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Abstract. Modeling of infectious diseases with a low number of infections is a 
task that often arises since most real epidemics affect only a small fraction of 
the population. Agent-based methods simulate individuals and their behavior. 
When the model is simulated, the epidemic automatically arises without being 
explicitly defined. Surprisingly, it is not easy to produce such epidemics with 
small infection numbers. Instead, it needs model improvements to accomplish 
that task. In this paper, we show different extensions, addressing the person’s 
behavior, the pathogen’s behavior and the environmental impacts. It turns out 
that the discussed improvements have different consequences. Hence, they need 
to be used deliberately to overcome modeling issues of a specific epidemic in 
an appropriate and valid way. Even more, these improvements address the un-
derlying behavior of epidemics and hence have the ability to provide a deeper 
insight into the real spreading process of a disease. 
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1 Introduction 

Most epidemics that occur on a regular basis only affect a small part of the popula-
tion. Public perception might draw a different picture due to reports and warnings in 
media, even though the number of infected people is very low compared to the whole 
population. Influenza and Dengue serve as examples for such situations [1–3]. Simple 
epidemic models, however, tend to simulate epidemics with higher fractions of af-
fected persons. Thus, they are not able to simulate some real epidemics accordingly 
and need improvement. Recent publications also deal with that issue [4, 5]. This pub-
lication is going to show different approaches and techniques for such model  
improvements as well as their impacts. 
                                                           
* Corresponding author. 
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2 Underlying Techniques 

Ideas and approaches in this paper are based on a simple SIR epidemic. This model of 
a simplified epidemic has been introduced back in 1927 by Kermack and McKendrick 
[6]. Unlike them, thanks to available computational power today, we are going to 
compute SIR epidemics with agent-based models. This does not only provide higher 
modeling flexibility, it also allows clearer representation of produced effects and  
results. 

2.1 Agent-Based Modeling 

Agent-based modeling is a method that emerged in the 1990s. It tries to model the 
world as it is observed, based on individual entities, which are called agents. These 
agents exist within an in-silico environment; they have attributes and a behavior and 
also interact with each other [7–9]. For epidemics, this approach means to model sin-
gle persons in their environment, give them the ability to be healthy or infected and 
assure that relevant contacts, which allow transferring the disease from infectious to 
susceptible persons, happen. Generally, it is important to incorporate all underlying 
causalities relevant for the spread of an infectious disease such as personal attributes, 
social behavior concerning contacts and aspects about the disease. Then, one can 
simulate the model and observe the propagation of the disease. Agent-based models 
do not directly provide results, instead statistical calculations on the simulated popula-
tion are required. This needs more effort for evaluation but also leaves room for examin-
ing specific details. It should be clear that agent-based modeling is rather a general  
concept that provides freedom for the modeler but requires extended research [9]. 

2.2 SIR Epidemics 

An SIR epidemic describes the spread of a simplified disease, which can be used to 
represent a wide class of diseases. The idea is to simulate a disease that can infect 
susceptible people and after a while they recover and become resistant. Hence, people 
are in one of the three states susceptible (S), infected (I) and resistant (R) (Fig. 1). To 
keep it simple, their approach assumes a homogenous population where every in-
fected person can transmit the disease to any susceptible person with a given probabil-
ity. Typically, initially most people are susceptible and a few are infected, then more 
people get infected – this means that the epidemic gets stronger. After a while, more 
people become resistant and, due to the smaller number of susceptible people -so the 
epidemic gets weaker, until it finally becomes extinct. Kermack and McKendrick [6] 
used differential equations for simulation; however, we are going to use an agent-
based modeling approach. 

2.3 The Agent-Based SIR Model 

Following the simple SIR approach, we construct an agent-based model of n agents 
representing persons. The only attribute that persons have describes their disease state 
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which can be susceptible (S), infected (I) or resistant (R). In each time step, random 
pairwise contacts are performed with an average of c contacts per person. This means 

that 
ଶڄ௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௖௢௡௧௔௖௧௦௡௨௠௕௘௥ ௢௙ ௣௘௥௦௢௡௦ ൌ ܿ. State changes happen for two reasons: First, a sus-

ceptible person becomes infected with probability α when they meet an infected per-
son. Contacts are processed independently, which means that a person can get  
infected more than once. Computed infections always apply for the proceeding time 
step which grants the order of contacts of a time step is not important because persons 
cannot get infected and infect someone else in the same time step. And second, in-
fected persons become resistant after being infected for r time steps. Hence, the result-
ing model contains four parameters: n, c, α and r. 

 

Fig. 1. Left: Disease state progression of an SIR epidemic. Right: Typical behavior of an SIR 
epidemic. 

3 Methods 

3.1 The Tasks 

At first, the underlying SIR model will be analyzed and issues will be outlined. Then, 
strategies will be discussed that might help to overcome these issues. This includes 
methodological descriptions as well as general analyses of their impacts on simula-
tions. Agent-based models do not allow analytic examinations and can only be simu-
lated using concrete parameters. Thus, exemplarily, an epidemic will be simulated for 
each case. It should infect totally 5% of the population and has an average of 10 rele-
vant contacts for transmission per person per day and a recovery time of 7 days. Addi-
tionally, the sensitivity of disturbances should be evaluated, represented by variation 
of the infection probability by ±5% (hence, it will be multiplied by 0.95 and 1.05). 
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The exemplary simulation assuming 75% naturally immune people among the 
population clearly confirms this expectation (Fig. 2). 

3.4 Infections from External Sources 

The second attempt provides a different explanation why only a small number of 
people get infected. It proposes that the epidemic is generally weak, even too weak to 
survive. The reason why it does not become extinct is that people permanently get 
infected from an external source. This might be the case when the pathogen is found 
in the nature, in food, in garbage or in water. It is possible that animals carry the pa-
thogen without getting sick and are able to transmit it to humans. 

For example, lower primates infected with dengue viruses develop viremias of a 
magnitude sufficient to infect mosquitoes and mount an immune response but do not 
develop any detectable clinical signs [14]. Hence, via vectors they serve as an external 
source of transmissions for persons. 

In the model, additionally to the regular transmissions from person to person upon 
contacts, every susceptible person can get infected from an external source with a 
given probability per time unit. Technically, this idea allows, at least to a certain ex-
tent, arbitrary steering of infections which makes it easier to reach a specific infection 
number. Hence, this approach should also lead to a system which is more stable due 
to disturbances. For the exemplary simulation, both infection probabilities are ad-
justed in a way so that half of all infections are from an external source. However, this 
epidemic would not end automatically since it only should affect a small part of the 
population, hence simulation time is strictly limited to the duration of the epidemic in 
the underlying SIR model. For simulation of disturbances, both infection probabilities 
are varied by 5%. Results show that this approach is extremely stabilizing and not 
prone to small disturbances (Fig. 2). 

3.5 Unknown Infections 

The third attempt suggests that unknown infections exist. This can be explained by 
asymptomatic infections, which means that people get infected and spread the patho-
gen but do not experience any symptoms. However, the modeler might also consider 
that people are sick but their cases are just not reported. 

For example, estimates on the fraction of reported influenza cases, hospitalization 
rates or case fatalities are subject to uncertainty [15, 16]. Asymptomatic infections 
might also happen for influenza [17, 18]. For streptococcus pneumoniae, reported 
colonization rates differ a lot among studies [19]. And for dengue, primary infections 
are often mild or even inapparent [20, 21] so that modelers assume asymptomatic 
infections by “unnatural infection routes” [5]. 

In both situations, asymptomatic and unreported cases, the model needs to simulate 
higher infection numbers than originally proposed and distinguish between reported 
and unreported cases. This should lead to easier model handling and higher stability 
due to disturbances. The exemplary simulation assumes that 75% of the infections are 
unknown. Results clearly meet the expectations (Fig. 2). 
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3.6 Time-Dependent Impacts 

The fourth and last presented attempt suggests that the epidemic is generally too weak 
to survive. But, due to external conditions, the risk of transmissions increases for a 
limited time. This is a possible explanation why an epidemic sometimes stops even 
though it did not affect large parts of the population yet. Such behavior might occur 
due to specific weather conditions like coldness or rain, due to events or media hypes 
that change the behavior of the people or due to contaminated food or water. Howev-
er, this approach provides great freedom and needs to be handled with care since it 
does not specify how long these conditions exist, whether they are recurring or only 
single events, and to what extent they change the risk of transmissions. Also, it re-
quires a justification why the pathogen does not become completely extinct already 
before the external conditions become true. 

Seasonal epidemics caused by external conditions apply for several diseases. For ex-
ample, influenza epidemics usually happen during winter time and stop by the begin-
ning of spring [22, 23] and dengue epidemics reach their peak during rainy season [24]. 

In the model, this attempt is realized by a time-dependent infection probability. For 
the exemplary simulation, the infection probability is doubled from simulation start to 
the time when the underlying SIR model reaches the peak of infections. Results show 
that the model still reacts extremely sensitive to small disturbances (Fig. 2). However, 
since this approach has reasonable real interpretations it might be combined with 
other approaches for valid results. 

4 Results 

A simple SIR model has problems simulating epidemics with low infection numbers 
because it is so simple that the epidemic would not stop as long as there are enough 
susceptible people in the population. The presented model extensions have the ability 
to improve the quality of simulations and results and hence help to overcome these 
issues to some extent. If the fraction of unknown infections, infections from external 
sources or natural immunity is increased, then the result represented by the total num-
ber of infected people, reacts less sensitive to variations of the infection probability. 
However, implementation of time-dependent infection probability even increased the 
sensitivity of the infection probability in our case. 

5 Discussion 

The underlying issue is an unrealistic model behavior, hence solutions are motivated 
by real epidemiological mechanisms. Three of the four presented techniques clearly 
improve the model behavior while one fails in our test scenario. Still, one needs to be 
aware that the fourth method is extremely flexible so there might be different ways of 
applications that lead to different model behavior. 
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Even though the three successful methods significantly change the model behavior 
in a desired way, one has to justify that performed changes are valid [25, 26]. This 
means that the added structures must have meaningful interpretations which need to 
agree with knowledge on the real system. If this information on the real system is 
lacking, then the model can still be justified using inductive reasoning: The model 
behavior and the results agree with knowledge on the real system. Therefore, the up-
dated model structure is likely to be correct and hence valid. In the context of induc-
tive reasoning, the model structure might be used to obtain knowledge by having 
ideas how the real system might work. 

In some situations it can be useful to combine two or more approaches to get even 
better results. For example, a part of the population might be naturally immune while 
others experience asymptomatic infections. Then, only checking for validity is not 
sufficient, it also requires specific testing on a technical level to understand the impact 
of the added structures. 
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