Ultimate Automizer with Unsatisfiable Cores*

(Competition Contribution)

Matthias Heizmann, Jiirgen Christ, Daniel Dietsch, Jochen Hoenicke,
Markus Lindenmann, Betim Musa, Christian Schilling,
Stefan Wissert, and Andreas Podelski

University of Freiburg, Germany

Abstract. ULTIMATE AUTOMIZER is an automatic software verification
tool for C programs. This tool is a prototype implementation of an
automata-theoretic approach that allows a modular verification of pro-
grams. Furthermore, this is the first implementation of a novel interpola-
tion technique where interpolants are not obtained from an interpolating
theorem prover but from a combination of a live variable analysis, inter-
procedural predicate transformers and unsatisfiable cores.

1 Verification Approach

ULTIMATE AUTOMIZER verifies a C program by first executing several program
transformations and then performing an interpolation-based variant of trace

abstraction [4]. As a first step, we translate the C program into a Boogie [6]

program. The heap of the system is modeled via arrays in this Boogie pro-

gram [7]. Next, the Boogie program is translated into an interprocedural control
flow graph [9]. As an optimization, we do not label the edges with single program
statements but with loop free code blocks of the program [11]. Our verification

algorithm then performs the following steps iteratively:

1. We take a sequence of statements m that leads from the start of the main
procedure to an error location and analyze its correctness (resp. feasibility).
In this analysis an SMT solver is used.

2. We consider this sequence of statements as a standalone program P, and
compute a correctness proof for Py in form of a Hoare annotation.

3. We find a larger program P, that has the same correctness proof [4].

4. We consider the preceding step as a semantical decomposition of the original
program P into one part 77 whose correctness is already proven and one re-
maining part Prest := P\PW, on which we continue. The programs P, Pﬂ, Prest
are represented by automata. This allows us to compute and represent the
remaining part of the program Prest (the part for which correctness was not
yet proven). Furthermore, this automata-theoretic representation allows us

to apply minimization [10] to represent the programs P, Prr, Prest efficiently.

* This work is supported by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR14 AVACS)

E. Abrahédm and K. Havelund (Eds.): TACAS 2014, LNCS 8413, pp. 418-420, 2014.
(© Springer-Verlag Berlin Heidelberg 2014



ULTIMATE Automizer with Unsatisfiable Cores 419

Our previous competition candidate [2] followed a similar approach in which
the above mentioned Hoare annotation was computed by an interpolating SMT
solver via Craig interpolation. Computation of Craig interpolants is known to be
difficult, especially for the theory of arrays. This competition candidate follows
a novel approach [8] to obtain a Hoare annotation for a sequence of statements.
The predicates that represent the Hoare annotation are obtained using interpro-
cedural predicate transformers. The arguments of these predicate transformers
are not the statements of the sequence but generalized statements that are ob-
tained from a live variable analysis and from unsatisfiable cores of the feasiblity
analysis.

2 Software Architecture

ULTIMATE AUTOMIZER is one toolchain of the software analysis framework UL-
TIMATE which is implemented in Java. ULTIMATE offers data structures for
different representations of a program, plugins which analyze or transform a
program, and an interface for the communication with SMT-LIBv2 compatible
theorem provers. For parsing C programs, we use the C parser of the Eclipse
CDT project!. The operations on nested word automata are implemented in
the ULTIMATE AUTOMATA LIBRARY. Our SMT queries can be answered by any
SMT-LIBv2 compatible solver that supports quantifiers and the theory of arrays.

3 Discussion of Approach

Currently we model primitive data types (int, float,...) as integers Z or real
numbers R. We report unknown whenever we find a potential counterexample
whose infeasibility cannot be shown because of this imprecision.

The main flaw of our implementation is the translation from C to Boogie. We
failed to finish this translation in time and our submitted competition candidate
is unable to verify programs that contain pointers or arrays.

4 Tool Setup and Configuration

Our competition candidate assumes that version 4.3.2.f1265c6¢6¢cf of the SMT
solver Z3? is installed and that the directory of the Z3 binary is part of the PATH
variable. Our competition candidate is included in a command-line version of
ULTIMATE AUTOMIZER that can be downloaded from the following website:

https://ultimate.informatik.uni-freiburg.de/automizer/

The zip archive in which ULTIMATE AUTOMIZER is shipped contains the Python
script automizerSV-COMP . py which wraps input and output for the SV-COMP.

! https://www.eclipse.org/cdt/
2 https://z3.codeplex.com/


https://ultimate.informatik.uni-freiburg.de/automizer/
https://www.eclipse.org/cdt/
https://z3.codeplex.com/

420 M. Heizmann et al.

Using the following command, the C program fnord. c is verified with respect to
the property file prop.prp and an error path is written to the file errPath.txt.

python AutomizerSvcomp.py prop.prp fnord.c errPath.txt

5 Software Project and Contributors

Our software analysis framework ULTIMATE was started as a bachelor thesis [1].
In the last years, many students contributed plugins or improved the frame-
work itself. A list of all developers is available on our website. An instance of
ULTIMATE is running on our web server and is available via a web interface.

6 Demonstration Category Termination

We also participated in the demonstration category on termination with ULTI-
MATE BUCHI AUTOMIZER which is our tool for termination analysis. The un-
derlying approach is based on Biichi automata and has not been published yet.
As a subroutine the tool ULTIMATE LASSO RANKER [3,5] is used. We thank Jan
Leike and Alexander Nutz for their contributions to our termination analysis.

References

1. Dietsch, D.: STALIN: A plugin-based modular framework for program analysis.
Bachelor Thesis, Albert-Ludwigs-Universitat, Freiburg, Germany (2008)

2. Heizmann, M., et al.: Ultimate automizer with SMTInterpol. In: Piterman, N.,
Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 641-643. Springer, Heidel-
berg (2013)

3. Heizmann, M., Hoenicke, J., Leike, J., Podelski, A.: Linear ranking for linear lasso
programs. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp.
365-380. Springer, Heidelberg (2013)

4. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
36-52. Springer, Heidelberg (2013)

5. Leike, J.: Ranking function synthesis for linear lasso programs. Master’s thesis,
University of Freiburg, Germany (2013)

6. Leino, K.R.M.: This is Boogie 2. Manuscript working draft, Microsoft Research,
Redmond, WA, USA (June 2008),
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf

7. Lindenmann, M.: A simple but sufficient memory model for ultimate. Master’s
thesis, University of Freiburg, Germany (2012)

8. Musa, B.: Trace abstraction with unsatisfiable cores. Bachelor’s thesis, University
of Freiburg, Germany (2013)

9. Reps, T.W., Horwitz, S., Sagiv, S.: Precise interprocedural dataflow analysis via
graph reachability. In: POPL 1995, pp. 49-61. ACM (1995)

10. Schilling, C.: Minimization of nested word automata. Master’s thesis, University
of Freiburg, Germany (2013)

11. Wissert, S.: Adaptive block encoding for recursive control flow graphs. Master’s
thesis, University of Freiburg, Germany (2013)


http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf

	Ultimate Automizer with Unsatisfiable Cores�
(Competition Contribution)

	1 Verification Approach
	2 Software Architecture
	3 Discussion of Approach
	4 Tool Setup and Configuration
	5 Software Project and Contributors
	6 Demonstration Category Termination
	References




