Skip to main content

Quantification of DNA Damage Using Mass Spectrometry Techniques

  • Chapter
  • First Online:
Nucleic Acids in the Gas Phase

Part of the book series: Physical Chemistry in Action ((PCIA))

  • 865 Accesses

Abstract

The role of DNA in cells relies on its chemical structure. Unfortunately, a number of physical and chemical agents may damage DNA, leading to modification of genetic information or to cell death. Detecting DNA damage is thus a major issue in numerous studies. Analytical methods have therefore been developed in order to quantify modified DNA bases. In particular, mass spectrometry is used as a very specific and sensitive detector when combined to gas or liquid chromatography. This review will first briefly present the major classes of DNA damage and then focus on two mass spectrometry-based approaches for the quantification of modified bases following DNA hydrolysis into monomers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

64PPS:

6-4 Pyrimidine dimer photoproducts (35)

B(a)P:

Benzo[a]pyrene

BPDE:

Benzo(a)pyrene diol epoxide

CPDs:

Cyclobutane pyrimidine dimers (34)

DEW:

Pyrimidine dimer Dewar valence isomer (36)

EIMS:

Electron impact ionization mass spectrometry

GC:

Gas chromatography

HPLC:

High-performance liquid chromatography

LMDS:

Locally multiply damaged sites

MMS:

Methyl methanesulfonate

MS/MS:

Tandem mass spectrometry

MS:

Mass spectrometry

NCIMS:

Negative chemical ionization mass spectrometry

References

  1. Ravanat J-L, Cadet J, Douki T (2012) Oxidatively generated DNA lesions as potential biomarkers of in vivo oxidative stress. Curr Mol Med 12:655–674

    Article  CAS  Google Scholar 

  2. Cadet J, Douki T, Ravanat J-L (2010) Oxidatively generated base damage to cellular DNA. Free Radic Biol Med 49:9–21

    Article  CAS  Google Scholar 

  3. Ravanat J-L, Martinez GR, Medeiros MGH, Di Mascio P, Cadet J (2006) Singlet oxygen oxidation of 2′-deoxyguanosine. Formation and mechanistic insights. Tetrahedron 62:10709–10715

    Article  CAS  Google Scholar 

  4. Cadet J, Ravanat J-L, Taverna-Porro M, Menoni H, Angelov D (2012) Oxidatively generated complex DNA damage: tandem and clustered lesions. Cancer Lett 327:5–15

    Article  CAS  Google Scholar 

  5. Bellon S, Ravanat J-L, Gasparutto D, Cadet J (2002) Cross-linked thymine-purine base tandem lesions: synthesis, characterization, and measurement in gamma-Irradiated isolated DNA. Chem Res Toxicol 15:598–606

    Article  CAS  Google Scholar 

  6. Bergeron F, Auvré F, Radicella JP, Ravanat J-L (2010) HO° radicals induce an unexpected high proportion of tandem base lesions refractory to repair by DNA glycosylases. Proc Natl Acad Sci USA 107:5528–5533

    Article  CAS  Google Scholar 

  7. Dupont C, Patel C, Ravanat JL, Dumont E (2013) Addressing the competitive formation of tandem DNA lesions by a nucleobase peroxyl radical: a DFT-D screening. Org Biomol Chem 11(18):3038–3045

    Article  CAS  Google Scholar 

  8. Douki T, Riviere J, Cadet J (2002) DNA tandem lesions containing 8-oxo-7,8-dihydroguanine and formamido residues arise from intramolecular addition of thymine peroxyl radical to guanine. Chem Res Toxicol 15:445–454

    Article  CAS  Google Scholar 

  9. Dedon PC (2008) The chemical toxicology of 2-deoxyribose oxidation in DNA. Chem Res Toxicol 21:206–219

    Article  Google Scholar 

  10. Regulus P, Duroux B, Bayle P-A, Favier A, Cadet J, Ravanat J-L (2007) Oxidation of the sugar moiety of DNA by ionizing radiation or bleomycin could induce the formation of a cluster DNA lesion. Proc Natl Acad Sci USA 104:14032–14037

    Article  CAS  Google Scholar 

  11. Hong IS, Carter KN, Sato K, Greenberg MM (2007) Characterization and mechanism of formation of tandem lesions in DNA by a nucleobase peroxyl radical. J Am Chem Soc 129:4089–4098

    Article  CAS  Google Scholar 

  12. Tarantini A, Maitre A, Lefebvre E, Marques M, Marie C, Ravanat J-L, Douki T (2009) Relative contribution of DNA strand breaks and DNA adducts to the genotoxicity of benzo[a]pyrene as a pure compound and in complex mixtures. Mutat Res 671:67–75

    Article  CAS  Google Scholar 

  13. Baskerville-Abraham IM, Boysen G, Troutman JM, Mutlu E, Collins L, Dekrafft KE, Lin W, King C, Chaney SG, Swenberg JA (2009) Development of an ultraperformance liquid chromatography/mass spectrometry method to quantify cisplatin 1,2 intrastrand guanine-guanine adducts. Chem Res Toxicol 22:905–912

    Article  CAS  Google Scholar 

  14. Cadet J, Mouret S, Ravanat JL, Douki T (2012) Photoinduced damage to cellular DNA: Direct and photosensitized reactions. Photochem Photobiol 88:1048–1065

    Article  CAS  Google Scholar 

  15. Mouret S, Baudouin C, Charveron M, Favier A, Cadet J, Douki T (2006) Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proc Natl Acad Sci USA 103:13765–13770

    Article  CAS  Google Scholar 

  16. Dizdaroglu M (1994) Chemical determination of oxidative DNA-damage by gas-chromatography mass-spectrometry. Oxygen Radic Biol Syst D 234:3–16

    Article  CAS  Google Scholar 

  17. Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H (2002) Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med 32:1102–1115

    Article  CAS  Google Scholar 

  18. Collins AR, Brown J, Bogdanov M, Cadet J, Cooke M, Douki T, Dunster C, Eakins J, Epe B, Evans M, Farmer P, Gedik CM, Halliwell B, Herbert K, Hofer T, Hutchinson R, Jenner A, Jones GDD, Kasai H, Kelly F, Lloret A, Loft S, Lunec J, McEwan M, Moller L, Olinski R, Podmore I, Poulsen H, Ravanat JL, Rees JF, Reetz F, Shertzer H, Spiegelhalder B, Turesky R, Tyrrell R, Vina J, Vinicombe D, Weimann A, de Wergifosse B, Wood SG (2000) Comparison of different methods of measuring 8-oxoguanine as a marker of oxidative DNA damage. Free Radic Res 32:333–341

    Article  CAS  Google Scholar 

  19. Gedik CM, Collins A (2004) Establishing the background level of base oxidation in human lymphocyte DNA: results of an interlaboratory validation study. FASEB J 18:82

    Google Scholar 

  20. Cadet J, D’Ham C, Douki T, Pouget J-P, Ravanat J-L, Sauvaigo S (1998) Facts and artifacts in the measurement of oxidative base damage to DNA. Free Radic Res 29:541–550

    Article  CAS  Google Scholar 

  21. Douki T, Delatour T, Bianchini F, Cadet J (1996) Observation and prevention of an artefactual formation of oxidized DNA bases and nucleosides in the GC-EIMS method. Carcinogenesis 17:347–352

    Article  CAS  Google Scholar 

  22. Ravanat J-L, Turesky RJ, Gremaud E, Trudel LJ, Stadler RH (1995) Determination of 8oxoguanine in DNA by gas chromatography-mass spectrometry and HPLC-electrochemical detection: overestimation of the background level of the oxidized base by the gas chromatography-mass spectrometry assay. Chem Res Toxicol 8:1039–1045

    Article  CAS  Google Scholar 

  23. Podmore ID, Cooke MS, Herbert KE, Lunec J (1996) Quantitative determination of cyclobutane thymine dimers in DNA by stable isotope-dilution mass spectrometry. Photochem Photobiol 64:310–315

    Article  CAS  Google Scholar 

  24. Douki T, Onuki J, Medeiros MHG, Bechara EJH, Cadet J, Di Mascio P (1998) DNA alkylation by 4,5-dioxovaleric acid, the final oxidation product of 5-aminolevulinic acid. Chem Res Toxicol 11:150–157

    Article  Google Scholar 

  25. Giese RW (1997) Detection of DNA adducts by electron capture mass spectrometry. Chem Res Toxicol 10:255–270

    Article  CAS  Google Scholar 

  26. Ranasinghe A, Scheller N, Wu KY, Upton PB, Swenberg JA (1998) Application of gas chromatography electron capture negative chemical ionization high-resolution mass spectrometry for analysis of DNA and protein adducts. Chem Res Toxicol 11:520–526

    Article  CAS  Google Scholar 

  27. Wu KY, Scheller N, Ranasinghe A, Yen TY, Sangaiah R, Giese R, Swenberg JA (1999) A gas chromatography/electron capture/negative chemical ionization high-resolution mass spectrometry method for analysis of endogenous and exogenous N7-(2-hydroxyethyl)guanine in rodents and its potential for human biological monitoring. Chem Res Toxicol 12:722–729

    Article  CAS  Google Scholar 

  28. Ham AJL, Ranasinghe A, Morinello EJ, Nakamura J, Upton PB, Johnson F, Swenberg JA (1999) Immunoaffinity/gas chromatography/high-resolution mass spectrometry method for the detection of N-2,3-ethenoguanine. Chem Res Toxicol 12:1240–1246

    Article  CAS  Google Scholar 

  29. Morinello EJ, Ham AJL, Ranasinghe A, Nakamura J, Upton PB, Swenberg JA (2002) Molecular dosimetry and repair of N(2),3-ethenoguanine in rats exposed to vinyl chloride. Cancer Res 62:5189–5195

    CAS  Google Scholar 

  30. Chen HJ, Lin TC, Hong CL, Chiang LC (2001) Analysis of 3, N(4)-ethenocytosine in DNA and in human urine by isotope dilution gas chromatography/negative ion chemical ionization/mass spectrometry. Chem Res Toxicol 14:1612–1619

    Article  CAS  Google Scholar 

  31. Nair U, Bartsch H, Nair J (2007) Lipid peroxidation-induced DNA damage in cancer-prone inflammatory diseases: a review of published adduct types and levels in humans. Free Radic Biol Med 43:1109–1120

    Article  CAS  Google Scholar 

  32. Chandhary AK, Nokubo M, Marnett LJ, Blair IA (1994) Analysis of the malondialdehyde-2′-deoxyguanosine adduct in rat-liver DNA by gas-chromatography electron-capture negative chemical-ionization mass-spectrometry. Biol Mass Spectrom 23:457–464

    Article  Google Scholar 

  33. Rouzer CA, Chaudhary AK, Nokubo M, Ferguson DM, Reddy GR, Blair IA, Marnett LJ (1997) Analysis of the malondialdehyde-2′-deoxyguanosine adduct pyrimidopurinone in human leukocyte DNA by gas chromatography electron capture negative chemical ionization mass spectrometry. Chem Res Toxicol 10:181–188

    Article  CAS  Google Scholar 

  34. Teixeira AJR, Ferreira MR, Vandijk WJ, Vandewerken G, Dejong A (1995) Analysis of 8-hydroxy-2′-deoxyguanosine in rat urine and liver DNA by stable-isotope dilution gas-chromatography mass-spectrometry. Anal Biochem 226:307–319

    Article  CAS  Google Scholar 

  35. Chan W, Chen BZ, Wang LR, Taghizadeh K, Demott MS, Dedon PC (2010) Quantification of the 2-deoxyribonolactone and nucleoside 5′-aldehyde products of 2-deoxyribose oxidation in DNA and cells by isotope-dilution gas chromatography mass spectrometry: differential effects of gamma-radiation and Fe2+-EDTA. J Am Chem Soc 132:6145–6153

    Article  CAS  Google Scholar 

  36. Singh R, Farmer PB (2006) Liquid chromatography-electrospray ionization-mass spectrometry: the future of DNA adduct detection. Carcinogenesis 27:178–196

    Article  CAS  Google Scholar 

  37. Tretyakova N, Goggin M, Sangaraju D, Janis G (2012) Quantitation of DNA adducts by stable isotope dilution mass spectrometry. Chem Res Toxicol 25:2007–2035

    Article  CAS  Google Scholar 

  38. Huang H, Jemal A, David C, Barker SA, Swenson DH, Means JC (1998) Analysis of DNA adduct, S-[2-(N-7-guanyl)ethyl]glutathione, by liquid chromatography mass spectrometry and liquid chromatography tandem mass spectrometry. Anal Biochem 265:139–150

    Article  CAS  Google Scholar 

  39. Liao PC, Li CM, Hung CW, Chen SH (2001) Quantitative detection of N-7-(2-hydroxyethyl)guanine adducts in DNA using high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. J Mass Spectrom 36:336–343

    Article  CAS  Google Scholar 

  40. Saeed M, Rogan E, Fernandez SV, Sheriff F, Russo J, Cavalieri E (2007) Formation of depurinating N3Adenine and N7Guanine adducts by MCF-10F cells cultured in the presence of 4-hydroxyestradiol. Int J Cancer 120:1821–1824

    Article  CAS  Google Scholar 

  41. Bransfield LA, Rennie A, Visvanathan K, Odwin SA, Kensler TW, Yager JD, Friesen MD, Groopman JD (2008) Formation of two novel estrogen guanine adducts and HPLC/MS detection of 4-hydroxyestradiol-N-7-guanine in human urine. Chem Res Toxicol 21:1622–1630

    Article  CAS  Google Scholar 

  42. Goggin M, Anderson C, Park S, Swenberg J, Walker V, Tretyakova N (2008) Quantitative high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis of the adenine-guanine cross-links of 1,2,3,4-diepoxybutane in tissues of butadiene-exposed B6C3F1 mice. Chem Res Toxicol 21:1163–1170

    Article  CAS  Google Scholar 

  43. Batal M, Boudry I, Clery-Barraud C, Mouret S, Douki T (2013) Relative yields of monomeric and dimeric adducts induced by sulphur mustard in isolated and cellular DNA as determined by HPLC/tandem mass spectrometry. Toxicol Environ Chem 95:260–276

    Article  CAS  Google Scholar 

  44. Wei YX, Yue LJ, Liu Q, Chen J, Xie JW (2011) A sensitive high performance liquid chromatography-positive electrospray tandem mass spectrometry method for N-7-[2-[(2-hydroxyethyl)thio]-ethyl]guanine determination. J Chromatogr B Anal Technol Biomed Life Sci 879:1707–1712

    CAS  Google Scholar 

  45. Frelon S, Douki T, Ravanat J-L, Tornabene C, Cadet J (2000) High performance liquid chromatography - tandem mass spectrometry measurement of radiation-induced base damage to isolated and cellular DNA. Chem Res Toxicol 13:1002–1010

    Article  CAS  Google Scholar 

  46. Tompkins EM, Jones DJL, Lamb JH, Marsden DA, Farmer PB, Brown K (2008) Simultaneous detection of five different 2-hydroxyethyl-DNA adducts formed by ethylene oxide exposure, using a high-performance liquid chromatography/electrospray ionisation tandem mass spectrometry assay. Rapid Commun Mass Spectrom 22:19–28

    Article  CAS  Google Scholar 

  47. Yang YN, Nikolic D, Swanson SM, van Breemen RB (2002) Quantitative determination of N-7-methyldeoxyguanosine and O-6-methyldeoxyguanosine in DNA by LC-UV-MS-MS. Anal Chem 74:5376–5382

    Article  CAS  Google Scholar 

  48. Harsch A, Sayer JM, Jerina DM, Vouros F (2000) HPLC-MS/MS identification of positionally isomeric benzo[c]phenanthrene diol epoxide adducts in duplex DNA. Chem Res Toxicol 13:1342–1348

    Article  CAS  Google Scholar 

  49. Marie C, Maitre A, Douki T, Gateau M, Tarantini A, Guiraud P, Favier A, Ravanat JL (2008) Influence of the metabolic properties of human cells on the kinetic of formation of the major benzo[a]pyrene DNA adducts. J Appl Toxicol 28:579–590

    Article  CAS  Google Scholar 

  50. Randall KL, Argoti D, Paonessa JD, Ding Y, Oaks Z, Zhang YS, Vouros P (2010) An improved liquid chromatography-tandem mass spectrometry method for the quantification of 4-aminobiphenyl DNA adducts in urinary bladder cells and tissues. J Chromatogr A 1217:4135–4143

    Article  CAS  Google Scholar 

  51. Zhang SM, Chen KM, Aliaga C, Sun YW, Lin JM, Sharma AK, Amin S, El-Bayoumy K (2011) Identification and quantification of DNA adducts in the oral tissues of mice treated with the environmental carcinogen dibenzo[a, l]pyrene by HPLC-MS/MS. Chem Res Toxicol 24:1297–1303

    Article  CAS  Google Scholar 

  52. Beland FA, Churchwell MI, Von Tungeln LS, Chen SJ, Fu PP, Culp SJ, Schoket B, Gyorffy E, Minarovits J, Poirier MC, Bowman ED, Weston A, Doerge DR (2005) High-performance liquid chromatography electrospray ionization tandem mass spectrometry for the detection and quantitation of benzo[a]pyrene-DNA adducts. Chem Res Toxicol 18:1306–1315

    Article  CAS  Google Scholar 

  53. Chen C, Ma XC, Malfatti MA, Krausz KW, Kimura S, Felton JS, Idle JR, Gonzalez FJ (2007) A comprehensive investigation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) metabolism in the mouse using a multivariate data analysis approach. Chem Res Toxicol 20:531–542

    Article  CAS  Google Scholar 

  54. da Costa GG, Singh R, Arlt VM, Mirza A, Richards M, Takamura-Enya T, Schmeiser HH, Farmer PB, Phillips DH (2009) Quantification of 3-nitrobenzanthrone-DNA adducts using online column-switching HPLC-electrospray tandem mass spectrometry. Chem Res Toxicol 22:1860–1868

    Article  Google Scholar 

  55. Jones CR, Sabbioni G (2003) Identification of DNA adducts using HPLC/MS/MS following in vitro and in vivo experiments with arylamines and nitroarenes. Chem Res Toxicol 16:1251–1263

    Article  CAS  Google Scholar 

  56. Beland FA, Churchwell MI, Doerge DR, Parkin DR, Malejka-Giganti D, Hewer A, Phillips DH, Carmichael PL, da Costa GG, Marques MM (2004) Electrospray ionization-tandem mass spectrometry and P-32-postlabeling analyses of tamoxifen-DNA adducts in humans. J Natl Cancer Inst 96:1099–1104

    Article  CAS  Google Scholar 

  57. da Costa GG, Marques MM, Beland FA, Freeman JP, Churchwell MI, Doerge DR (2003) Quantification of tamoxifen DNA adducts using on-line sample preparation and HPLC-electrospray ionization tandem mass spectrometry. Chem Res Toxicol 16:357–366

    Article  Google Scholar 

  58. Douki T, Odin F, Caillat S, Favier A, Cadet J (2004) Predominance of the 1, N-2-propano 2′-deoxyguanosine adduct among 4-hydroxy-2-nonenal-induced DNA lesions. Free Radic Biol Med 37:62–70

    Article  CAS  Google Scholar 

  59. Loureiro APM, Marques SA, Garcia CCM, Di Mascio P, Medeiros MHG (2002) Development of an on-line liquid chromatography-electrospray tandem mass spectrometry assay to quantitatively determine 1, N-2-etheno-2′-deoxyguanosine in DNA. Chem Res Toxicol 15:1302–1308

    Article  CAS  Google Scholar 

  60. Ravanat JL, Duretz B, Guiller A, Douki T, Cadet J (1998) Isotope dilution high-performance liquid chromatography - electrospray tandem mass spectrometry assay for the measurement of 8-oxo-7,8-dihydro-2′-deoxyguanosine in biological samples. J Chromatogr B 715:349–356

    Article  CAS  Google Scholar 

  61. Belmadoui N, Boussicault F, Guerra M, Ravanat JL, Chatgilialoglu C, Cadet J (2010) Radiation-induced formation of purine 5′,8-cyclonucleosides in isolated and cellular DNA: high stereospecificity and modulating effect of oxygen. Org Biomol Chem 8:3211–3219

    Article  CAS  Google Scholar 

  62. Wang J, Yuan B, Guerrero C, Bahde R, Gupta S, Wang Y (2011) Quantification of oxidative DNA lesions in tissues of Long-Evans Cinnamon rats by capillary high-performance liquid chromatography-tandem mass spectrometry coupled with stable isotope-dilution method. Anal Chem 83:2201–2209

    Article  CAS  Google Scholar 

  63. Harri M, Kasai H, Mori T, Tornaeus J, Savela K, Peltonen K (2007) Analysis of 8-hydroxy-2′-deoxyguanosine in urine using high-performance liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr B 853:242–246

    Article  CAS  Google Scholar 

  64. Malayappan B, Garrett TJ, Segal M, Leeuwenburgh C (2007) Urinary analysis of 8-oxoguanine, 8-oxoguanosine, fapy-guanine and 8-oxo-2′-deoxyguano sine by high-performance liquid chromatography-electro spray tandem mass spectrometry as a measure of oxidative stress. J Chromatogr A 1167:54–62

    Article  CAS  Google Scholar 

  65. Weimann A, Belling D, Poulsen HE (2001) Measurement of 8-oxo-2′-deoxyguanosine and 8-oxo-2′-deoxyadenosine in DNA and human urine by high performance liquid chromatography-electrospray tandem mass spectrometry. Free Radic Biol Med 30:757–764

    Article  CAS  Google Scholar 

  66. Douki T (2013) The variety of UV-induced pyrimidine dimeric photoproducts in DNA as shown by chromatographic quantification methods. Photochem Photobiol Sci 12(8):1286–1302

    Article  CAS  Google Scholar 

  67. Douki T, Cadet J (2001) Individual determination of the yield of the main-UV induced dimeric pyrimidine photoproducts in DNA suggests a high mutagenicity of CC photolesions. Biochemistry 40:2495–2501

    Article  CAS  Google Scholar 

  68. Douki T, Court M, Cadet J (2000) Electrospray-mass spectrometry characterization and measurement of far-UV induced thymine photoproducts. J Photochem Photobiol B Biol 54:145–154

    Article  CAS  Google Scholar 

  69. Douki T, Court M, Sauvaigo S, Odin F, Cadet J (2000) Formation of the main UV-induced thymine dimeric lesions within isolated and cellular DNA as measured by high performance liquid chromatography-tandem mass spectrometry. J Biol Chem 275:11678–11685

    Article  CAS  Google Scholar 

  70. Douki T, Setlow B, Setlow P (2005) Effects of the binding of α/β -type small, acid-soluble spore proteins on the photochemistry of DNA in spores of Bacillus subtilis and in vitro. Photochem Photobiol 81:163–169

    Article  CAS  Google Scholar 

  71. Matallana-Surget S, Meador JA, Joux F, Douki T (2008) Effect of the GC content of DNA on the distribution of UVB-induced bipyrimidine photoproducts. Photochem Photobiol Sci 7:794–801

    Article  CAS  Google Scholar 

  72. Bourdat A-G, Douki T, Frelon S, Gasparutto D, Cadet J (2000) Tandem base lesions are generated by hydroxyl radicals within isolated DNA in aerated aqueous solution. J Am Chem Soc 122:4549–4556

    Article  CAS  Google Scholar 

  73. Regulus P, Spessotto S, Gateau M, Cadet J, Favier A, Ravanat JL (2004) Detection of new radiation-induced DNA lesions by liquid chromatography coupled to tandem mass spectrometry. Rapid Commun Mass Spectrom 18:2223–2228

    Article  CAS  Google Scholar 

  74. Singh R, Teichert F, Seidel A, Roach J, Cordell R, Cheng MK, Frank H, Steward WP, Manson MM, Farmer PB (2010) Development of a targeted adductomic method for the determination of polycyclic aromatic hydrocarbon DNA adducts using online column-switching liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 24:2329–2340

    Article  CAS  Google Scholar 

  75. Bessette EE, Goodenough AK, Langouet S, Yasa I, Kozekov ID, Spivack SD, Turesky RJ (2009) Screening for DNA adducts by data-dependent constant neutral loss-triple stage mass spectrometry with a linear quadrupole ion trap mass spectrometer. Anal Chem 81:809–819

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Douki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Douki, T., Ravanat, JL. (2014). Quantification of DNA Damage Using Mass Spectrometry Techniques. In: Gabelica, V. (eds) Nucleic Acids in the Gas Phase. Physical Chemistry in Action. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54842-0_8

Download citation

Publish with us

Policies and ethics