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Abstract. A t-round key-alternating cipher (also called iterated Even-
Mansour cipher) can be viewed as an abstraction of AES. It defines a
cipher E from t fixed public permutations P1, . . . , Pt : {0, 1}n → {0, 1}n
and a key k = k0‖ · · · ‖kt ∈ {0, 1}n(t+1) by setting Ek(x) = kt⊕Pt(kt−1⊕
Pt−1(· · · k1⊕P1(k0⊕x) · · · )). The indistinguishability of Ek from a truly
random permutation by an adversary who also has oracle access to the
(public) random permutations P1, . . . , Pt was investigated in 1997 by
Even and Mansour for t = 1 and for higher values of t in a series of recent
papers. For t = 1, Even and Mansour proved indistinguishability security
up to 2n/2 queries, which is tight. Much later Bogdanov et al. (2011)

conjectured that security should be 2
t

t+1
n queries for general t, which

matches an easy distinguishing attack (so security cannot be more). A
number of partial results have been obtained supporting this conjecture,
besides Even and Mansour’s original result for t = 1: Bogdanov et al.

proved security of 2
2
3
n for t ≥ 2, Steinberger (2012) proved security of

2
3
4
n for t ≥ 3, and Lampe, Patarin and Seurin (2012) proved security of

2
t

t+2
n for all even values of t, thus “barely” falling short of the desired

2
t

t+1
n.

Our contribution in this work is to prove the long-sought-for secu-

rity bound of 2
t

t+1
n, up to a constant multiplicative factor depending

on t. Our method is essentially an application of Patarin’s H-coefficient
technique.

1 Introduction

Given t permutations P1, . . ., Pt : {0, 1}n → {0, 1}n the t-round key-alternating
cipher based on P1, . . . , Pt is a blockcipher E : {0, 1}(t+1)n×{0, 1}n → {0, 1}n of
keyspace {0, 1}(t+1)n and message space {0, 1}n, where for a key k=k0‖k1‖ · · · ‖kt
∈ {0, 1}(t+1)n and a message x ∈ {0, 1}n we set

E(k, x) = kt ⊕ Pt(kt−1 ⊕ Pt−1(· · ·P1(k0 ⊕ x) · · · )). (1)

(See Figure 1.) Plainly, E(k, ·) is a permutation of {0, 1}n for each fixed k ∈
{0, 1}(t+1)n; we let E−1(k, ·) denote the inverse permutation. The Pi’s are called
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Fig. 1. A t-round key alternating cipher

the round permutations of E and t is the number of rounds of E. Thus t and
the permutations P1, . . . , Pt are parameters determining E.

Key-alternating ciphers were first proposed (for values of t greater than 1) by
the designers of AES [5,6], the Advanced Encryption Standard. Indeed, AES-128
itself can be viewed as a particular instantiation of the key-alternating cipher
paradigm in which the round permutations P1, . . . , Pt equal a single permutation
P (the Rijndael round function, in this case), in which t = 10, and in which only
a subset of the {0, 1}(t+1)n = {0, 1}11n possible keys are used (more precisely,
the 11n bits of key are derived pseudorandomly from a seed of n bits, making the
key space {0, 1}n = {0, 1}128). However, for t = 1 the design was proposed much
earlier by Even and Mansour as a means of constructing a blockcipher from a
fixed permutation [7]. Indeed, key-alternating ciphers also go by the name of
iterated Even-Mansour ciphers.

Even and Mansour accompanied their proposal with “provable security” guar-
antees by showing that, for t = 1, an adversary needs roughly 2n/2 queries to
distinguish E(k, ·) for a random key k (k being hidden from the adversary) from
a true random permutation, in a model where the adversary is given oracle ac-
cess to E(k, ·), E−1(k, ·) as well as to P1, P

−1
1 , where P1 is modeled as a random

permutation (in the dummy world, the adversary is given oracle access to two in-
dependent random permutations and their inverses). Their bound was matched
by Daemen [4], who showed a 2n/2-query distinguishing attack for t = 1.

For t > 1, we can generalize the Even-Mansour indistinguishability exper-
iment by giving the adversary oracle access to P1, . . . , Pt and their inverses
and to E(k, ·), E−1(k, ·) in the real world (for a randomly chosen, hidden k ∈
{0, 1}(t+1)n), and to a tuple of t + 1 independent random permutations and
their inverses in the “ideal” or “dummy” world (see Figure 2). In this case, Dae-

men’s attack can be easily generalized to an attack of query complexity 2
t

t+1n,
as pointed out by Bogdanov et al. [2], but the security analysis of Even and
Mansour could not be easily generalized to match this bound.

Bogdanov et al. did show, though, security of 2
2
3n for t ≥ 2 (modulo lower-

order terms), which is tight for t = 2 as it matches the 2
t

t+1n-query attack. Later

Steinberger [19] improved this bound to 2
3
4n queries for t ≥ 3 by modifying tech-

nical aspects of Bogdanov et al.’s analysis. Orthogonally and simultaneously,
Lampe, Patarin and Seurin [13] used coupling-based techniques to show secu-

rity of 2
t

t+1n queries for nonadaptive adversaries and security 2
t

t+2n for adaptive
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adversaries (and even values of t). While the bound 2
t

t+2n might seem “almost”
sharp, we note that

2
t

t+2n = 2
(t/2)

(t/2)+1
n

is actually the conjectured adaptive security for t/2 rounds. Indeed, Lampe et
al. basically show that an adaptive adversary attacking the t-round construction
has no more advantage than a nonadapative adversary attacking t/2 rounds (this
reduction follows upon work of Maurer et al. [16, 17]). Seen this way, Lampe et
al.’s result appears less sharp. The issue is not only qualitative since their bound
only improves on Steinberger’s for t ≥ 8.

Our results. In this paper we finally prove security of 2
t

t+1n queries for key-
alternating ciphers, which has been the conjectured security since the paper of
Bogdanov et al., and which is provably tight by the attack in the same paper.
More precisely, we show that an adaptive adversary making at most q queries to
each of its oracles has distinguishing advantage bounded by O(1)qt+1/N t+O(1),
where N = 2n and the two O(1) terms depend on t. (See Section 2 for a formal
statement.)

Our techniques are (maybe disappointingly) not as conceptually novel as those
of [19] or [13], as we simply apply Patarin’s H-coefficient technique. The crucial
step is lower bounding the probability of a certain event, namely of the event
that q input-output values become linked when t partially defined composed
permutations (whose composition so far poses no contradiction to the linking of
said q input-output pairs) are randomly extended. The surprising aspect of these
computations is that various “second-order” factors (that one might otherwise
expect to not matter) actually need to be taken into account. Informally, this can
be ascribed to the fact that the values of q under consideration are far beyond
birthday.

Besides shedding some light on the structural and probabilistic aspects of key-
alternating ciphers in the ideal permutation model, we also hope this paper will
serve as a useful additional tutorial on (or introduction to) Patarin’s H-coefficient
technique, which still seems to suffer from a lack of exposure.

We note that [13] also uses H-coefficient-based techniques and, indeed, our
approach is much more closely inspired by that of [13] than by [2, 19].

Paper organization. Definitions relating to key-alternating ciphers as well as
a formal statement of our main result are given in Section 2. An overview of the
H-coefficient technique is given in Section 3. The proof of the main theorem is
given in Section 4, while a key lemma is proved in the paper’s full version [3].

Extensions. As we note in the proof, our main result holds even if the subkeys
k0, . . . , kt are only t-wise independent instead of (t+ 1)-wise independent. This
is particularly interesting for t = 1. Along different lines, and as pointed out to
us by Jooyoung Lee, our result also implies tight security bounds for the “XOR-
cascade” cipher introduced by Gaži and Tessaro [9,10] via a reduction by Peter
Gaži [10, 11].



330 S. Chen and J. Steinberger

2 Definitions and Main Result

A t-round key-alternating cipher E has keyspace {0, 1}(t+1)n and message space
{0, 1}n. We refer back to equation (1) for the definition of E(k, x) (which im-
plicitly depends on the choice of round permutations P1, . . . , Pt). We note that
E−1(k, y) has an analoguous formula in which P−1

t , . . . , P−1
1 are called. We write

Ek for the permutation E(k, ·).
We work in the ideal permutation model. For our purposes, the PRP security

of a t-round key-alternating cipher E against a distinguisher (or “adversary”) D
is defined as

AdvPRP
E,t (D) = Pr[k = k0 · · · kt ←− {0, 1}(t+1)n ;DEk,P1,...,Pt = 1]− Pr[DQ,P1,...,Pt = 1]

(2)

where in each experiment Q, P1, . . . , Pt are independent uniform random per-
mutations, where DA denotes that D has oracle access to A and A−1 (since
all oracles are permutations), and where k = k0 · · · kt is selected uniformly at
random (and hidden from D). See Figure 2. We further define

AdvPRP
E,t (qe, q) = max

D
AdvPRP

E,t (D)

where the maximum is taken over all distinguishers D that make at most qe
queries to their first oracle and at most q queries to each of their other oracles.
(The notation AdvPRP

E,t (·) is thus overloaded.) Accounting for cipher queries and
permutation queries separately has the main advantage of clarifying “which q is
which” in the security bound. We also note that, besides t, n is a parameter on
which E (and hence AdvPRP

E,t (q)) depends.
(As an aside, we note the above indistinguishability experiment differs from

the recently popular framework of indifferentiability by, among others, the pres-
ence of a secret key and the absence of a simulator; the similarity, on the other

Ek P1
� � � � Pt

World 1

Q P1
� � � � Pt

World 2

D

Fig. 2. The two worlds for the Even-Mansour security experiment. In World 1 the
distinguisher D has oracle access to random permutations P1, . . . , Pt and the key-
alternating cipher Ek (cf. Eq. (1)) for a random key k. In World 2, D has oracle access
to t+1 independent random permutations. In either world D also has oracle access to
the inverse of each permutation.
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hand, is that the adversary can query the internal components of the structure.
The end goal of the security proof is also different, since we simply prove PRP-
security (with tight bounds) whereas indifferentiability aims to prove something
much stronger, but, typically, with much inferior bounds. See [1,14] for indiffer-
entiability results on key-alternating ciphers.)

Our main result is the following:

Theorem 1. Let N = 2n and let q ≤ N/3, t ≥ 1. Then for any constant C > 0,

AdvPRP
E,t (qe, q) ≤

qeq
t

N t
· Ct2(6C)t + (t+ 1)2

1

C
.

The presence of the adjustable constant C in Theorem 1 is typical of security
proofs that involve a threshold-based “bad event”. The constant corresponds to
the bad event’s (adjustable) threshold. Some terms in the security bound grow
with C, others decrease with C, and for every qe, q, t and N there is an optimal
C. Choosing

C =

(
(t+ 1)N t

6tt2qeqt

)1/(t+2)

(which happens to be the analytical optimum) and using a little algebra yields
the following, more readable corollary for the case q = qe:

Corollary 1. Let N = 2n, q ≤ N/3, t ≥ 1. Then

AdvPRP
E,t (q, q) ≤ (t+ 1)2(t+ 2)

(
6tq

N t/(t+1)

)(t+1)/(t+2)

. (3)

Security therefore holds up to about q ≈ N
t

t+1 /6t4, with “security exponent”
(t+1)/(t+2). Since t is typically viewed as a constant the polynomial factor 6t4 is
not bothersome from the asymptotic point of view even though, obviously, such
a factor considerably waters down the security bound for concrete parameters
like t = 10, n = 128. We also note that if we fix q and N and let t → ∞ then
(3) becomes worse and worse (i.e., closer to 1 and eventually greater than 1) for
sufficiently large t. This apparent security degradation is obviously an artefact
of our bound, since a straightforward reduction shows that security can only
increase with t.

3 The H-Coefficient Technique in a Nutshell

In this section we give a quick high-level outline of Patarin’s H-coefficient tech-
nique. This tutorial takes a broader view than Patarin’s own [18], but [18] men-
tions refinements for nonadaptive adversaries and “plaintext only” attacks that
we don’t touch upon here. We emphasize that the material in this section is
“informal by design”.

The general setting is that of a q-query information-theoretic distinguisher D
interacting with one of two oracles, the “real world” oracle or the “ideal world”
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oracle. (Each oracle might consist of several interfaces for D to query.) By such
interaction, D creates a transcript, which is a list of queries made and answers
returned. We can assume without loss of generality1 that D is deterministic, and
makes its final decision as a (deterministic) function of the transcript obtained.

Denoting X the probability distribution on transcripts induced by the real
world and denoting Y the probability distribution on transcripts induced by the
ideal world (for some fixed deterministic distinguisherD) then D’s distinguishing
advantage (cf. (2)) is easily seen to be upper bounded by

Δ(X,Y ) :=
1

2

∑
τ∈T

|Pr[X = τ ] − Pr[Y = τ ]|

(the so-called statistical distance or total variation distance between X and Y )
where T denotes the set of possible transcripts.

The technique’s central idea is to use the fact that

Δ(X,Y ) = 1− Eτ∼Y

[
min(1,Pr[X = τ ]/Pr[Y = τ ])

]
(4)

in order to upper bound Δ(X,Y ). Here Eτ∼Y [Z(τ)] is the expectation of the
random variable Z(τ) when τ is sampled according to Y , and one assumes
min(1,Pr[X = τ ]/Pr[Y = τ ]) = 1 if Pr[Y = τ ] = 0. For completeness we
record the easy proof of (4):

Δ(X,Y ) =
∑

τ∈T :Pr[Y=τ ]>Pr[X=τ ]

(Pr[Y = τ ]− Pr[X = τ ])

=
∑

τ∈T :Pr[Y=τ ]>Pr[X=τ ]

Pr[Y = τ ](1 − Pr[X = τ ]/Pr[Y = τ ])

=
∑
τ∈T

Pr[Y = τ ](1 −min(1,Pr[X = τ ]/Pr[Y = τ ]))

= 1− Eτ∼Y

[
min(1,Pr[X = τ ]/Pr[Y = τ ])

]
.

Thus, by (4), upper bounding the distinguisher’s advantage reduces to lower
bounding the expectation

Eτ∼Y

[
min(1,Pr[X = τ ]/Pr[Y = τ ])

]
. (5)

Typically, some transcripts are better than others, in the sense that for some
transcripts τ the ratio

Pr[X = τ ]/Pr[Y = τ ]

might be quite small (when we would rather the ratio be near 1), but these
“bad” transcripts occur with small probability. A typical proof classifies the set
T of possible transcripts into a finite number of combinatorially distinct classes
T1, . . . , Tk and exhibits values ε1, . . . , εk ≥ 0 such that

τ ∈ Ti =⇒ Pr[X = τ ]/Pr[Y = τ ] ≥ 1− εi. (6)

1 See Appendix A.
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Then

Eτ∼Y

[
min(1,Pr[X = τ ]/Pr[Y = τ ])

]
≥

k∑
i=1

Pr[Y ∈ Ti](1 − εi)

and, by (4),

Δ(X,Y ) ≤
k∑

i=1

Pr[Y ∈ Ti]εi.

The “ideal world” random variable Y often has a very simple distribution, mak-
ing the probabilities Pr[Y ∈ Ti] easy to compute. On the other hand, proving
the lower bounds (6) for i = 1 . . . k can be difficult, and we rediscuss this issue
below.

Many proofs (including ours) have k = 2, with T1 consisting of the set of
“good” transcripts and T2 consisting of the set of “bad” transcripts (i.e., those
with small value of Pr[X = τ ]/Pr[Y = τ ]); then ε1 is small and ε2 is large, while
(hopefully) Pr[Y ∈ T1] is large and Pr[Y ∈ T2] is small, and

Δ(X,Y ) ≤ Pr[Y ∈ T1]ε1 + Pr[Y ∈ T2]ε2 ≤ ε1 + Pr[Y ∈ T2].

The final upper bound on Δ(X,Y ), in this case, can thus be verbalized as “one
minus the probability ratio of good transcripts [i.e., ε1], plus the probability of
a transcript being bad” (the latter probability being computed with respect to
the distribution Y ). This is the form taken by our own bound.

Lower bounding the ratio Pr[X = τ ]/Pr[Y = τ ]. The random variables
X and Y are, formally, defined on underlying probability spaces that contain
respectively all the coins needed for the real and ideal world experiments. To
be more illustrative, in the case of the key-alternating cipher distinguishability
experiment X ’s underlying probability space consists of all possible (t + 1)-
tuples of the form (k, P1, . . . , Pt) where k ∈ {0, 1}(t+1)n and where each Pi is
a permutation of {0, 1}n, while Y ’s underlying probability space is all (t + 1)-
tuples of the form (Q,P1, . . . , Pt) where Q as well as each Pi is a permutation of
{0, 1}n. (In either case the measure is uniform, and for simplicity we also assume
uniform—and hence finite—probability spaces in our discussion here.) For the
following, we write ΩX , ΩY for the probability spaces on which respectively X
and Y are defined. We note that each ω in ΩX or ΩY can be viewed as an oracle
for D to interact with, thus we may use phrases such as “D runs with oracle ω”,
etc. To summarize, X and Y are, formally, functions X : ΩX → T , Y : ΩY → T ,
where X(ω) is the transcript obtained by running D with oracle ω ∈ ΩX , and
where Y (ω) is the transcript obtained by running D oracle ω ∈ ΩY .

There is usually an obvious notion of “compatibility” between a transcript τ
and an element ω ∈ ΩX or ω ∈ ΩY . For example, in the case of key-alternating
ciphers, if τ contains a query to P1 and nothing else, the ω’s in ΩX that are
compatible with τ will be exactly those where the P1-coordinate of ω agrees
with the query in τ ; there are 2(t+1)n · (2n − 1)! · (2n!)t−1 such “compatible” ω’s
in ΩX . For the same transcript, there would be (2n − 1)! · (2n!)t compatible ω’s
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in ΩY . We write compX(τ) for the set of ω’s in ΩX compatible with a transcript
τ , and we define compY (τ) likewise with respect to ΩY .

We note that the statement “ω is compatible with τ” is actually not equivalent
to the statement “running D with oracle ω produces τ”. Indeed, some τ ’s may
never be produced byD at all; e.g., if a transcript τ contains more than q queries,
or if it contains queries to P1 when D is a distinguisher that never queries P1,
etc, then τ is never produced by D (i.e., Pr[X = τ ] = Pr[Y = τ ] = 0), but this
does not prevent compX(τ), compY (τ) from being well-defined.

A central insight of the H-coefficient technique (but which is usually taken for
granted and used without mention) is that when τ is a possible transcript of D
at all (i.e., if either Pr[X = τ ] > 0 or Pr[Y = τ ] > 0) then

Pr[X = τ ] =
|compX(τ)|

|ΩX | and Pr[Y = τ ] =
|compY (τ)|

|ΩY |
. (7)

These equalities, argued below, might seem obvious (or not) but one should note
they carry some counterintuitive consequences. Firstly:

(c1) The order in which queries appear in a transcript τ does not affect the
probability of τ

occuring; only the set of queries appearing in τ matters.

(This because the sets compX(τ), compY (τ) are unaffected by the order with
which queries appear in τ .) Along the same lines, one has:

(c2) If two different (deterministic) distinguishers can obtain a transcript τ
each with nonzero

probability, these distinguishers will obtain τ with equal probability. Moreover,
by (c1), this

holds even if the transcript carries no information about the order in which
queries are made.

(This because the right-hand sides in (7) are distinguisher-independent.) Thus,
if D1 and D2 are two adaptive, deterministic distinguishers that can arrive (by
a potentially completely different query order) at transcripts τ1 and τ2 that
contain the same set of queries, then D1 has the same probability of obtaining
τ1 asD2 has of obtaining τ2, with this equality holding separately both in the real
and ideal worlds. While very basic, the order-independence property (c1) and
distinguisher-independence property (c2) of deterministic distinguishers seem
not to have been highlighted anywhere before2.

We now informally argue (7), focusing on the first equality (the X-world)
for concreteness. Firstly, executing D with an ω ∈ ΩX , ω /∈ compX(τ) can
obviously not produce τ as a transcript, since ω is not compatible with τ . It
therefore suffices to show that running D on an oracle ω ∈ compX(τ) produces

2 A bit of thought reveals that (c1), (c2) hold for any experiment involving stateless
oracles. More precisely, the oracle’s answer is a deterministic function of a random
tape sampled at the beginning of the experiment.



Tight Security Bounds for Key-Alternating Ciphers 335

the transcript τ . For this, we know by assumption that there exists3 an ω′ ∈
ΩX ∪ΩY such that running D on oracle ω′ produces τ . However, one can show
by induction on the number of queries made by D that the computations Dω

and Dω′
will not “diverge”, since every time D makes a query to ω′ this query

appears in τ and, hence, because ω ∈ compX(τ), will be answered the same by ω
(also recall that D is deterministic). Hence Dω will produce the same transcript
as Dω′

, i.e., τ .
By (7), the ratio Pr[X = τ ]/Pr[Y = τ ] is equal to

PrΩX [ω ∈ compX(τ)]

PrΩY [ω ∈ compY (τ)]
. (8)

Here PrΩX [ω ∈ compX(τ)] = |compX(τ)|/|ΩX |, PrΩY [ω ∈ compY (τ)] =
|compY (τ)|/|ΩY | are different notations4 for the ratios appearing in (7).

Looking at (8) it is possible to wonder whether anything substantial has been
gained so far, or whether notations are simply being shuffled around; after all,
Pr[X = τ ] and PrΩX [ω ∈ compX(τ)] are “obviously the same thing”5 (and the
same for Y ). However the probability PrΩX [ω ∈ compX(τ)] offers a considerable
conceptual advantage over the probability Pr[X = τ ], as PrΩX [ω ∈ compX(τ)]
refers to an experiment with a non-adaptive flavor (a transcript τ is fixed, and
a uniform random element of ΩX is drawn—what is the probability of compat-
ibility?) while the probability Pr[X = τ ] refers, by definition, to the adaptive
interaction of D with its oracle, which is much messier to think about. Indeed,
(c1) and (c2) already show that adaptivity is in a sense “thrown out” when (7)
is applied.

4 Proof of Theorem 1

We make the standard simplifying assumption that the distinguisher D is deter-
ministic. For simplicity, moreover, we assume that D makes exactly qe queries to
its first oracle and exactly q queries to each of its other oracles. This is without
loss of generality.

We refer to the case where D has an oracle tuple of the type (Ek, P1, . . . , Pt)
as the “real world” and to the case when D has an oracle tuple of the type
(Q,P1, . . . , Pt) as the “ideal world”. For convenience, we will be generous with
the distinguisher in the following way: at the end of the experiment (when the
distinguisher has made its (t+1)q queries, but before the distinguisher outputs its

3 Here ω′ could also lie outside ΩX ∪ΩY ; the argument goes through as long as there
exists some oracle leading to the transcript τ .

4 In fact, replacing |compX(τ )|/|ΩX | and |compX(τ )|/|ΩX | by respectively PrΩX [ω ∈
compX(τ )] and PrΩY [ω ∈ compY (τ )] in (7) gives a more general formulation of
these identities, for cases where the probability distributions on ΩX , ΩY are not
uniform. We prefer the fractions |compX(τ )|/|ΩX |, |compX(τ )|/|ΩX | because these
expressions seem more concrete.

5 In fact, as already pointed out, Pr[X = τ ] and PrΩX [ω ∈ compX(τ )] are not the
same thing for τ ’s outside the range of D.
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decision) we reveal the key k = k0k1 · · · kt to the distinguisher in the real world,
while in the ideal world we sample a dummy key k′ = k′0k

′
1 · · · k′t and reveal this

dummy key to the distinguisher. A distinguisher playing this “enhanced” game
is obviously at no disadvantage, since it can disregard the key if it wants.

For the remainder of the proof we consider a fixed distinguisher D conforming
to the conventions above. We can summarize D’s interaction with its oracles
by a transcript consisting of a sequence of tuples of the form (i, σ, x, y) where
i ∈ {0, . . . , t}, σ ∈ {+,−} and x, y ∈ {0, 1}n, plus the key value k at the end
of the transcript. If σ = + such a tuple denotes that D made the query Pi(x)
obtaining answer y, or if σ = − that D made the query P−1

i (y) obtaining answer
x, and D’s interaction with its oracles (as well as D’s final output bit) can be
uniquely reconstructed from such a sequence of tuples. In fact, we can (and
shall) encode the transcript as an unordered set of directionless tuples of the
form (i, x, y) (plus the key value k). Indeed, given that D is deterministic, D’s
interaction can still be reconstructed from such a transcript. (Consider that D
always makes the same first query, since it is deterministic; we can look up the
answer to this query in the transcript, deduce the second query made by D again
since D is deterministic, and so on.) All in all, therefore, the transcript can be
encoded as a tuple (k, p0, p1, . . . , pt) where k ∈ {0, 1}(t+1)n is the key (real or
dummy) and where pi, i ≥ 1, is a table containing q pairs (x, y), where each
such pair either indicates a query Pi(x) = y or a query P−1

i (y) = x (which it
is can be deduced from the transcript), and where p0 similarly contains the qe
input-output pairs queried to the cipher. One can also view pi as a bipartite
graph with shores {0, 1}n and containing q (resp. qe, in the case of p0) disjoint
edges.

We let T denote the set of all possible transcripts, i.e., the set of all tuples of
the form (k, p0, . . . , pt) as described above. We note that some elements of T —
in fact, most elements—may never be obtained by D. For example, if D’s first
query is P1(0

n) then (this first query never varies and) any transcript obtained
by D contains a pair of the form (0n, y) in the table p1, for some y ∈ {0, 1}n.

Let P be the set of all permutations of {0, 1}n; thus |P| = (2n)!. Let Pt =
P × · · · × P be the t-fold direct product of P . Let ΩX = {0, 1}(t+1)n × Pt and
let ΩY = {0, 1}(t+1)n×Pt+1. In the obvious way, elements of ΩX can be viewed
as real world oracles for D while elements of ΩY can be viewed as “ideal world”
oracles for D. (We note that ΩY is slightly different from the ΩY appearing in
the discussion of Section 3, due to our convention of giving away the key as part
of the transcript.) We write X(ω) for the transcript obtained by running D with
oracle ω ∈ ΩX , and Y (ω) for the transcript obtained by running D with oracle
ω ∈ ΩY . By endowing ΩX , ΩY with the uniform probability distribution, X and
Y become random variables of range T , whose distributions are exactly those
obtained by running D in the real and ideal worlds respectively.

Since D’s output is a deterministic function of the transcript, D’s distinguish-
ing advantage is upper bounded by Δ(X,Y ). In order to upper bound Δ(X,Y )
we make use of the equality

Δ(X,Y ) = 1− Eτ∼Y

[
min(1,Pr[X = τ ]/Pr[Y = τ ])

]
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mentioned in Section 3. More precisely, we will identify a set T1 ⊆ T of “good”
query transcripts, and a set T2 ⊆ T of “bad” transcripts, such that T is the
disjoint union of T1 and T2. Then, as shown in Section 3,

Δ(X,Y ) ≤ ε1 + Pr[Y ∈ T2] (9)

where ε1 is a number such that

Pr[X = τ ]

Pr[Y = τ ]
≥ 1− ε1

for all τ ∈ T1 such that Pr[Y = τ ] > 0. Theorem 1 will follow by showing that

Pr[Y ∈ T2] ≤ (t+ 1)2
1

C
and τ ∈ T1 =⇒ Pr[X = τ ]

Pr[Y = τ ]
≥ 1− ε1 (10)

where C is a constant appearing in the definition of a “bad” transcript, and where

ε1 = qe
(

q
N

)t
Ct2(6C)t is the first term appearing in the bound of Theorem 1.

For the remainder of the proof we assume that Cqeq
t < N t. This is without loss

of generality since Theorem 1 is vacuous otherwise.

Bad Transcripts. Let τ = (k, p0, p1, . . . , pt) ∈ T be a transcript. We associate
to τ a graph G(τ), dubbed the round graph, that encodes the information con-
tained in k as well as in p1, . . . , pt (but that ignores p0). G(τ) has 2(t+ 1) · 2n
vertices, grouped into “shores” of size 2n each, with each shore being identified
with a copy {0, 1}n. We index the 2(t+ 1) shores as 0−, 0+, 1−, 1+, . . ., t−, t+.
Vertex y in shore i− is connected to vertex y ⊕ ki in shore i+ by an edge, and
these are the only edges between shores i− and i+. Moreover, for each (x, y) ∈ pi,
1 ≤ i ≤ t, we connect vertex x in shore (i − 1)+ to vertex y in shore i−. Thus
G(τ) consists of (t + 1) full bipartite matchings (one per subkey) alternately
glued with q-edge partial matchings (one for each pi, 1 ≤ i ≤ t). Since G(τ)
encodes all the information in k, p1, . . . , pt, we can also write a transcript τ in
the form τ = (p0, G) where G = G(τ).

Obviously, the presence of the full bipartite graphs corresponding to the sub-
keys k0, . . . , kt within G(τ) is not topologically interesting. Call an edge of G(τ)
a “key edge” if the edge joins the shores i−, i+ for some i ∈ {0, . . . , t}. We then
define the contracted round graph G̃(τ) obtained from G(τ) by contracting all
key edges; thus G̃(τ) has only t + 1 shores; moreover, when an edge (y, y ⊕ ki)
between shores i−, i+ of G(τ) is contracted, the resulting vertex of G̃(τ) is given
label y if 0 ≤ i ≤ t− 1, and is given label y⊕ ki if i = t. (The labeling of vertices
of G̃(τ) is somewhat unimportant and arbitrary, but we adopt the above con-
vention so that vertices in shores 0− and t+ of G(τ) keep their original labels in
G̃(τ). The latter ensures compatibility between these vertex labels and triples in
p0.) We note that a transcript τ is not determined by the pair (p0, G̃(τ)) (the key
material being unrecoverable from the latter pair) but, as we will see, Pr[X = τ ]
is determined by (p0, G̃(τ)).

An edge between shores (i− 1) and i of G̃(τ) is called an i-edge. (Each i-edge
arises from an entry in pi.) We write Zij(G̃(τ)) for the set of (necessarily edge-

disjoint) paths that exists between shores i and j of G̃(τ). We write Z−
ij (G̃(τ)),
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Z+
ij (G̃(τ)) for vertices of paths in Zij(G̃(τ)) that are respectively in shores i and

j of G̃(τ). We write p−0 = {x : (x, y) ∈ p0} and p+0 = {y : (x, y) ∈ p0} be the
projection of p0 to its first and second coordinates respectively.

We say a transcript τ is bad if there exist 0 ≤ i < j ≤ t such that

|Zij(G̃(τ))| > Cqj−i

N j−i−1
(11)

or if there exists 0 ≤ i ≤ j ≤ t such that

|{(x, y) ∈ p0 : x ∈ Z−
0,i(G̃(τ)) ∧ y ∈ Z+

j,t(G̃(τ))}| > Cqeq
i+t−j

N i+t−j
. (12)

To motivate this definition we note that qj−i/N j−i−1 is exactly the expected
number of paths from shore i to shore j in the ideal world, whereas, likewise,
qeq

i+t−j/N i+t−j is the expected number of paths from shore j to shore i that
“wrap around” through an edge in p0 (though such edges are not encoded in
G̃(τ) and, hence, such “wrap around” paths don’t physically exist in G̃(τ)). The
set of bad transcripts is denoted T2 and we let T1 = T \T2. Transcripts in T1 are
called good.

The easy, Markov-inequality-based proof that Pr[Y ∈ T2] ≤ (t+ 1)2 1
C can be

found in this paper’s full version [3].

Lower bounding Pr[X = τ ]/Pr[Y = τ ] for τ ∈ T1. An element ω =
(k, P1, . . . , Pt) ∈ Ωx is compatible with a transcript τ = (k∗, p0, . . . , pt) if k = k∗,
if Pi(x) = y for every (x, y) ∈ pi, 1 ≤ i ≤ t, and if Ek(x) = y for every (x, y) ∈ p0,
where Ek stands for the Even-Mansour cipher instantiated with permutations
P1, . . . , Pt (and key k). We write compX(τ) for the set of w’s in ΩX that are
compatible with τ .

Analogously, an w = (k, P0, P1, . . . , Pt) ∈ ΩY is compatible with τ if the same
conditions as above are respected, but replacing the constraint Ek(x) = y with
P0(x) = y for (x, y) ∈ p0. We write compY (τ) for the set of ω’s in ΩY that are
compatible with τ .

We also say ω = (k, P1, . . . , Pt) is partially compatible with τ =
(k∗, p0, p1, . . . , pt) if k = k∗ and if Pi(x) = y for all (x, y) ∈ pi, 1 ≤ i ≤ t.
(Thus, the requirement that p0 agrees with Ek is dropped for partial compat-
ibility.) Likewise ω ∈ ΩY is partially compatible with τ if (exactly as above)
k = k∗ and Pi(x) = y for all (x, y) ∈ pi, 1 ≤ i ≤ t. (Thus, the requirement that
p0 agrees with P0 is dropped.) We write comp′X(τ), comp′Y (τ) for the set of ω’s
in, respectively, ΩX or ΩY that are partially compatible with τ . Note that

|comp′X(τ)|
|ΩX | =

|comp′Y (τ)|
|ΩY |

=
1

N t+1
·

t∏
i=1

(N − |pi|)!
N !

(13)

for any transcript τ = (k, p0, p1, . . . , pt), where |pi| denotes the number of pairs
in pi.
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We say that a transcript τ ∈ T is attainable if Pr[Y = τ ] > 0. (Note that
Pr[X = τ ] > 0 =⇒ Pr[Y = τ ] > 0.) In other words, a transcript is attainable
if there exists an ω ∈ ΩY such that Dω produces the transcript τ .

It is necessary and sufficient to lower bound Pr[X = τ ]/Pr[Y = τ ] for attain-
able transcripts τ ∈ T1. By (7) and (13),

Pr[X = τ ]

Pr[Y = τ ]
=

|compX(τ)|
|comp′X(τ)|

/
|compY (τ)|
|comp′Y (τ)|

(14)

for τ such that Pr[Y = τ ] > 0. (We emphasize that both equalities in (7) hold
as long as D produces τ as a transcript on some oracle in ΩX ∪ ΩY .) For the
remainder of the argument we fix an arbitrary transcript τ = (k, p0, p1, . . . , pt) ∈
T1. We aim to lower bound the right-hand side fraction in (14).

For random permutations P1, . . . , Pt and partial permutations p1, . . . , pt, let
Pi ↓ pi denote the event that Pi extends pi, i.e., that Pi(x) = y for all (x, y) ∈ pi;
then it is easy to see that

|compX(τ)|
|comp′X(τ)| = Pr

[
Ek ↓ p0

∣∣ k, P1 ↓ p1, . . . , Pt ↓ pk
]

(15)

where the underlying probability space is the choice of the uniform random
permutations P1, . . . , Pt (the notation conditions on τ ’s key k only to emphasize
that k is not randomly chosen) and where Ek ↓ p0 is the event that Ek(x) = y for
all (x, y) ∈ p0, whereEk is the Even-Mansour cipher with key k and permutations
P1, . . . , Pt. Similarly,

|compY (τ)|
|comp′Y (τ)|

= Pr
[
P0 ↓ p0

∣∣ k, P1 ↓ p1, . . . , Pt ↓ pk
]

where the underlying probability space is the uniform random choice ofP0, P1, . . . ,
Pt. In the latter conditional probability, however, the event P0 ↓ p0 is independent
of the conditioned premise, so

|compY (τ)|
|comp′Y (τ)|

= Pr
[
P0 ↓ p0

]
=

qe−1∏
�=0

1

N − �
. (16)

To facilitate the computation of the conditional probability that appears in
(15), let (in accordance with the definition of the graph G̃(τ) above) p̃i be defined
by

(x, y) ∈ p̃i ⇐⇒ (x ⊕ ki−1, y) ∈ pi

for 1 ≤ i ≤ t− 1, and by

(x, y) ∈ p̃i ⇐⇒ (x⊕ ki−1, y ⊕ ki) ∈ pi

for i = t. Thus p̃1, . . . , p̃t are the t edge sets of the graph G̃(τ), i.e., p̃i is the set
of edges between shores i − 1 and i of G̃(τ). By elementary considerations, one
has

Pr
[
Ek ↓ p0

∣∣ k, P1 ↓ p1, . . . , Pt ↓ pk
]
= Pr

[
E0 ↓ p0

∣∣P1 ↓ p̃1, . . . , Pt ↓ p̃k
]
(17)
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where E0 denotes the Even-Mansour cipher instantiated with key 0(t+1)n, and
where the probability is taken (on either side) over the choice of the uniform
random permutations P1, . . . , Pt. We will therefore focus on the right-hand side
probability in (17).

We say shore i of G̃(τ) is “to the left” of shore j if i < j. We also view paths
in G̃(τ) as oriented from left to right: the path “starts” at the leftmost vertex
and “ends” at the rightmost vertex.

Let (x1, y1), . . . , (xqe , yqe) be the qe edges in p0. We write R(x�) for the right-

most vertex in the path of G̃(τ) starting at x�, and L(y�) for the leftmost vertex
in the path of G̃(τ) ending at y�. (More often than not, x� and y� are not adjacent
to any edges of G̃(τ), in which case R(x�) = x�, L(y�) = y�.) We write the index
of the shore containing vertex v as Sh(v). (Thus Sh(v) ∈ {0, 1, . . . , t}.) Because
τ is good, and because we are assuming Cqe(q/N)t < 1, Sh(R(x�)) < Sh(L(y�))
for 1 ≤ � ≤ qe.

A vertex in shore i ≥ 1 is left-free if it is not adjacent to a vertex in shore
i− 1. A vertex in shore i ≤ t− 1 is right-free if it is not adjacent to a vertex in
shore i+ 1.

To compute the conditional probability

Pr
[
E0 ↓ p0

∣∣P1 ↓ p̃1, . . . , Pt ↓ p̃t
]

we imagine the following experiment in qe stages. Let G0 = G̃(τ). At the �-th
stage, G� is inductively defined from G�−1. Let p̃�i be the edges between shore
i− 1 and i of G�. Initially, G� = G�−1. Then, as long as R(x�) is not in shore t, a
value y is chosen uniformly at random from the set of left-free vertices in shore
Sh(R(x�)) + 1, and the edge (R(x�), y) is added to p̃�Sh(R(x�))+1. G� is the result

obtained when R(x�) reaches shore t. Thus, G� has at most t more edges than
G�−1.

Since the permutations P1, . . . , Pt are uniformly random and independently
chosen, it is easy to see that

Pr
[
E0 ↓ p0

∣∣P1 ↓ p̃1, . . . , Pt ↓ p̃t
]
= Pr

[
Gqe ↓ p0]

for the random graph Gqe defined in the process above, where the notation
Gqe ↓ p0 is a shorthand to indicate that vertices x� and y� are connected by a
path in Gqe for 1 ≤ � ≤ qe. Moreover, writing x� → y� for the event that x� and
y� are connected by a path in G� (and thus in Gqe), and writing G� ↓ p0 for the
event xj → yj for 1 ≤ j ≤ �, we finally find

|compX(τ)|
|comp′X(τ)| =

qe−1∏
�=0

Pr[x�+1 → y�+1 |G� ↓ p0]. (18)

This formula should be compared with (16). Indeed, (16) and (18) imply that

|compX(τ)|
|comp′X(τ)|

/
|compY (τ)|
|comp′Y (τ)|

=

qe−1∏
�=0

Pr[x�+1 → y�+1 |G� ↓ p0]

1/(N − �)
(19)
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which suggests that to lower bound Pr[X = τ ]/Pr[Y = τ ] one should compare
Pr[x�+1 → y�+1 |G� ↓ p0] and 1/(N − �). (More specifically, give a lower bound
for the former that is not much less than the latter.)

Some preliminaryquantitative intuition for (19).At this stagewe “pause”
the proof to give some quantitative intuition about the product that appears in
(19). The lower bounding of this product, indeed, is the heart of our proof. While
discussing intuition we will make the simplifying assumption that Sh(R(x�)) = 0,
Sh(L(y�)) = t for all 1 ≤ � ≤ qe (which, as it turns out, still captures the most
interesting features of the problem).

As a warm-up we can consider the case t = 1. In this case, firstly, the “simpli-
fying assumption” Sh(R(x�)) = 0, Sh(L(y�)) = 1 actually holds with probability
1 for all τ ∈ T1, by the second bad event in the definition of a bad transcript
(i.e., (12)), and by our wlog assumption that

1 > Cqe(q/N)t = Cqeq/N. (20)

(In more detail, the right-hand side of (12) is Cqeq/N for i = j = 0 or i = j = 1.
Thus, if there exists an (x�, y�) ∈ p0 such that either R(x�) = 1 or L(y�) = 0,
then τ ∈ T2.) Next (still for t = 1) it can be directly observed that

Pr
[
x�+1 → y�+1|G� ↓ p0

]
=

1

N − q − �

since p̃1 = p̃01 contains q edges and since � additional edges have been drawn by
the time G�+1 is constructed. In fact, the ratio 1/(N − q − �) is greater than
1/(N − �), which means that in this case the product (19) is also greater than
1, and one can therefore use ε1 = 0. I.e., for t = 1 the distinguisher’s advantage
is upper bounded by

ε1 + Pr[Y ∈ T2] ≤ 0 + Pr[Y ∈ T2] ≤
2qeq

N

where the last inequality is obtained by direct inspection of the event τ ∈ T2
for t = 1. (For t = 1, the only thing that can cause a transcript to be bad is if
p−0 ⊕k0∩p−1 �= ∅ or if p+0 ⊕k1∩p+1 �= ∅.) Note that even while Pr[X = τ ]/Pr[Y =
τ ] ≥ 1 for all τ ∈ T1 such that Pr[Y = τ ] > 0, one has Pr[X = τ ]/Pr[Y ∈ τ ] = 0
for most τ ∈ T2 such that Pr[Y = τ ] > 0. This is why ε1 can attain zero.

In passing, note we have proved the (2qeq/N)-security of the key-alternating
cipher for t = 1, which exactly recovers Even and Mansour’s original result for
t = 1. The difference is that the H-coefficient technique “mechanizes” the bound-
proving, to a certain extent. (Even and Mansour’s proof [7] is more complicated,
though it pursues the same basic idea. See also Kilian and Rogaway’s paper on
DESX [12] for a nice game-based take on this argument.)

Given these auspicious beginnings for t = 1 one might feel inclined to optimism
and to conjecture, say, that the product (19) is always greater than 1 for good
transcripts. However, these hopes are quickly dashed by the case t = 2. We do
an example. For this example, assume that p̃1 and p̃2 are disjoint, i.e., no edge
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in p̃1 touches an edge in p̃2. (Thus G0 = G̃(τ) contains no paths of length 2.)
The example will be clearer if we start by examining the case p̃1 = ∅ (i.e., when
there are no edges between shore 0 and shore 1). Then one can compute that6

Pr[x1 → y1] =

(
1− |p̃2|

N

)
1

N − |p̃2|
=

(
N − |p̃2|

N

)
1

N − |p̃2|
=

1

N

and more generally, one similarly computes

Pr[x�+1 → y�+1|G� ↓ p0] =

(
1− |p̃2|

N − �

)
1

N − �− |p̃2|
=

1

N − �
. (21)

for all 0 ≤ � ≤ qe − 1, since the vertex sampled in shore 1 to which x�+1 is
connected is sampled uniformly from a set of size N − �, and similarly the new
vertex sampled in shore 2 (if such vertex is sampled) comes uniformly from a
set of size N − � − |p̃2|. So far, so good: (21) is exactly the same probability as
in the ideal case.

Now we remove the assumption p̃1 = ∅, but keep the assumption that p̃1 and
p̃2 are disjoint. In this case, one has

Pr[x1 → y1] =

(
1− |p̃2|

N − |p̃1|

)
1

N − |p̃2|
=

(
N − 2q

N − q

)
1

N − q
=

N − 2q

(N − q)2
.

As our interest is to compare this quantity to 1/N , we further massage this
expression by writing

N − 2q

(N − q)2
=

1

N
− 1

N
+

N − 2q

(N − q)2
=

1

N
− (N − q)2

N(N − q)2
+

N(N − 2q)

N(N − q)2
=

1

N
− q2

N(N − q)2
.

More generally, one finds that

Pr[x�+1 → y�+1|G� ↓ p0] =

(
1−

|p̃2|

N − �− |p̃1|

)
1

N − �− |p̃2|
=

1

N − �
−

q2

(N − �)(N − �− q)2 (22)

as can be seen by substituting N by N − � everywhere in the first computation.
Thus the probability Pr[x�+1 → y�+1|G� ↓ p0] is now slightly lower than 1/(N−
�), which rules out the optimistic conjecture above. As for the value of the
product (19) one finds, by (22),

qe−1∏
�=0

(
1− q2

(N − �− q)2

)
≥

(
1− q2

(N − 2q)2

)qe

≥ 1− qeq
2

(N − 2q)2
.

6 In more detail: when we travel from x1 to y1, the sampling process first chooses a
random endpoint in shore 1 to attach x1 to, and this endpoint has probability |p̃2|/N
of “hitting” an edge in p̃2 (in which case we have no hope of reaching y1). If we don’t
hit an edge in p̃2, there is further chance 1/(N − |p̃2|) that we reach y1, since the
vertex in shore 2 is sampled uniformly at random from a set of size N − |p̃2|.
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This is acceptably close to 1 (i.e., taking ε1 = qeq
2/(N − 2q)2 is acceptably

close to zero) as long as qeq
2 � N2. We are (coincidentally or not, since the

assumption qeq
2 � N2 has already been used to upper bound Pr[τ ∈ T2])

“bumping into” the security bound for t = 2. Thus, the approach still works for
t = 2, but this time the approach “barely” works!

In fact, the simplifying assumption that p̃1 and p̃2 are disjoint can easily be
removed since, as is not hard to see, having p̃1 and p̃2 disjoint is actually the
worst case possible7 for t = 2.

Moreover, the initial simplifying assumption that R(x�) = 0, L(y�) = 2 for
all � is also easy to remove for t = 2, because Pr[x�+1 → y�+1|G� ↓ p0] actually
increases to 1/(N−q−�) (cf. the case t = 1) when either8 R(x�) = 1 or L(y�) = 1.
Thus, the above computations essentially prove security of qeq

2/N2 for t ≥ 2
(indeed, security is easily seen to “transfer upwards” from smaller to larger values
of t), which is the main result of Bogdanov et al. [2]. The proof sketched above
is arguably simpler than Bogdanov et al.’s, though. (Also, Bogdanov et al. seem
to forget that if the only goal is to prove security of qeq

2/N2 for t ≥ 2 it suffices
to restrict oneself to the case t = 2. Their general approach, however, can be
pushed slightly further to cover the case t = 3, as shown by Steinberger [19].)

We now consider the case t = 3. Already, doing an exact probability com-
putation for the conditional probability Pr[x�+1 → y�+1|G� ↓ p0] (as done in
(22) for t = 2) promises to be quite tedious for t = 3, so we can look at doing
back-of-the-envelope estimates instead. The simplest estimate is to lower bound
the probability of x�+1 reaching y�+1 by upper bounding the probability that
the path being constructed meets a pre-existing edge in either shore 1 or shore
2, viz.,

Pr[x�+1 → y�+1|G� ↓ p0] ≥
(
1− 2q

N − �− q

)
1

N − �− q
(23)

where 2q/(N − �− q) is a (crude) upper bound on the probability that the path
touches a pre-existing edge in either shore 1 or shore 2, and where 1/(N − �− q)
is the probability of reaching y�+1 if the path reaches a right-free vertex in shore
2. However, (23) is worse than (22), so we are heading at best for security of
ε1 ≈ qeq

2/N2 if we use this estimate. One can argue that 2q/(N − �− q) can be
replaced by q/(N − � − q) in (23) (because: if we hit an edge in p̃2 that is not
adjacent to an edge in p̃3 this only helps us, and if we hit an edge in p̃2 that is
adjacent to an edge in p̃3 this can be “billed” to the corresponding edge in p̃3)
but even so we are headed towards a security of qeq

2/N2, by comparison with

7 On the other hand, we cannot count on p̃1 and p̃2 having some small intersection
in order to possibly repair our optimistic conjecture. Indeed, the distinguisher could
make sure that p̃1 and p̃2 are almost certainly disjoint. For example, the distinguisher
could make q P2-queries with values that start with n/3 0’s, and also make q P−1

1 -
queries with values that start with n/3 0’s. Then p̃1 and p̃2 are disjoint unless the
first n/3 bits of the key are 0, which occurs with negligible probability.

8 Note that one always has R(x�) < L(y�) by the definition of T2 and by the wlog
assumption Cqeq

t < N t.
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(22). In fact, we can reflect that any approach that doesn’t somehow seriously
take into account the presence of three rounds is doomed to fail, because the
computation for t = 2 is actually tight (cf. footnote 7), and thus cannot be
tweaked to give security better than qeq

2/N2.
As it turns out, the “exact but tedious” probability computation that we shied

from above does deliver a bound that implies the desired security of qeq
3/N3,

even while back-of-the-envelope estimates indicate a security bound of qeq
2/N2.

Intuitively, the gain that occurs is due to the fact that when the path hits an
edge of p̃2 not connected to an edge of p̃3—and at most Cq2/N � q edges in
p̃2 are adjacent to edges in p̃3, by definition of T2—this is actually better than
not hitting any edge at all in shore 1, because it guarantees we won’t hit an
edge in p̃3. While this intuition is easy to see, it is somewhat harder to believe
such a small “second-order” effect would make a crucial difference in the final
security bound. Yet, this is exactly so. In fact, given the “completeness” of the
H-coefficient method it makes sense to have faith that the exact probability
computation (if doable) will deliver security qeq

3/N3. (Though in reality even
this is not a given: by giving away the key at the end of each transcript we
have been more generous to the adversary than those who devised the security
conjecture of qeq

t/N t, so it’s possible to conceive that it’s the “key’s fault” if the
security is (apparently) topping off at qeq

2/N2 (as opposed to the fault of our
lossy estimates). Note that even if we have the correct intuition, and we believe
it isn’t the “key’s fault” and that the approach is theoretically sound, we are still
up against the problem of actually doing the computations in a such way that
the desired security gain becomes apparent, and isn’t lost in a sea of fractions.)

Before proceeding with the exact-but-tedious computation for t = 3 it will
be useful if we first estimate what kind of lower bound is actually needed for
Pr[x�+1 → y�+1|G� ↓ p0] in order to reach overall security ≈ qeq

t/N t. Writing

Pr[x�+1 → y�+1|G� ↓ p0] =
1

N − �
+ zt

where zt is an “error term” whose magnitude will determine ε1, we find that

qe−1∏
�=0

Pr[x�+1 → y�+1|G� ↓ p0]

1/(N − �)
=

qe−1∏
�=0

(1−(N−�)zt) ≥ (1−N |zt|)qe ≥ 1−Nqe|zt|.

Thus we will have ε1 ≈ Nqe|zt| and so we need need Nqe|zt| � 1 in order for ε1
to be small. Having

|zt| = qt/N t+1 (24)

gives us precisely this under the assumption qeq
t/N t � 1.

Details on the case t = 3. Let Uij be the set of paths from shore i to
shore j in G(τ), 0 ≤ i < j ≤ 3, such that the vertex of the path in shore
i is left-free (i.e., is the head of the path), but where the vertex in shore j
may or may not be right-free. The Uij ’s are therefore “half-open” paths. Note
|Uij | ≤ |Zij | ≤ Cqj−1/N j−i−1 by definition of T2. For notational consistency
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with Lemma 1 below we rename p̃i as Ei for i = 1, 2, 3. Thus |Ei| = q and Ei

is the set of edges between shores (i− 1) and i of G̃(τ). Moreover, one can note
that Ei =

⋃
0≤j<i Uji for all i, with the latter being a disjoint union.

We start by computing Pr[x1 → y1], from which the general case Pr[x�+1 →
y�+1|G� ↓ p0] will be easy to deduce. We view the underlying probability space
as the selection of three vertices u1, u2 and u3 from shores 1, 2 and 3 of G̃(τ)
respectively, such that ui is selected independently and uniformly at random
from the set of left-free vertices in shore i. This defines a path w0 := x1, w1 := u1,
w2, w3 where w2 equals u2 if u1 is right-free and equals the other endpoint of
the edge adjacent to u1 otherwise, and where w3 equals u3 if w2 is right-free,
otherwise equals the vertex in shore 3 adjacent to w2. Then Pr[x1 → y1] is equal
to the probability that w3 = y1.

Since y1 is left-free we have

w3 = y1 ⇐⇒ (u3 = y1) ∧ ¬(w1 ∈ U13 ∨ w2 ∈ U23).

(The event ¬(w1 ∈ U13∨w2 ∈ U23) coincides with the event that w2 is right-free.)
Note the event u3 = y1 is independent from the event ¬(w1 ∈ U13 ∨ w2 ∈ U23),
and also that the events w1 ∈ U13 and w2 ∈ U23 are disjoint. Moreover,

w2 ∈ U23 ⇐⇒ (u2 ∈ U23) ∧ ¬(w1 ∈ U12)

since the vertices in shore 2 of U23 are left-free. By independence of u1 and u2,
thus,

Pr[w2 ∈ U23] = Pr[u2 ∈ U23] · (1 − Pr[w1 ∈ U12])

=
|U23|

N − |E2|

(
1− |U12|

N − |E1|

)

=
|U23|

N − |E2|
− |U12||U23|

(N − |E1|)(N − |E2|)
.

Thus

Pr[w3 = y1] = Pr[u3 = y1](1− Pr[w1 ∈ U13]− Pr[w2 ∈ U23])

=
1

N − |E3|

(
1− |U13|

N − |E1|
− |U23|

N − |E2|
+

|U12||U23|
(N − |E1|)(N − |E2|)

)

=
1

N − |E3|
− |U13|

(N − |E1|)(N − |E3|)
− |U23|

(N − |E2|)(N − |E3|)

+
|U12||U23|

(N − |E1|)(N − |E2|)(N − |E3|)
.

(Note that none of the terms above are as small as ≈ q3/N4 (cf. (24)), even
with the approximation 1

N−|Ei| ≈ 1
N , so none of the terms above can (yet) be

folded into the error term.) Adding and subtracting the “ideal” probability 1
N

to 1
N−|E3| gives

1

N
− 1

N
+

1

N − |E3|
=

1

N
+

|E3|
N(N − |E3|)

=
1

N
+

|U03|+ |U13|+ |U23|
N(N − |E3|)
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(Here |U03|
N(N−|E3|) is basically the same order of magnitude as q3/N4, given that

|U03| ≤ |Z03| ≤ Cq3/N2. So we can leave this term alone.) Next,

|U13|
N(N − |E3|)

−
|U13|

(N − |E1|)(N − |E3|)
= −

|E1||U13|
N(N − |E1|)(N − |E3|)

= −
|U01||U13|

N(N − |E1|)(N − |E3|)

(same order of magnitude as q3/N4, given that |U13| ≤ Cq2/N), and

|U23|
N(N − |E3|)

−
|U23|

(N − |E2|)(N − |E3|)
= −

|E2||U13|
N(N − |E2|)(N − |E3|)

= −
|U02||U13|

N(N − |E2|)(N − |E3|)
−

|U12||U23|
N(N − |E2|)(N − |E3|)

where only |U02||U13|
N(N−|E2|)(N−|E3|) is small enough to fit inside the error term. But

then, of course, we lastly compute that

− |U12||U23|
N(N − |E2|)(N − |E3|)

+
|U12||U23|

(N − |E1|)(N − |E2|)(N − |E3|)

=
|E1||U12||U23|

N(N − |E1|)(N − |E2|)(N − |E3|)

=
|U01||U12||U23|

N(N − |E1|)(N − |E2|)(N − |E3|)

which is small enough to fit inside the error term. Collecting the leftovers after
the various cancellations above, thus, we find

Pr[w3 = y1] =
1

N
+

|U03|

N(N − |E3|)
−

|U01||U13|

N(N − |E1|)(N − |E3|)

−
|U02||U13|

N(N − |E1|)(N − |E3|)
+

|U01||U12||U23|

N(N − |E1|)(N − |E2|)(N − |E3|) (25)

where all the terms except 1
N are “error-term small”. Moreover, when we com-

pute Pr[x�+1 → y�+1|G� ↓ p0] for � ≥ 1 we can discard the � completed paths
from shore 0 to shore 3 linking the vertex pairs (x1, y1), . . . , (x�, y�), and thus
reduce to the case � + 1 = 1 with N replaced by N − �. I.e., the expression for
Pr[x�+1 → y�+1|G� ↓ p0] will be identical to (25) except with N replaced by
N − � throughout.

From here the proof for t = 3 can be finished without many suprises. The crux
of the proof is indeed the very simple idea of adding and subtracting 1

N from the
probability, and of letting cancellations occur. This approach is purely algebraic.
When we carry out the same process for an arbitrary value of t (see the proof
of Lemma 1 in the full version of this paper [3]) we adopt a more combinatorial
approach that recasts the algebraic manipulations as manipulations of events,
which seems more satisfying because it gives the algebraic cancellations a con-
crete probabilistic interpretation. We note that doing so requires enlarging the
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probability space beyond its original confines. Indeed, for example, the original
probability space for t = 3 has no event that occurs with probability 1

N even
while factors of 1

N are ubiquitous in the final expression.

Upshot. The lemma below essentially generalizes the computation for t = 3 to
arbitrary t. In this lemma Uij stands for the set of paths from shore i to shore j
of G� such that the vertex in shore i is left-free but where, as before, the vertex
in shore j may or may not be right-free.

Lemma 1. We have, under the notations described above,

Pr[x�+1 → y�+1 |G� ↓ p0] =
1

N − �
− 1

N − �

∑
σ∈S�

(−1)|σ|
|σ|∏
j=1

|Uijij−1 |
N − |Eij |

for each �, 0 ≤ � ≤ qe − 1, where S� is the set of all sequences σ = (i0, . . . , is)
with R(x�+1) = i0 < . . . < is = L(y�+1), and where |σ| = s.

The proof of this lemma is given in the paper’s full version [3].

Finishing the proof of Theorem 1.We now apply Lemma 1 to lower bound-
ing the product (19). For 1 ≤ r ≤ t, let

Lr = {� : L(y�)− R(x�) = r} ⊆ {1, . . . , qe}

where (we recall) the elements of p0 are (x1, y1), . . . , (xqe , yqe). By the definition
of T2, L1, . . . ,Lt cover {1, . . . , qe} (i.e., there is no � with R(x�) ≥ L(y�)). Note
that |Uij | ≤ Cqj−i/N j−i−1 (by the definition of T2) for 0 ≤ i < j ≤ t, and
|Ei| ≤ q for 1 ≤ i ≤ r. Thus for �+ 1 ∈ Lr we obtain, by Lemma 1,

Pr[x�+1 → y�+1|G� ↓ p0] =
1

N − �
− 1

N − �

∑
σ∈S�

(−1)|σ|
|σ|∏
h=1

|Uih−1ih |
N − �− |Eih |

≥ 1

N − �
− 1

N − �

∑
σ∈S�

|σ|∏
h=1

Cqih−ih−1/N ih−ih−1−1

N − �− q

=
1

N − �
− 1

N − �
2r−1

( q

N

)r
(

CN

N − �− q

)|σ|

≥ 1

N − �
− 1

N − �

(
2q

N

)r (
CN

N − 2q

)r

≥ 1

N − �
− 1

N − �

(
6Cq

N

)r

.
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Moreover |Lr| ≤ t · Cqeq
t−r

Nt−r by the definition of T2, so

∏
�+1∈Lr

Pr[x�+1 → y�+1|G� ↓ p0]

1/(N − �)
≥

∏
�+1∈Lr

(
1−

(
6Cq

N

)r)

≥ 1− Ctqeq
t−r

N t−r

(
6Cq

N

)r

= 1− Ctqeq
t

N t
(6C)r

Thus

qe−1∏
�=0

Pr[x�+1 → y�+1|G� ↓ p0]

1/(N − �)
≥ 1−

t∑
r=1

Ctqeq
t

N t
(6C)r

≥ 1− qeq
t

N t
Ct2(6C)t.

This means
Pr[X = τ ]

Pr[Y = τ ]
≥ 1− ε1

for ε1 = qeq
t

Nt Ct2(6C)t, for all τ ∈ T1 such that Pr[Y = τ ] > 0. Together with the
fact that Pr[Y ∈ T2] ≤ (t+ 1)2 1

C this concludes the proof of Theorem 1 by (9).
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A Derandomizing an Information-Theoretic Distinguisher

The fact that an information-theoretic distinguisher can be derandomized is
seldom proved, though admittedly simple. For a change and for the sake of
completeness we include a proof here.

Let D be an information-theoretic distinguisher, which we view as a deter-
ministic function taking an oracle input ω and a random string input r, and
producing one bit of output. Formally D is a function

D : Ω ×R → {0, 1}

where Ω is the set of possible oracles and where R is the set of possible ran-
dom strings. The fact that an “oracle” is an object for D to “interact” with
according to certain rules doesn’t matter here. All that matters that D defines
a deterministic function from Ω ×R to {0, 1}.
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Let r be an arbitrary random variable of range R and let ωX , ωY be two
random variables of range Ω, where ωX is distributed according to the distribu-
tion of real-world oracles and ωY is distributed according to the distribution of
ideal-world oracles, and where r is independent from ωX , ωY . By definition D’s
advantage (with respect to source of randomness r) is

ΔD := Pr
ωX ,r

[D(ωX , r) = 1]− Pr
ωY ,r

[D(ωY , r) = 1] (26)

which can also be written

ΔD = Δ(D(ωX , r), D(ωY , r)) (27)

where, on the right, we have the statistical distance of the random variables
D(ωX , r), D(ωY , r) of range {0, 1}. Note that the right-hand side of (26) can be
written

Er [EωX [D(ωX , r)]]− Er[EωY [D(ωY , r)]]

since D is {0, 1}-valued, and where E denotes expectation. By linearity of ex-
pectation, then,

ΔD = Er[EωX [D(ωX , r)]− EωY [D(ωY , r)]]

and so there must exist some r0 ∈ R such that

ΔD ≤ EωX [D(ωX , r0)]− EωY [D(ωY , r0)]

= Pr
ωX

[D(ωX , r0) = 1]− Pr
ωY

[D(ωY , r0) = 1]

so that D’s random string can be fixed to r0 without harming D’s advantage.
(The fact that r is independent from ωX , ωY is used to condition on r = r0
without affecting the distribution of ωX , ωY .) Alternatively, one can use (27)
together with the more general fact that

Δ(f(X,Z), f(Y,Z)) ≤ EZ [Δ(f(X,Z), f(Y,Z))] :=
∑
z

Pr[Z = z]Δ(f(X, z), f(Y, z))

(28)

for any random variables X , Y , Z such that Z is independent from X and Y ,
for any function f . But to be complete (28) would require its own proof.
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