Based Control Flow Graph
(CB-CFG)

The second step is the core of DroidSim. It takes a developer identifier and smali
files as input and outputs a signature for each app. Figure 2 shows the detailed
process of how to construct a signature.

Fig. 2. The procedure of construction Component-Based Control Flow Graph

Generating Control Flow Graph. DroidSim relies on the CFG that describes
both intra-procedure control flow and inter-procedure control flow. Many tools
are able to generate the intra-procedure CFGs. Unfortunately no existing tools
can generate CFGs which consists of both intra-procedure and inter-procedure
control flow. Therefore we implement a tool to generate this specific CFG based
on the smali files.

To achieve this, DroidSim first identifies all the components in an app. For
each method in a component, we divide the method body into many Basic Blocks.
A Basic Block is a straight-line piece of code without any jump instructions or
jump targets. It is easy to construct intra-procedure control flow. For inter-
procedure control flow, method invocations in smali code always start with
invoke∗ or execute∗ instructions. Resolving method invocations is hard when we
meet the java characteristics such as polymorphism and inheritance. Besides, java
reflection is also a challenge. It allows programs to invoke a method according
to its string name. While it is easy to determine which method to invoke during
runtime, it is not easy for static analysis. In this paper, we make a conservative
approach that connects all the possible paths for reflections. Multi-threading
and callbacks are often found in Android apps and hard to analyze for static
analysis. In the same way, we conservatively connect all possible paths. Although
conservative approaches may cause imprecision, we believe that it will make little
influence because the same approach must be made for both the repackaged and
the legitimate apps when meeting the same ambiguous method invocation.

Extracting CB-CFG. CB-CFG is a graph of which nodes are Android APIs
and edges represent control flow precedence relationship. It is extracted for each
component. The node of CFG generated above represents a Basic Block and the
directed edge represents control flow relationship. In this step DroidSim extracts
APIs in Basic Blocks and omits other statements to generate nodes of CB-CFGs.

Detecting Code Reuse in Android Applications Using CB-CFG 147

If a Basic Block has more than one API, we divide it into different nodes in CB-
CFG to make sure that each node has only one API. However, not all of Android
APIs are suitable and only APIs that represent the app functionalities e.g. file
operations, sending messages, making phone calls etc are reserved. We use APIs
instead of Basic Blocks based on the insight that APIs usually have enough
information to represent the program behaviors and are difficult to modify. The
precedence order of different APIs is preserved in our CB-CFGs. Obtaining the
precedence order is not easy because some Basic Blocks may have no APIs and
more than one subsequent basic blocks. In this case, the precedence relationships
should be stored until we find all the subsequent Basic Blocks which have APIs.
Hence, a data structure is created to store the order and a depth-first traversal
is implemented in the original CFG. Once nodes and edges are determined,
CB-CFG is completed. Each node in CB-CFG corresponds to a unique type. And
it is efficient to decide whether two nodes are of the same type when DroidSim
calculates similarity score through subgraph isomorphism. Figure 3 is a simple
example of CB-CFG generated from the smali code below.

Example of smali code

1. invoke-direct {v0, v1}, Landroid/content/Intent;-><init>(...;)V

2. if-gtz v17, :cond_0

3. invoke-virtual {v3, v4, v5}, Lcom/example/b/B;->display(II)I

4. goto/16 :goto_0

5. :cond_0

6. invoke-virtual {p0, v0}, Lcom/GoldDream/zj/zjService;->startActivity

(Landroid/content/Intent;)V

7. :goto_0

8. invoke-virtual/range {v0 .. v5}, Landroid/telephony/SmsManager;

->sendTextMessage(...;)V

Fig. 3. Generated CB-CFG from smali code above. The content in each node is a digit
for brevity. In real cases, it is the Android API.

Excluding Library Code. Third-party libraries are often embedded in An-
droid apps. For example, most free apps insert ad libraries like admob to com-
pensate for their work. After pre-processing, these libraries are still reserved.
In this case, computing the similarity score will likely bring about a misleading
result due to the shared libraries. In case of it, DroidSim excludes the common
library code by a white-list.

Ultimately DroidSim gets a set of CB-CFGs and a developer identifier for
each app and integrates them into one signature for further detection.

148 X. Sun et al.

3.3 Similar App Detection

For repackaged app detection, DroidSim performs pair-wise comparison for each
app and calculates the similarity score by signatures. A signature contains a
developer identifier and a set of CB-CFGs. The concrete process is as follows.
For an app A, we want to detect whether app B is repackaged from A. DroidSim
first checks whether two apps’ identifiers are the same. If so, it neglects this
pair, because they are written by the same author. Otherwise, it calculates the
similarity score for B according to equation 1.

Sim(B) =

∑

b∈B

|b|
min(|A|, |B|) (1)

In Equation 1, the similarity score of B is calculated in comparison with A. In
the denominator, the symbol |A| represents the number of CB-CFGs in A and
|B| represents the number of CB-CFGs in B, min(|A|, |B|) chooses the minor
value in |A| and |B|. In numerator, the symbol b stands for each CB-CFG in B.
|b| equals to 1 if b is subgraph isomorphic to any CB-CFG in A and equals to 0
otherwise.

For malware variant detection, an intuitive approach is proposed. The shared
CB-CFGs are automatically extracted as signatures because variants of one fam-
ily share the same malicious code. If an app contains the signature of certain
malware family, it is regarded as the variant of this family.

Subgraph isomorphism is NP-complete. Fortunately because there are only
limited nodes in CB-CFGs and each node has the unique API type, it is of-
ten efficient to perform subgrpah isomorphism mappings. And we leverage VF2
algorithm [19] to perform these mappings.

4 Evaluation

We have implemented a prototype system called DroidSim in Linux. In this sec-
tion we first take a false positive and false negative measurement about detecting
repackaged apps in a customized dataset. To elaborate the robustness, we mea-
sure how the prototype is resistant to several common obfuscation techniques.
Then we leverage DroidSim to generate signatures for known malware families
and apply these signatures to detect malware variants.

4.1 Experimental Setup

While it is easy to measure the false positive through manual verification, it is
the opposite case for measuring the false negative. So we determine to customize
a dataset from Android Malware Genome Project [11]. To measure the false

Detecting Code Reuse in Android Applications Using CB-CFG 149

negative, we randomly select several repackaged apps and find their correspond-
ing legitimate apps via the Internet. What’s more, we download irrelevant apps
from a third-party market 1 to measure the false positive. For detecting mal-
ware variants, we also select 8 malware families from Android Malware Genome
Project [11]. All apps are obfuscated by ADAM [22] to measure the obfuscation-
resistance. The whole experiment is performed on a desktop PC with 3.4 GHz
Intel Quad-cores CPU, 12GB RAM and Ubuntu 13.10 as OS.

4.2 Dataset Statistics

In total the dataset for repackaged app detection contains 121 apps. Among
them, 25 are malwares from Android Malware Genome Project [11] and 25 are
the corresponding legitimate apps. The rest 61 are downloaded from one third-
party market. Callbacks are usually used in event handling process of widgets like
buttons. Multi-threading is often applied in time-consuming tasks like network
connecting and file downloading. Reflection is often used in malwares to escape
detection. All the three specific features are included in our benchmark. In the
first step, it takes 1214.87 seconds to generate all the signatures, in average,
10.04 seconds per app.

In practice, DroidSim removes CB-CFGs that are smaller than a specified size
(< 5 nodes), because small graphs are more likely to be the same by chance.
As illustrated on Figure 4, 95.9% of apps have less than 45 CB-CFGs. Among
them, 57.8% have less than 15 CB-CFGs, which will reduce the frequence of
comparison.

Figure 5 shows that 98.3% of CB-CFGs have more than 10 nodes. It is hard
to get through subgraph isomorphism test by coincidence, which is also proved
by our experiment that most of unrelated apps have 0 CB-CFG in common.
Besides, 95.0% of nodes in CB-CFG are in the range between 10 and 70, which
also guarantees the efficiency of subgraph isomorphism.

 0

 5

 10

 15

 20

 25

 30

0 5 10 15 20 25 30 35 40 45 >45

N
u
m
b
e
r

o
f

A
p
p
l
i
c
a
t
i
o
n
s

Fig. 4. Distribution of CB-CFG number

 0

 5

 10

 15

 20

 25

 30

 35

0 10 20 30 40 50 60 70 >70

N
u
m
b
e
r

o
f

A
p
p
l
i
c
a
t
i
o
n
s

Fig. 5. Distribution of the average node
number in CB-CFG

1 http://www.appsapk.com/

http://www.appsapk.com/

150 X. Sun et al.

4.3 Repackaged App Detection

We measure the false positive and false negative on the dataset described in
section 4.2. To measure the robustness of DroidSim, an obfuscation tool called
ADAM [22] is used. ADAM is initially used to transform an original malware
sample to different variants. It targets Dalvik bytecode and is often used as an
automated obfuscation tool. The obfuscation techniques in ADAM include, (1)
repacking such as realigning, re-signing and rebuilding APKs, (2) junk code in-
sertion such as adding new methods that perform invalid operations, (3) method
renaming, (4) code reordering such as inserting goto instruction to modify the
control flow graph, (5) constant string encryption. There are also other obfusca-
tion tools such as Proguard and Dexguard. However, Proguard directly targets
java source code. Dexguard targets Dalvik bytecode, but is not free to get. Both
tools are not adopted in our experiment.

Table 1. Experiment Result

Apps in Dataset Detected before Obfuscation Detected after Obfuscation

121 26 26

The first column in Table 1 indicates the number of apps in our dataset. The
second column lists the number of apps detected as repackaged by DroidSim
before obfuscation. The third indicates the number detected as repackaged after
obfuscation. In our experiment, the threshold of similarity score is set to 0.3. If
the similarity score is higher than 0.3, the app will be inferred as repackaged. We
note that it is a tradeoff to determine the threshold. If we raise the threshold,
the false positive will rise and the false negative will decrease.

Our manual verification shows that 25 apps are repackaged. Table 1 indicates
that the false negative rate is 0.00% because all the repackaged apps have been
detected successfully. And the false positive rate is 0.83%. 1 out of 121 is detected
incorrectly. The mistaken one is named xiangpeizhishu 2. After analyzing, we
find that it only contains one Activity and its unique CB-CFG happens to be
isomorphic to another app 3. Most of the Android apps have more than one
components and the APIs in them often vary a lot, so this case rarely happens in
practice. As we mentioned in section 3.2, a conservative approach that connects
all the possible paths is adopted when meeting java reflection, callbacks or multi-
threading. And the experiment results show that this approximate approach can
work well. For two similar apps, the constructed CB-CFGs remain the same
because the same paths are connected when meeting the same ambiguous method
invocation.

Table 1 also shows that ADAM has no influence on our experiment because
DroidSim computes the similarity score only by CB-CFGs. Simple transforma-
tion techniques in ADAM such as repacking, methods renaming, and constant

2 xiangpeizhishu. http://os-android.liqucn.com/rj/29261.shtml
3 Free File Manager. http://www.appsapk.com/free-file-manager/

http://os-android.liqucn.com/rj/29261.shtml
http://www.appsapk.com/free-file-manager/

Detecting Code Reuse in Android Applications Using CB-CFG 151

string encryption obviously do not change the control flow. As for junk code
insertion, only inserting Android APIs can modify generated CB-CFGs, and
thus lower the similarity score. Currently we don’t distinguish the dead code in
DroidSim and rely on a low threshold value to reduce the influence. It proves
to be effective in our experiment for no existing obfuscation tool can do this.
If a tool that automatically injects APIs as junk code is available, a semantic
investigation must be employed to eliminate the unreachable code. With respect
to code reordering, it can change the control flow. But the CB-CFG remains
untouched because the precedence order of APIs is not modified. Overall, obfus-
cation techniques in ADAM have no effect on DroidSim.

4.4 Malware Variant Detection

Besides detecting repackaged apps, our system can also be used to detect mal-
ware variants. Previous work [11] shows that one malware family often has many
variants. The variants share the same malicious code snippets, which can be the
signature of this malware family. CB-CFG consists of Android APIs and their
relationship, and is able to represent the functionality of shared code snippets.
Hence we use DroidSim to extract a set of CB-CFGs as the signature of one
malware family. To measure the validity and robustness, we analyze 8 malware
families and extract signatures from several malware variants of each malware
family. Then signatures are tested on 706 malware variants.

Table 2. Detection Results of Malware Variants

Malware Family
CB-CFGs
(signature)

Samples
Detected before
obfuscation

Detected after
obfuscation

Percentage

AnserverBot 9 187 186 186 99.47%

DroidKungFu1 5 28 28 28 100.00%

DroidKungFu2 3 28 15 15 53.57%

DroidKungFu3 3 300 299 299 99.67%

DroidKungFu4 3 96 88 88 91.67%

DroidDream 2 14 13 13 92.86%

DroidDreamLight 1 41 41 41 100.00%

Zsone 1 12 12 12 100.00%

total 27 706 682 682 96.60%

As illustrated on Table 2, the first column lists the malware family name.
The second column is the signature extracted by DroidSim. The third lists the
number of malware variants for test. The fourth indicates the malwares detected
before ADAM is used. The fifth is the number of malware variants detected
after ADAM is used. And the sixth represents the detection ratio. Among the
8 malware families, the detection ratio varies much. For AnserverBot, only 1
out of 187 escapes our detection. For further analysis, we notice that apktool
[5] we employ does not generate the smali code corresponding to the signature.

152 X. Sun et al.

Thus it does not have the corresponding CB-CFGs. For the DroidKungFu series,
only all variants of DroidKungFu1 are detected. The detection rate of Droid-
KungFu2 is the worst, which just exceeds a half. By analyzing the experiment
log, we note that all the 13 missing variants are different versions of the same app
named OnekeyVPN. Their behaviors are pretty different from the others. They
do not access Wi-Fi state or open Internet connection while others do. Later we
add the signature of this kind into the signatures, the detection ratio instantly
rise to 100%. As for DroidKungFu3, one variant 4 escapes our detection. Manual
analysis reveals that its malicious payload is modified exclusively for this app,
which results in different CB-CFGs from others. 8 variants of DroidKungFu4
escape our detection. Among them, seven are different versions of the same app.
All missing apps have different behaviors from the others. We believe that Droid-
Sim can extract additional signatures to cover them if necessary. DroidDream
shares the same situation with AnserverBot. Only one variant escape our de-
tection due to the same reason with AnserverBot. As for the last two malware
families, all their variants have been detected successfully.

5 Discussion

We try to detect code reuse by CB-CFGs. CB-CFG is essentially a graph. And
we compare them with subgraph isomorphism. In DroidSim, we implement VF2
algorithm [19] to compare two graphs. Although subgraph isomorphism is NP-
complete, it is still efficient because the node number is not that much and each
node has a unique type. In our experiment, the average node number of 96.7%
apps is less than 70. Hence the comparison is practical.

If an obfuscation tool that can automatically inject APIs as junk code is
developed to attack our system, a semantic investigation on the program will be
made to discern the unreachable code and drastically get rid of the influence.

DroidSim performs pair-wise comparison, indicating a time complexity of
O(n2). Lots of algorithms try to decrease the time complexity and therefore
sacrifice the robustness for scalability. In this paper, we focus on the robustness
and the obfuscation techniques that may escape the detection of existing algo-
rithms. To detect code reuse in a large scale, DroidSim should be implemented
in a paralleled way and we leave it for future work.

6 Related Work

There are several approaches proposed to detect the repackaged apps. In general,
these approaches can be divided into two categories: syntactic-level analysis and
semantic-level analysis.

Juxtapp [20] is a scalable infrastructure for syntactic-level code similarity
analysis among Android apps. It pre-processes the DEX files to obtain the op-
code and discard the operands. Similarity score is calculated based on the feature

4 d99165d50a17d5678b13e0e7f70605f9fd4b7e9a.apk in Android Malware Genome
Project [11].

Detecting Code Reuse in Android Applications Using CB-CFG 153

vectors extracted every k-grams of opcode. And it is vulnerable to trivial ob-
fuscation techniques e.g. injecting junk code every few instructions. DroidMoss
[12] is also a syntactic-level detection algorithm. It generally employs the basic
thoughts of MOSS [21], a well-known software similarity measurement algorithm.
DroidMoss adopts fuzzy hashing to generate fingerprints from the opcode (ex-
cluding the oprands) for each app. It has the same shortcomings of Juxtapp
that a consecutive opcode modification can easily escape the detection. [13] is
a scalable algorithm that can detect the “piggybacked” apps. A “piggybacked”
app refers to the app that plagiarists attach the malicious payloads in an inde-
pendent package. It can’t detect the payload in the original packages. What’s
more, it uses feature fingerprinting to represent the primary module, which is
vulnerable to simple obfuscation techniques.

DNADroid [17] is more robust than the algorithms above. It uses the semantic
information to detect repackaged apps. In detail, it uses PDG (only data depen-
dency) to represent a method and computes pair-wise similarity score. Hence the
robustness of DNADroid is equal to that of PDG. Obfuscation techniques such
as adding data related variables can be utilized to change the data dependency in
PDG, which will effectively cause false negative. AnDarwin [14] is the advanced
version of DNADroid. It still uses PDG to uniquely represent a method. To meet
scalability, it clusters similar apps based on the semantic vectors extracted from
PDGs and thus is more vulnerable to obfuscation than DNADroid.

As various detection algorithms are proposed, [15] provides a framework for
evaluating the obfuscation resilience. It applies this framework to evaluate An-
droGuard [9] to find out that even simple obfuscation techniques can be applied
to potentially cause false negative.

With respect to malware variant detection, a few static algorithms can work
to some extent [13] [14] [20]. However, they all unintentionally find some variants
when detecting repackaged apps. But our work can automatically extract the sig-
natures and make a systematic examination on malware families. [23] proposes
a malware variant detection algorithm in the desktop environment. It leverages
the high-level models abstracted from the control flow graphs. This work differs
from ours mainly in three aspects. First, our system can detect repackaged apps
besides malware variants. Second, DroidSim works on a different platform An-
droid. We develop a tool that constructs the control flow graphs from the smali
code because of the lack of similar tools in Android. And some specific features
like reflection, callbacks and multi-threading bring new challenges to us. Third,
Android malwares often implement the malicious payload in relatively indepen-
dent components, using CB-CFGs is more efficient.

7 Conclusion

We present DroidSim, a tool that can detect code reuse in an accurate and robust
way. In contrast with the earlier approaches, our system aims to detect code reuse
in a more accurate way. DroidSim extracts CB-CFGs and author information to
uniquely represent an app. It computes the similarity score based on CB-CFGs.

154 X. Sun et al.

We apply DroidSim to respectively detect repackaged apps and malware variants.
Our results indicate that it can effectively detect the repackaged apps with no
false negative and considerably low false positive rate. For malware variants, it
automatically extracts signatures for 8 malware families and gains a detection
ratio of 96.60% in average. All the results have demonstrated the effectiveness
and robustness of our system.

Acknowledgments. We would like to thank the anonymous reviewers for their
comments. This work was supported in part by grants from the Chinese National
Natural Science Foundation (61073027, 60773171, 90818022, 61272078, and
61321491), and the Chinese National 863 High-Tech Program (2007AA01Z448,
2011AA01A202).

References

1. Android Nears 80% Market Share in Global Smartphone Shipments,
http://techcrunch.com/2013/08/07/android-nears-80-market-share-in-

global-smartphone-shipments-as-ios-

and-blackberry-share-slides-per-idc/

2. Apple Inc., https://itunes.apple.com/us/genre/ios/id36?mt=8
3. Google Inc., https://play.google.com/store?hl=en&tab=w8
4. Android’sGooglePlaybeatsAppStorewith over 1million apps, nowofficially largest,

http://www.phonearena.com/news/Androids-Google-Play-beats-App-Store-

with-over-1-million-apps-now-officially-largest id45680

5. Android-apktool, https://code.google.com/p/android-apktool/
6. Lookout Inc. Gamex Trojan,

https://www.lookout.com/resources/top-threats/gamex-trojan
7. Smali - An assembler/disassembler for Android’s dex format,

http://code.google.com/p/smali/
8. Google Inc. Signing Your Applications,

http://developer.android.com/tools/publishing/app-signing.html
9. AndroGuard: Reverse engineering, Malware and goodware of Android applications,

http://code.google.com/p/androguard/
10. Clint, G., Ryan, S., Jonathan, C., Hao, C., Hui, Z., Heesook, C.: AdRob: Examining

the Landscape and Impact of AndroidApplication Plagiarism. In: 11th International
Conference on Mobile Systems, Applications and Services (Mobisys), pp. 431–444.
ACM Press, Taipei (2013)

11. Zhou, Y., Jiang, X.: Dissecting android malware: Characterization and evolution.
In: The 2012 IEEE Symposium on Security and Privacy (S&P), pp. 95–109. IEEE
Press, Oakland (2012)

12. Wu, Z., Yajin, Z., Xuxian, J., Peng, N.: DroidMoss: Detecting Repackaged Smart-
phone Applications in Third-party Android Marketplaces. In: 2nd ACMConference
on Data and Application Security and Privacy (CODASPY), pp. 317–326. ACM
Press, San Antonio (2012)

13. Wu, Z., Yajin, Z., Michael, G., Xuxian, J., Shihong, Z.: Fast, Scalable Detection
of Piggybacked Mobile Applications. In: 3rd ACM Conference on Data and Appli-
cation Security and Privacy (CODASPY), pp. 185–196. ACM Press, San Antonio
(2013)

http://techcrunch.com/2013/08/07/android-nears-80-market-share-in-global-smartphone-shipments-as-ios-and-blackberry-share-slides-per-idc/
http://techcrunch.com/2013/08/07/android-nears-80-market-share-in-global-smartphone-shipments-as-ios-and-blackberry-share-slides-per-idc/
http://techcrunch.com/2013/08/07/android-nears-80-market-share-in-global-smartphone-shipments-as-ios-and-blackberry-share-slides-per-idc/
https://itunes.apple.com/us/genre/ios/id36?mt=8
https://play.google.com/store?hl=en&tab=w8
http://www.phonearena.com/news/Androids-Google-Play-beats-App-Store-with-over-1-million-apps-now-officially-largest_id45680
http://www.phonearena.com/news/Androids-Google-Play-beats-App-Store-with-over-1-million-apps-now-officially-largest_id45680
https://code.google.com/p/android-apktool/
https://www.lookout.com/resources/top-threats/gamex-trojan
http://code.google.com/p/smali/
http://developer.android.com/tools/publishing/app-signing.html
http://code.google.com/p/androguard/

Detecting Code Reuse in Android Applications Using CB-CFG 155

14. Crussell, J., Gibler, C., Chen, H.: AnDarwin: Scalable Semantics-Based Detection
of Similar Android Applications. In: Crampton, J., Jajodia, S., Mayes, K. (eds.)
ESORICS 2013. LNCS, vol. 8134, pp. 182–199. Springer, Heidelberg (2013)

15. Huang, H., Zhu, S., Liu, P., Wu, D.: A framework for evaluating mobile app repack-
aging detection. In: Huth, M., Asokan, N., Čapkun, S., Flechais, I., Coles-Kemp,
L. (eds.) TRUST 2013. LNCS, vol. 7904, pp. 169–186. Springer, Heidelberg (2013)

16. Vaibhav, R., Yan, C., Xuxian, J.: DroidChameleon: Evaluating Android anti-
malware against transformation attacks. In: 8th ACM SIGSAC Symposium on
Information, Computer and Communications Security (ASIACCS), pp. 329–334.
ACM Press, Hangzhou (2013)

17. Crussell, J., Gibler, C., Chen, H.: Attack of the Clones: Detecting Cloned Applica-
tions on Android Markets. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS
2012. LNCS, vol. 7459, pp. 37–54. Springer, Heidelberg (2012)

18. Potharaju, R., Newell, A., Nita-Rotaru, C., Zhang, X.: Plagiarizing smartphone
applications: Attack strategies and defense techniques. In: Barthe, G., Livshits,
B., Scandariato, R. (eds.) ESSoS 2012. LNCS, vol. 7159, pp. 106–120. Springer,
Heidelberg (2012)

19. Liugi, P., Pasquale, F., Carlo, S., Mario, V.: A (sub)graph isomorphism algorithm
for matching large graphs. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 1367–1372 (2004)

20. Hanna, S., Huang, L., Wu, E., Li, S., Chen, C., Song, D.: Juxtapp: A Scalable
System for Detecting Code Reuse among Android Applications. In: Flegel, U.,
Markatos, E., Robertson, W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 62–81.
Springer, Heidelberg (2013)

21. Saul, S., Danial, S., Alex, A.: Winnowing: Local Algorithms for Document Fin-
gerprinting. In: 2003 ACM SIGMOD International Conference on Management of
Data (SIGMOD), pp. 76–85. ACM Press, New York (2003)

22. Zheng, M., Lee, P.P.C., Lui, J.C.S.: ADAM: An Automatic and Extensible Platform
to Stress Test Android Anti-virus Systems. In: Flegel, U., Markatos, E., Robertson,
W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 82–101. Springer, Heidelberg (2013)

23. Silvio, C., Yang, X.: Malware Variant Detection Using Similarity Search over Sets
of Control Flow Graphs. In: 10th International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom), pp. 181–189. IEEE Press,
Changsha (2011)

	Detecting Code Reuse in Android Applications
Using Component-Based Control Flow Graph

	1 Introduction
	2 System Overview
	2.1 Threat Model
	2.2 Assumption
	2.3 Methodology

	3 Design and Implementation
	3.1 Pre-processing
	3.2 Constructing Component-Based Control Flow Graph (CB-CFG)

	3.3 Similar App Detection

	4 Evaluation
	4.1 Experimental Setup
	4.2 Dataset Statistics
	4.3 Repackaged App Detection
	4.4 Malware Variant Detection

	5 Discussion
	6 Related Work
	7 Conclusion
	References

