

Linawati et al. (Eds.): ICT-EurAsia 2014, LNCS 8407, pp. 674–679, 2014.
© IFIP International Federation for Information Processing 2014

Efficient DVFS to Prevent Hard Faults
for Many-Core Architectures

Zhiquan Lai1, Baokang Zhao1, and Jinshu Su2,1

1 National University of Defense Technology, China
2 National Key Laboratory of Parallel and Distributed Processing (PDL), China

{zqlai,bkzhao,sjs}@nudt.edu.cn

Abstract. Dynamic Voltage and Frequency Scaling (DVFS) is a widely-used
and efficient technology for Dynamic Power management (DPM). To avoid
hard faults caused by voltage and frequency scaling, some overhead always be
imposed on the performance of applications due to the latency of DVFS. Be-
sides, on many-core architectures, the design of multiple voltage domains has
made the latency of DVFS a much more significant issue. In this paper, we pro-
pose an efficient DVFS scheme to prevent hard faults, meanwhile eliminating
the impact of latency of DVFS as possible. The main idea is applying Retroac-
tive Frequency Scaling (RFS) where the latency of DVFS might be introduced.
Based on the analysis, our approach is expected to achieve noticeable perfor-
mance improvement on many-core architectures.

Keywords: efficient, DVFS, hard fault, many-core, retroactive frequency
scaling (RFS).

1 Introduction

Low power has become a first-class design requirement in large-scale data centers
and high performance computing systems. Dynamic Voltage and Frequency Scaling
(DVFS) is a widely-used and efficient technology for Dynamic Power management
(DPM) [1-3]. DVFS makes use of voltage scaling and frequency scaling to accom-
plish a trade-off between high performance and energy efficiency. Both of voltage
scaling and frequency scaling take some latency to wait for voltage/frequency reach
to given levels. However, the magnitudes of latency for voltage scaling and frequency
scaling are much different. A frequency scaling only needs several CPU clock cycles,
whereas a voltage scaling always needs tens, sometimes hundreds, of millisecond.
Due to this difference, power state (voltage and frequency settings) could be in dan-
gerous states (e.g. current voltage can’t support the frequency) under some impro-
priate operations. In these cases, hard faults will happen and cause the CPUs to stop
operating permanently [4].

Figure 1 shows the relationship between voltage and frequency during DVFS. As
each CPU frequency setting has a least voltage value supporting the CPU operating in
theory, we can draw a “Safe Boundary” in the frequency-voltage space. With this
boundary, all the voltage/frequency states could be classified into three categories.

 Efficient DVFS to Prevent Hard Faults for Many-Core Architectures 675

All the states above the boundary are dangerous because the voltages are not enough
to support the frequency settings. The states just under the boundary are energy-
efficient as the least voltages promise that no additional power is wasted. The states
far below the boundary are non-power-efficient as some unnecessary voltage is
wasted. For example, if we want to scale from s0 to s4 and scale up the frequency
firstly, the frequency will reach F1 from F0 quickly. However, as the voltage can’t
scale up as soon as the frequency, the power state will be in dangerous state (like s3
state). In this dangerous state, a hard fault will occur and the CPUs will stop operating
permanently [4].

Fig. 1. Dangerous states causing hard faults during DVFS

To avoid hard faults caused by voltage and frequency scaling, some overhead
always be imposed on the performance of applications due to the latency of DVFS. For
example, as discussed in [5], in the cases of scaling up voltage and frequency, voltage
is scaled firstly and the frequency will be not scaled until the voltage has reach the
given level. And during voltage scaling, the application is stalled waiting the voltage
scaling to finish. Although preventing hard faults, this type of DVFS schemes will
cause some performance lost due to busy waiting within the latency of voltage scaling.

Besides, on many-core architectures, the design of multiple voltage domains has
made the latency of DVFS a much more significant issue. As investigated in [5], the
latency of voltage scaling could be up to 195ms in Intel SCC [6] many-core chip. The
long latency of DVFS in many-core architectures could makes the DVFS scheme
much more inefficient.

In this paper, we focus on the problem of inefficiency of DVFS due to latency of
voltage scaling, especially for many-core architectures. We propose an efficient
DVFS scheme to prevent hard faults, meanwhile eliminating the impact of latency of
DVFS as possible. The main idea is applying Retroactive Frequency Scaling (RFS)
where the latency of DVFS will be introduced. Instead of scaling frequency
after stalling the application during voltage scaling, we make the frequency scaling
retroactive and keep the application running during voltage scaling.

Voltage

Fr
eq

ue
nc

y

F0

F1

F2

Vleast0 Vleast1 Vleast2

Energy-efficient State

Non-energy-efficient State

Dangerous State

Safe Boundary

s0 s1 s2

s3
s4 s5

s6 s7
s8

676 Z. Lai, B. Zhao, and J. Su

The rest of the paper begins with an overview of related work in Section 2. Then
we will introduce our efficient DVFS scheme with RFS methodology in Section 3. As
we have not evaluated our approach using experiments yet, we analyze the benefit of
our approach in Section 3.3. Section 4 summaries our work.

2 Related Work

DVFS on Many-Core. DVFS technique is widely used for dynamic power manage-
ment. However, in many-core architectures with tens or hundreds of cores in a single
chip, e.g. Intel SCC, some new features of DVFS show up [5, 7, 8]. Rather than single
voltage domain in one chip, multiple voltage domains are designed to separate cores
into several independent power zones [6, 9]. Moreover, the latency of scaling voltage
become much longer if scaling voltage simultaneously on multiple domains. Our
previous work [5] investigated the feature of latency of DVFS on Intel SCC many-
core platform, and proposed a latency-aware algorithm to avoid the aggressive power
state transitions.

Reliability of DVFS. The negative effects of the DVFS technique on the system re-
liability have recently promoted the research on reliability-aware power management
(RAPM). A number of research works have already studied the effect of DVFS on
reliability [4, 10-12]. Rosing et al. focused on the hard faults of Systems on Chip
(SoCs) and studied the trade-off between reliability and power consumption [4]. Guo
et al. study the RAPM problem for parallel real-time applications for shared memory
multiprocessor systems in the presence of precedence constraints [11]. This paper will
focus on the problem of inefficiency of DVFS due to latency of voltage scaling intro-
duced for reliability. And the reliability in the paper focuses on the hard faults caused
impropriate operation of DVFS.

3 Efficient DVFS with RFS

Considering the non-negligible latency of DVFS on many-core architectures, we
propose an efficient DVFS using retroactive frequency scaling in this Section.

3.1 Case Study

Firstly, let us consider a case of scaling up voltage and frequency. As shown in Figure
2, it’s the execution trace of a program running from T0 to T3

1. At T1, it decides to
make a DVFS operation to scaling up the voltage and frequency. Assume the power
state at from T0 toT1 is power efficient state (with frequency and its least voltage). As
it needs to scale up frequency, it has to scale up the voltage firstly to avoid hard faults.
However, the voltage scaling cost a non-negligible latency of T2-T1 so that it becomes

1 In this paper, Ti, i.e. T1, T2, T3 and et al., denote specific timestamps in the execution trace of

programs.

 Efficient DVFS to Prevent Hard Faults for Many-Core Architectures 677

safe to scale up the frequency. Thus, the execution of this program takes run time of
T3-T0, including the latency of voltage scaling.

This is the traditional handling of voltage scaling and frequency scaling during
DVFS. Obviously, this method is not efficient enough, especially when the latency of
voltage scaling is non-negligible (e.g. the latency of voltage scaling on Intel SCC as
investigated in [5]).

Fig. 2. Traditional voltage and frequency scaling up

3.2 Retroactive Frequency Scaling (RFS)

To eliminate the impact of latency of DVFS and improve the efficiency, we propose a
novel DVFS scheme, named retroactive frequency scaling (RFS). As shown in Figure
3, let us review the case in last sub-section, RFS keeps the program running after
scaling up voltage at T1. Instead of stalling the program waiting for the voltage scaling
up to given level, RFS makes the program running at the previous frequency setting
during the latency of voltage scaling. When the voltage has reached the given level,
we conduct the frequency scaling retroactively. By making use of the time slack dur-
ing voltage scaling (from T1 to T2), RFS is capable to improve the performance of the
program.

Fig. 3. Efficient voltage and frequency scaling up with retroactive frequency scaling

Time
T0 T1 T2 T3

Scaling up
voltage

Scaling up
Frequency

Latency of
voltage scaling

Time
T0 T1 T2 T3

Scaling up
voltage

Retroactive
frequency scaling

Latency of
voltage scaling

T23

678 Z. Lai, B. Zhao, and J. Su

3.3 Analysis of Benefit

The benefit of RFS is obvious. With RFS, the program could keep running without
any stall. As the latency of frequency scaling is in the scale of clock cycle, we don’t
consider it in this analysis. Thus, in the case shown in Figure 2 and Figure 3, the
performance improvement (speedup) of RFS could be estimated by:

݌ݑ݀݁݁݌ܵ ൌ 1 െ ሺ்ଵି்଴ሻାሺ்ଶି்ଵሻାሺ்ଷି்ଶሻିሺ்ଶି்ଵሻ·ಷೞಷ೏ሺ்ଵି்଴ሻାሺ்ଶି்ଵሻାሺ்ଷି்ଶሻ (1)

In Equation 1, the Fs denotes the frequency before scaling, and Fd denotes the fre-
quency after scaling. Assuming the runtime performance (1/execution-time) is linearly

with the frequency setting, ሺܶ2 െ ܶ1ሻ · ிೞி೏ denoted the rough estimate of execution

time saving due to applying RFS. The Equation 1 can be simplified into:

݌ݑ݀݁݁݌ܵ ൌ ்ଶି்ଵ்ଷି்଴ · ிೞி೏ (2)

In Equation 2, T2-T1 means the latency of voltage scaling (Tlatency_volt), and T3-T0
means the whole execution time of the program under traditional DVFS (Tprogram).
Hence, the equation can be denoted as:

݌ݑ݀݁݁݌ܵ ൌ ்೗ೌ೟೐೙೎೤_ೡ೚೗೟೛்ೝ೚೒ೝೌ೘ · ிೞி೏ (3)

From the Equation 3, we can find that larger the latency of voltage scaling is, more
speedup will be achieved from RFS methodology. In many-core architectures, as the
latency of DVFS is non-negligible, our efficient DVFS scheme with RFS is expected
to achieve noticeable performance speedup.

4 Summary and Future Work

In this paper, we propose an efficient DVFS scheme to prevent hard faults, meanwhile
eliminating the impact of latency of DVFS as possible. Through our analysis, by ap-
plying Retroactive Frequency Scaling (RFS) methodology, we expect to achieve noti-
ceable performance speedup. We are going to evaluate our approach on the Intel SCC
many-core platform. According our previous work and experience done on this plat-
form, we expect that our approach in the paper is feasible and efficient.

Acknowledgement. Special thanks to Intel China Center of Parallel Computing
(ICCPC) in Wuxi City of China for providing the SCC hardware platform to support
this research work. The work of this paper is also supported by the Program for
Changjiang Scholars and Innovative Research Team in University (PCSIRT,
No.IRT1012), and the Aid Program for Science and Technology Innovative Research
Team in Higher Educational Institutions of Hunan Province.

 Efficient DVFS to Prevent Hard Faults for Many-Core Architectures 679

References

1. Grunwald, D., Morrey III, C.B., Levis, P., Neufeld, M., Farkas, K.I.: Policies for dynamic
clock scheduling. Presented at Proceedings of the 4th Conference on Symposium on Oper-
ating System Design & Implementation, San Diego, California, vol. 4 (2000)

2. Weiser, M., Welch, B., Demers, A., Shenker, S.: Scheduling for reduced CPU energy. In:
Proceeding of the 1st USENIX Conference on Operating Systems Design and Implementa-
tion, Monterey, California (1994)

3. Qingyuan, D., Meisner, D., Bhattacharjee, A., Wenisch, T.F., Bianchini, R.: CoScale:
Coordinating CPU and Memory System DVFS in Server Systems. In: Proceeding of the
45th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp.
143–154 (2012)

4. Rosing, T.S., Mihic, K., De Micheli, G.: Power and Reliability Management of SoCs.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 15, 391–403 (2007)

5. Lai, Z., Lam, K.T., Wang, C.-L., Su, J., Yan, Y., Zhu, W.: Latency-Aware Dynamic Vol-
tage and Frequency Scaling on Many-core Architectures for Data-intensive Applications.
Presented at International Conference on Cloud Computing and Big Data, CloudCom-Asia
(2013)

6. Howard, J., Dighe, S., Vangal, S., Ruhl, G., Borkar, N., Jain, S., et al.: A 48-Core IA-32
message-passing processor in 45nm CMOS using on-die message passing and DVFS for
performance and power scaling. IEEE Journal of Solid-State Circuits 46, 173–183 (2011)

7. Borkar, S.: Thousand core chips: a technology perspective. In: Proceedings of the 44th
Annual Design Automation Conference, San Diego, California, pp. 746–749 (2007)

8. Ma, K., Li, X., Chen, M., Wang, X.: Scalable Power Control for Many-Core Architectures
Running Multi-threaded Applications. In: Proceeding of ACM/IEEE International Sympo-
sium on Computer Architecture (ISCA), San Jose, California, USA (2011)

9. Gamell, M., Rodero, I., Parashar, M., Muralidhar, R.: Exploring cross-layer power man-
agement for PGAS applications on the SCC platform. In: Proceedings of the 21st Interna-
tional Symposium on High-Performance Parallel and Distributed Computing, Delft, The
Netherlands, pp. 235–246 (2012)

10. Haase, J., Damm, M., Hauser, D., Waldschmidt, K.: Reliability-Aware Power Manage-
ment of Multi-Core Processors. In: Kleinjohann, B., Kleinjohann, L., Machado, R., Perei-
ra, C., Thiagarajan, P.S. (eds.) From Model-Driven Design to Resource Management for
Distributed Embedded Systems, vol. 225, pp. 205–214. Springer, US (2006)

11. Guo, Y., Zhu, D., Aydin, H.: Reliability-Aware Power Management for Parallel Real-time
Applications with Precedence Constraints. In: The Second International Green Computing
Conference (IGCC), Orlando, FL (2011)

12. Guo, Y., Zhu, D., Aydin, H.: Efficient Power Management Schemes for Dual-Processor
Fault-Tolerant Systems. In: The First Workshop on Highly-Reliable Power-Efficient Em-
bedded Designs (HARSH), Shenzhen, China (2013)

	Efficient DVFS to Prevent Hard Faults for Many-Core Architectures
	1 Introduction
	2 Related Work
	3 Efficient DVFS with RFS
	3.1 Case Study
	3.2 Retroactive Frequency Scaling (RFS)
	3.3 Analysis of Benefit

	4 Summary and Future Work
	References

