Skip to main content

Transferring Nucleic Acids to the Gas Phase

  • Chapter
  • First Online:
Nucleic Acids in the Gas Phase

Part of the book series: Physical Chemistry in Action ((PCIA))

Abstract

During the past 30 years, tremendous efforts have been made to implement mass spectrometry and spectroscopy technologies for the characterization of biomolecules in the gas phase. Progresses in the study of gas phase oligonucleotides and DNA have come with the advent of different sources capable to transfer these fragile biomolecules from the condensed phase into the gas phase. These techniques have been largely employed in the spectroscopy and mass spectrometry communities and have stimulated much research with applications of mass spectrometry to structural biology and applications of spectroscopy to detailed understanding of the intra- and intermolecular interactions. The key point in all the experimental techniques is to counterpoise the extremely low volatility of nucleobases, oligonucleotides, and higher-order DNA structures while keeping these thermally fragile molecules intact. The aim of this chapter is to describe the transfer of nucleic acids to the gas phase, including the technical and experimental issues that have been successfully overcome over the last decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6-ATT:

6-Aza-2-thiothymine

CRM:

Charge residue model

DAHC:

Diammonium hydrogen citrate

DNA:

Deoxyribonucleic acid

ESI:

Electrospray ionization

FTICR:

Fourier transform ion cyclotron resonance analyzer

FWHM:

Full width at half maximum

HPA:

3-Hydroxypicolinic acid

HPLC:

High performance liquid chromatography

IEM:

Ion evaporation model

LILBID:

Laser-induced liquid beam(bead) ionization/desorption

MALD(I):

Matrix-assisted laser desorption (ionization)

MS:

Mass spectrometry

NB:

Nucleobases

NH4OAc:

Ammonium acetate

PA:

Picolinic acid

PCA:

Pyrazine carboxylic acid

reTOF:

Reflectron time-of-flight

RNA:

Ribonucleic acid

References

  1. Vonweyssenhoff H, Selzle HL, Schlag EW (1985) Laser-desorbed large molecules in a supersonic jet. Z Naturforsch A J Phys Sci 40(7):674–676

    Google Scholar 

  2. Cable JR, Tubergen MJ, Levy DH (1987) Laser desorption molecular-beam spectroscopy—the electronic-spectra of tryptophan peptides in the gas-phase. J Am Chem Soc 109(20):6198–6199

    CAS  Google Scholar 

  3. Meijer G, Devries MS, Hunziker HE, Wendt HR (1990) Laser desorption jet-cooling of organic-molecules—cooling characteristics and detection sensitivity. Appl Phys B 51(6):395–403

    Google Scholar 

  4. Toennies JP, Vilesov AF (1998) Spectroscopy of atoms and molecules in liquid helium. Annu Rev Phys Chem 49:1–41

    CAS  Google Scholar 

  5. Fenn JB (2003) Electrospray wings for molecular elephants (Nobel lecture). Angew Chem Int Ed 42(33):3871–3894

    CAS  Google Scholar 

  6. Tanaka K (2003) The origin of macromolecule ionization by laser irradiation (Nobel lecture). Angew Chem Int Ed 42(33):3860–3870

    Google Scholar 

  7. Smith RD, Loo JA, Edmonds CG, Barinaga CJ, Udseth HR (1990) New developments in biochemical mass-spectrometry—electrospray ionization. Anal Chem 62(9):882–899

    CAS  Google Scholar 

  8. Stults JT, Marsters JC (1991) Improved electrospray ionization of synthetic oligodeoxynucleotides. Rapid Commun Mass Spectrom 5(8):359–363

    CAS  Google Scholar 

  9. Fuerstenau SD, Benner WH (1995) Molecular weight determination of megadalton DNA electrospray ions using charge detection time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 9(15):1528–1538

    CAS  Google Scholar 

  10. Gabelica V, De Pauw E (2005) Internal energy and fragmentation of ions produced in electrospray sources. Mass Spectrom Rev 24(4):566–587

    CAS  Google Scholar 

  11. Hofstadler SA, Sannes-Lowery KA (2006) Applications of ESI-MS in drug discovery: interrogation of noncovalent complexes. Nat Rev Drug Discov 5(7):585–595

    CAS  Google Scholar 

  12. Nir E, Janzen C, Imhof P, Kleinermanns K, de Vries MS (2001) Guanine tautomerism revealed by UV-UV and IR-UV hole burning spectroscopy. J Chem Phys 115(10):4604–4611

    CAS  Google Scholar 

  13. Chin W, Mons M, Dimicoli I, Piuzzi F, Tardivel B, Elhanine M (2002) Tautomer contribution’s to the near UV spectrum of guanine: towards a refined picture for the spectroscopy of purine molecules. Eur Phys J D 20(3):347–355

    CAS  Google Scholar 

  14. Nir E, Grace L, Brauer B, de Vries MS (1999) REMPI spectroscopy of jot-cooled guanine. J Am Chem Soc 121(20):4896–4897

    CAS  Google Scholar 

  15. Nir E, Kleinermanns K, Grace L, de Vries MS (2001) On the photochemistry of purine nucleobases. J Phys Chem A 105(21):5106–5110

    CAS  Google Scholar 

  16. Nir E, Muller M, Grace LI, de Vries MS (2002) REMPI spectroscopy of cytosine. Chem Phys Lett 355(1–2):59–64

    CAS  Google Scholar 

  17. Mons M, Dimicoli I, Piuzzi F, Tardivel B, Elhanine M (2002) Tautomerism of the DNA base guanine and its methylated derivatives as studied by gas-phase infrared and ultraviolet spectroscopy. J Phys Chem A 106(20):5088–5094

    CAS  Google Scholar 

  18. Canuel C, Mons M, Piuzzi F, Tardivel B, Dimicoli I, Elhanine M (2005) Excited states dynamics of DNA and RNA bases: characterization of a stepwise deactivation pathway in the gas phase. J Chem Phys 122(7):074316

    Google Scholar 

  19. Mons M, Piuzzi F, Dimicoli I, Gorb L, Leszczynski J (2006) Near-UV resonant two-photon ionization spectroscopy of gas phase guanine: evidence for the observation of three rare tautomers. J Phys Chem A 110(38):10921–10924

    CAS  Google Scholar 

  20. Plutzer C, Kleinermanns K (2002) Tautomers and electronic states of jet-cooled adenine investigated by double resonance spectroscopy. Phys Chem Chem Phys 4(20):4877–4882

    Google Scholar 

  21. Kim NJ, Jeong G, Kim YS, Sung J, Kim SK, Park YD (2000) Resonant two-photon ionization and laser induced fluorescence spectroscopy of jet-cooled adenine. J Chem Phys 113(22):10051–10055

    CAS  Google Scholar 

  22. Kang H, Lee KT, Jung B, Ko YJ, Kim SK (2002) Intrinsic lifetimes of the excited state of DNA and RNA bases. J Am Chem Soc 124(44):12958–12959

    CAS  Google Scholar 

  23. Nir E, Imhof P, Kleinermanns K, de Vries MS (2000) REMPI spectroscopy of laser desorbed guanosines. J Am Chem Soc 122(33):8091–8092

    CAS  Google Scholar 

  24. Nir E, Hunig I, Kleinermanns K, de Vries MS (2004) Conformers of guanosines and their vibrations in the electronic ground and excited states, as revealed by double-resonance spectroscopy and ab initio calculations. ChemPhysChem 5(1):131–137

    CAS  Google Scholar 

  25. Abo-Riziq A, Crews BO, Compagnon I, Oomens J, Meijer G, Von Helden G, Kabelac M, Hobza P, de Vries MS (2007) The Mid-IR spectra of 9-ethyl guanine, guanosine, and 2-deoxyguanosine. J Phys Chem A 111(31):7529–7536

    CAS  Google Scholar 

  26. Nir E, Kleinermanns K, de Vries MS (2000) Pairing of isolated nucleic-acid bases in the absence of the DNA backbone. Nature 408(6815):949–951

    CAS  Google Scholar 

  27. Kang H, Lee KT, Kim SK (2002) Femtosecond real time dynamics of hydrogen bond dissociation in photoexcited adenine-water clusters. Chem Phys Lett 359(3–4):213–219

    CAS  Google Scholar 

  28. Nir E, Janzen C, Imhof P, Kleinermanns K, de Vries MS (2002) Pairing of the nucleobases guanine and cytosine in the gas phase studied by IR-UV double-resonance spectroscopy and ab initio calculations. Phys Chem Chem Phys 4(5):732–739

    CAS  Google Scholar 

  29. Plutzer C, Hunig I, Kleinermanns K, Nir E, de Vries MS (2003) Pairing of isolated nucleobases: double resonance laser spectroscopy of adenine-thymine. ChemPhysChem 4(8):838–842

    Google Scholar 

  30. Abo-Riziq A, Grace L, Nir E, Kabelac M, Hobza P, de Vries MS (2005) Photochemical selectivity in guanine-cytosine base-pair structures. Proc Natl Acad Sci USA 102(1):20–23

    CAS  Google Scholar 

  31. Kim NJ, Kim YS, Jeong G, Ahn TK, Kim SK (2002) Hydration of DNA base cations in the gas phase. Int J Mass Spectrom 219(1):11–21

    CAS  Google Scholar 

  32. Chin W, Mons M, Piuzzi F, Tardivel B, Dimicoli I, Gorb L, Leszczynski J (2004) Gas phase rotamers of the nucleobase 9-methylguanine enol and its monohydrate: optical spectroscopy and quantum mechanical calculations. J Phys Chem A 108(40):8237–8243

    CAS  Google Scholar 

  33. Abo-Riziq A, Crews B, Grace L, de Vries MS (2005) Microhydration of guanine base pairs. J Am Chem Soc 127(8):2374–2375

    CAS  Google Scholar 

  34. Crews B, Abo-Riziq A, Grace L, Callahan M, Kabelac M, Hobza P, de Vries MS (2005) IR-UV double resonance spectroscopy of guanine-H2O clusters. Phys Chem Chem Phys 7(16):3015–3020

    CAS  Google Scholar 

  35. Canuel C, Elhanine M, Mons M, Piuzzi F, Tardivel B, Dimicoli I (2006) Time-resolved photoelectron and photoion fragmentation spectroscopy study of 9-methyladenine and its hydrates: a contribution to the understanding of the ultrafast radiationless decay of excited DNA bases. Phys Chem Chem Phys 8(34):3978–3987

    CAS  Google Scholar 

  36. Kim S, Wheeler SE, Schaefer HF (2006) Microsolvation effects on the electron capturing ability of thymine: thymine-water clusters. J Chem Phys 124(20):204310

    Google Scholar 

  37. Choi MY, Miller RE (2006) Four tautomers of isolated guanine from infrared laser spectroscopy in helium nanodroplets. J Am Chem Soc 128(22):7320–7328

    CAS  Google Scholar 

  38. Fenn JB (2000) Mass spectrometric implications of high-pressure ion sources. Int J Mass Spectrom 200(1–3):459–478

    CAS  Google Scholar 

  39. Schermann JP (2008) Spectroscopy and modelling of biomolecular building blocks. Elsevier, Amsterdam

    Google Scholar 

  40. Kim SK, Lee W, Herschbach DR (1996) Cluster beam chemistry: hydration of nucleic acid bases; Ionization potentials of hydrated adenine and thymine. J Phys Chem 100(19):7933–7937

    CAS  Google Scholar 

  41. Piuzzi F, Dimicoli I, Mons M, Tardivel B, Zhao QC (2000) A simple laser vaporization source for thermally fragile molecules coupled to a supersonic expansion: application to the spectroscopy of tryptophan. Chem Phys Lett 320(3–4):282–288

    CAS  Google Scholar 

  42. Saigusa H, Tomioka A, Katayama T, Iwase E (2006) A matrix-free laser desorption method for production of nucleobase clusters and their hydrates. Chem Phys Lett 418(1–3):119–125

    CAS  Google Scholar 

  43. Nir E, de Vries MS (2002) Fragmentation of laser-desorbed 9-substituted adenines. Int J Mass Spectrom 219(1):133–138

    CAS  Google Scholar 

  44. Zhou J, Kostko O, Nicolas C, Tang XN, Belau L, de Vries MS, Ahmed M (2009) Experimental observation of guanine tautomers with VUV photoionization. J Phys Chem A 113(17):4829–4832

    CAS  Google Scholar 

  45. Toennies JP, Vilesov AF (2004) Superfluid helium droplets: a uniquely cold nanomatrix for molecules and molecular complexes. Angew Chem Int Ed 43(20):2622–2648

    CAS  Google Scholar 

  46. Buchenau H, Knuth EL, Northby J, Toennies JP, Winkler C (1990) Mass-spectra and time-of-flight distributions of helium cluster beams. J Chem Phys 92(11):6875–6889

    CAS  Google Scholar 

  47. Denifl S, Zappa F, Mahr I, Lecointre J, Probst M, Mark TD, Scheier P (2006) Mass spectrometric investigation of anions formed upon free electron attachment to nucleobase molecules and clusters embedded in superfluid helium droplets. Phys Rev Lett 97(4)

    Google Scholar 

  48. Kebarle P, Ho Y (1997) In: Cole RB (ed) Electrospray ionization mass spectrometry. Wiley Interscience, New York, NY

    Google Scholar 

  49. Gaskell SJ (1997) Electrospray: principles and practice. J Mass Spectrom 32(7):677–688

    CAS  Google Scholar 

  50. Konermann L, Ahadi E, Rodriguez AD, Vahidi S (2013) Unraveling the mechanism of electrospray ionization. Anal Chem 85(1):2–9

    CAS  Google Scholar 

  51. Wilm M, Shevchenko A, Houthaeve T, Breit S, Schweigerer L, Fotsis T, Mann M (1996) Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379(6564):466–469

    CAS  Google Scholar 

  52. Wilm MS, Mann M (1994) Electrospray and Taylor-Cone theory, Doles beam of macromolecules at last. Int J Mass Spectrom 136(2–3):167–180

    CAS  Google Scholar 

  53. Juraschek R, Dulcks T, Karas M (1999) Nanoelectrospray—more than just a minimized-flow electrospray ionization source. J Am Soc Mass Spectrom 10(4):300–308

    CAS  Google Scholar 

  54. Dole M, Mack LL, Hines RL (1968) Molecular beams of macroions. J Chem Phys 49(5):2240

    CAS  Google Scholar 

  55. Cole RB (2000) Some tenets pertaining to electrospray ionization mass spectrometry. J Mass Spectrom 35(7):763–772

    CAS  Google Scholar 

  56. Iribarne JV, Thomson BA (1976) Evaporation of small ions from charged droplets. J Chem Phys 64(6):2287–2294

    CAS  Google Scholar 

  57. Thomson BA, Iribarne JV (1979) Field-induced ion evaporation from liquid surfaces at atmospheric-pressure. J Chem Phys 71(11):4451–4463

    CAS  Google Scholar 

  58. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1990) Electrospray ionization-principles and practice. Mass Spectrom Rev 9(1):37–70

    CAS  Google Scholar 

  59. Fenn JB (1993) Ion formation from charged droplets—roles of geometry, energy, and time. J Am Soc Mass Spectrom 4(7):524–535

    CAS  Google Scholar 

  60. Kebarle P, Tang L (1993) From ions in solution to ions in the gas-phase—the mechanism of electrospray mass-spectrometry. Anal Chem 65(22):A972–A986

    Google Scholar 

  61. Ahadi E, Konermann L (2011) Ejection of solvated ions from electrosprayed methanol/water nanodroplets studied by molecular dynamics simulations. J Am Chem Soc 133(24):9354–9363

    CAS  Google Scholar 

  62. Konermann L, Rodriguez AD, Liu JJ (2012) On the formation of highly charged gaseous ions from unfolded proteins by electrospray ionization. Anal Chem 84(15):6798–6804

    CAS  Google Scholar 

  63. Limbach PA, Crain PF, McCloskey JA (1995) Molecular-mass measurement of intact ribonucleic-acids via electrospray-ionization quadrupole mass-spectrometry. J Am Soc Mass Spectrom 6(1):27–39

    CAS  Google Scholar 

  64. Potier N, Vandorsselaer A, Cordier Y, Roch O, Bischoff R (1994) Negative electrospray-ionization mass-spectrometry of synthetic and chemically-modified oligonucleotides. Nucleic Acids Res 22(19):3895–3903

    CAS  Google Scholar 

  65. McGinnis AC, Chen BY, Bartlett MG (2012) Chromatographic methods for the determination of therapeutic oligonucleotides. J Chromatogr B Analyt Technol Biomed Life Sci 883:76–94

    Google Scholar 

  66. Huber CG (1998) Micropellicular stationary phases for high-performance liquid chromatography of double-stranded DNA. J Chromatogr A 806(1):3–30

    CAS  Google Scholar 

  67. Holzl G, Oberacher H, Pitsch S, Stutz A, Huber CG (2005) Analysis of biological and synthetic ribonucleic acids by liquid chromatography-mass spectrometry using monolithic capillary columns. Anal Chem 77(2):673–680

    Google Scholar 

  68. Premstaller A, Oberacher H, Huber CG (2000) High-performance liquid chromatography-electrospray ionization mass spectrometry of single- and double-stranded nucleic acids using monolithic capillary columns. Anal Chem 72(18):4386–4393

    CAS  Google Scholar 

  69. Huber CG, Krajete A (1999) Analysis of nucleic acids by capillary ion-pair reversed-phase HPLC coupled to negative-ion electrospray ionization mass spectrometry. Anal Chem 71(17):3730–3739

    CAS  Google Scholar 

  70. Sangaraju D, Goggin M, Walker V, Swenberg J, Tretyakova N (2012) NanoHPLC-nanoESI(+)-MS/MS quantitation of bis-N7-guanine DNA-DNA cross-links in tissues of B6C3F1 mice exposed to subppm levels of 1,3-butadiene. Anal Chem 84(3):1732–1739

    CAS  Google Scholar 

  71. Tretyakova N, Goggin M, Sangaraju D, Janis G (2012) Quantitation of DNA adducts by stable isotope dilution mass spectrometry. Chem Res Toxicol 25(10):2007–2035

    CAS  Google Scholar 

  72. Owen BC, Haupert LJ, Jarrell TM, Marcum CL, Parsell TH, Abu-Omar MM, Bozell JJ, Black SK, Kenttamaa HI (2012) High-performance liquid chromatography/high-resolution multiple stage tandem mass spectrometry using negative-ion-mode hydroxide-doped electrospray ionization for the characterization of lignin degradation products. Anal Chem 84(14):6000–6007

    CAS  Google Scholar 

  73. Schmidt A, Bahr U, Karas M (2001) Influence of pressure in the first pumping stage on analyte desolvation and fragmentation in nano-ESI MS. Anal Chem 73(24):6040–6046

    CAS  Google Scholar 

  74. Ganem B, Li YT, Henion JD (1993) Detection of oligonucleotide duplex forms by ion-spray mass-spectrometry. Tetrahedron Lett 34(9):1445–1448

    CAS  Google Scholar 

  75. Lightwahl KJ, Springer DL, Winger BE, Edmonds CG, Camp DG, Thrall BD, Smith RD (1993) Observation of a small oligonucleotide duplex by electrospray ionization mass-spectrometry. J Am Chem Soc 115(2):803–804

    CAS  Google Scholar 

  76. Goodlett DR, Camp DG, Hardin CC, Corregan M, Smith RD (1993) Direct observation of a DNA quadruplex by electrospray ionization mass-spectrometry. Biol Mass Spectrom 22(3):181–183

    CAS  Google Scholar 

  77. Gale DC, Goodlett DR, Lightwahl KJ, Smith RD (1994) Observation of duplex DNA-drug noncovalent complexes by electrospray-ionization mass-spectrometry. J Am Chem Soc 116(13):6027–6028

    CAS  Google Scholar 

  78. Beck JL (2011) Developments in electrospray ionization mass spectrometry of non-covalent DNA-ligand complexes. Aust J Chem 64(6):705–717

    CAS  Google Scholar 

  79. Aggerholm T, Nanita SC, Koch KJ, Cooks RG (2003) Clustering of nucleosides in the presence of alkali metals: biologically relevant quartets of guanosine, deoxyguanosine and uridine observed by ESI-MS/MS. J Mass Spectrom 38(1):87–97

    CAS  Google Scholar 

  80. Ali OY, Randell NM, Fridgen TD (2012) Primary fragmentation pathways of gas phase M(Uracil-H)(Uracil) plus complexes (M = Zn, Cu, Ni, Co, Fe, Mn, Cd, Pd, Mg, Ca, Sr, Ba, and Pb): loss of uracil versus HNCO. ChemPhysChem 13(6):1507–1513

    CAS  Google Scholar 

  81. Seo J, Hong ES, Yoon HJ, Shin SK (2012) Specific and nonspecific bindings of alkaline-earth metal ions to guanine-quadruplex thrombin-binding aptamer DNA. Int J Mass Spectrom 330:262–270

    Google Scholar 

  82. Yang ZB, Rodgers MT (2005) Influence of methylation on the properties of uracil and its noncovalent interactions with alkali metal ions—threshold collision-induced dissociation and theoretical studies. Int J Mass Spectrom 241(2–3):225–242

    CAS  Google Scholar 

  83. Ruan CH, Rodgers MT (2009) Modeling metal cation-phosphate interactions in nucleic acids: activated dissociation of Mg+, Al+, Cu+, and Zn + complexes of triethyl phosphate. J Am Chem Soc 131(31):10918–10928

    CAS  Google Scholar 

  84. Ruan CH, Huang H, Rodgers MT (2007) Modeling metal cation-phosphate interactions in nucleic acids in the gas phase via alkali metal cation-triethyl phosphate complexes. J Phys Chem A 111(51):13521–13527

    CAS  Google Scholar 

  85. Salpin JY, Guillaumont S, Tortajada J, Lamsabhi AM (2009) Gas-phase interactions between lead(II) ions and thiouracil nucleobases: a combined experimental and theoretical study. J Am Soc Mass Spectrom 20(3):359–369

    CAS  Google Scholar 

  86. Salpin JY, Guillaumont S, Ortiz D, Tortajada J, Maitre P (2011) Direct evidence for tautomerization of the uracil moiety within the Pb2+/Uridine-5′-monophosphate complex: a combined tandem mass spectrometry and IRMPD study. Inorg Chem 50(16):7769–7778

    CAS  Google Scholar 

  87. Salpin JY, Gamiette L, Tortajada J, Besson T, Maitre P (2011) Structure of Pb2+/dCMP and Pb2+/CMP complexes as characterized by tandem mass spectrometry and IRMPD spectroscopy. Int J Mass Spectrom 304(2–3):154–164

    CAS  Google Scholar 

  88. Chiavarino B, Crestoni ME, Fornarini S, Scuderi D, Salpin JY (2013) Interaction of cisplatin with adenine and guanine: a combined IRMPD, MS/MS, and theoretical study. J Am Chem Soc 135(4):1445–1455

    CAS  Google Scholar 

  89. Beck JL, Colgrave ML, Ralph SF, Sheil MM (2001) Electrospray ionization mass spectrometry of oligonucleotide complexes with drugs, metals, and proteins. Mass Spectrom Rev 20(2):61–87

    CAS  Google Scholar 

  90. Alves S, Woods A, Delvolve A, Tabet JC (2008) Influence of salt bridge interactions on the gas-phase stability of DNA/peptide complexes. Int J Mass Spectrom 278(2–3):122–128

    CAS  Google Scholar 

  91. Kapur A, Beck JL, Sheil MM (1999) Observation of daunomycin and nogalamycin complexes with duplex DNA using electrospray ionisation mass spectrometry. Rapid Commun Mass Spectrom 13(24):2489–2497

    CAS  Google Scholar 

  92. Rosu F, De Pauw E, Guittat L, Alberti P, Lacroix L, Mailliet P, Riou JF, Mergny JL (2003) Selective interaction of ethidium derivatives with quadruplexes: an equilibrium dialysis and electrospray ionization mass spectrometry analysis. Biochemistry 42(35):10361–10371

    CAS  Google Scholar 

  93. Gabelica V, De Pauw E, Rosu F (1999) Interaction between antitumor drugs and a double-stranded oligonucleotide studied by electrospray ionization mass spectrometry. J Mass Spectrom 34(12):1328–1337

    CAS  Google Scholar 

  94. Rosu F, Gabelica V, Houssier C, De Pauw E (2012) Determination of affinity, stoichiometry and sequence selectivity of minor groove binder complexes with double-stranded oligodeoxynucleotides by electrospray ionization mass spectrometry. Nucleic Acids Res 30(16)

    Google Scholar 

  95. Wan KX, Shibue T, Gross ML (2000) Non-covalent complexes between DNA-binding drugs and double-stranded oligodeoxynucleotides: a study by ESI ion-trap mass spectrometry. J Am Chem Soc 122(2):300–307

    CAS  Google Scholar 

  96. Wan KX, Gross ML, Shibue T (2000) Gas-phase stability of double-stranded oligodeoxynucleotides and their noncovalent complexes with DNA-binding drugs as revealed by collisional activation in an ion trap. J Am Soc Mass Spectrom 11(5):450–457

    CAS  Google Scholar 

  97. Greig MJ, Robinson JM (2000) Detection of oligonucleotide-ligand complexes by ESI-MS (DOLCE-MS) as a component of high throughput screening. J Biomol Screen 5(6):441–454

    CAS  Google Scholar 

  98. van den Heuvel RH, Heck AJR (2004) Native protein mass spectrometry: from intact oligomers to functional machineries. Curr Opin Chem Biol 8(5):519–526

    Google Scholar 

  99. Schmidt C, Kramer K, Urlaub H (2012) Investigation of protein-RNA interactions by mass spectrometry-techniques and applications. J Proteome 75(12):3478–3494

    CAS  Google Scholar 

  100. Hernandez H, Robinson CV (2007) Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nat Protoc 2(3):715–726

    CAS  Google Scholar 

  101. Heck AJR (2008) Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods 5(11):927–933

    CAS  Google Scholar 

  102. Hanson CL, Robinson CV (2004) Protein-nucleic acid interactions and the expanding role of mass spectrometry. J Biol Chem 279(24):24907–24910

    CAS  Google Scholar 

  103. MacRae IJ, Ma E, Zhou M, Robinson CV, Doudna JA (2008) In vitro reconstitution of the human RISC-loading complex. Proc Natl Acad Sci USA 105(2):512–517

    CAS  Google Scholar 

  104. Gordiyenko Y, Videler H, Zhou M, McKay AR, Fucini P, Biegel E, Muller V, Robinson CV (2010) Mass spectrometry defines the stoichiometry of ribosomal stalk complexes across the phylogenetic tree. Mol Cell Proteomics 9(8):1774–1783

    CAS  Google Scholar 

  105. Deroo S, Hyung SJ, Marcoux J, Gordiyenko Y, Koripella RK, Sanyal S, Robinson CV (2012) Mechanism and rates of exchange of L7/L12 between ribosomes and the effects of binding EF-G. ACS Chem Biol 7(6):1120–1127

    CAS  Google Scholar 

  106. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10000 Daltons. Anal Chem 60(20):2299–2301

    CAS  Google Scholar 

  107. Knochenmuss R, Zenobi R (2003) MALDI ionization: the role of in-plume processes. Chem Rev 103(2):441–452

    CAS  Google Scholar 

  108. Georgiou S, Koubenakis A (2003) Laser-induced material ejection from model molecular solids and liquids: mechanisms, implications, and applications. Chem Rev 103(2):349–393

    CAS  Google Scholar 

  109. Quist AP, Huthfehre T, Sundqvist BUR (1994) Total yield measurements in matrix-assisted laser-desorption using a quartz-crystal microbalance. Rapid Commun Mass Spectrom 8(2):149–154

    CAS  Google Scholar 

  110. Stevenson E, Breuker K, Zenobi R (2000) Internal energies of analyte ions generated from different matrix-assisted laser desorption/ionization matrices. J Mass Spectrom 35(8):1035–1041

    CAS  Google Scholar 

  111. Spengler B, Pan Y, Cotter RJ, Kan LS (1990) Molecular-weight determination of underivatized oligodeoxyribonucleotides by positive-ion matrix-assisted ultraviolet laser-desorption mass-spectrometry. Rapid Commun Mass Spectrom 4(4):99–102

    CAS  Google Scholar 

  112. Bradick M, Costa J, Chelo IM (2011) Genotyping with sequenom. In: Methods in molecular biology, vol 772. Springer, pp 193–210

    Google Scholar 

  113. Meyer K, Ueland PM (2011) Use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for multiplex genotyping. In: Advances in clinical chemistry, vol 53. Elsevier Academic, San Diego, CA, pp 1–29

    Google Scholar 

  114. Giessing AMB, Kirpekar F (2012) Mass spectrometry in the biology of RNA and its modifications. J Proteome 75(12):3434–3449

    CAS  Google Scholar 

  115. Terrier P, Tortajada J, Zin G, Buchmann W (2007) Noncovalent complexes between DNA and basic polypeptides or polyamines by MALDI-TOF. J Am Soc Mass Spectrom 18(11):1977–1989

    CAS  Google Scholar 

  116. Bolbach G (2005) Matrix-assisted laser desorption/ionization analysis of non-covalent complexes: fundamentals and applications. Curr Pharm Des 11(20):2535–2557

    CAS  Google Scholar 

  117. Madler S, Erba EB, Zenobi R (2013) MALDI-ToF mass spectrometry for studying noncovalent complexes of biomolecules. In: Applications of Maldi-ToF spectroscopy, vol 331. Springer, Berlin, pp 1–36

    Google Scholar 

  118. Wu KJ, Steding A, Becker CH (1993) Matrix-assisted laser desorption time-of-flight mass-spectrometry of oligonucleotides using 3-hydroxypicolinic acid as an ultraviolet-sensitive matrix. Rapid Commun Mass Spectrom 7(2):142–146

    CAS  Google Scholar 

  119. Little DP, Jacob A, Becker T, Braun A, Darnhofer-Demar B, Jurinke C, van den Boom D, Koster H (1997) Direct detection of synthetic and biologically generated double-stranded DNA by MALDI-TOF MS. Int J Mass Spectrom 169:323–330

    Google Scholar 

  120. Tang K, Taranenko NI, Allman SL, Chang LY, Chen CH (1994) Detection of 500-nucleotide DNA by laser-desorption mass-spectrometry. Rapid Commun Mass Spectrom 8(9):727–730

    CAS  Google Scholar 

  121. Lin H, Hunter JM, Becker CH (1999) Laser desorption of DNA oligomers larger than one kilobase from cooled 4-nitrophenol. Rapid Commun Mass Spectrom 13(23):2335–2340

    CAS  Google Scholar 

  122. Zhou LH, Deng HM, Deng QY, Zhao SK (2004) A mixed matrix of 3-hydroxypicolinic acid and pyrazinecarboxylic acid for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of oligodeoxynucleotides. Rapid Commun Mass Spectrom 18(7):787–794

    CAS  Google Scholar 

  123. Nordhoff E, Ingendoh A, Cramer R, Overberg A, Stahl B, Karas M, Hillenkamp F, Crain PF (1992) Matrix-assisted laser desorption ionization mass-spectrometry of nucleic-acids with wavelengths in the ultraviolet and infrared. Rapid Commun Mass Spectrom 6(12):771–776

    CAS  Google Scholar 

  124. Nordhoff E, Cramer R, Karas M, Hillenkamp F, Kirpekar F, Kristiansen K, Roepstorff P (1993) Ion stability of nucleic-acids in infrared matrix-assisted laser-desorption ionization mass-spectrometry. Nucleic Acids Res 21(15):3347–3357

    CAS  Google Scholar 

  125. Currie GJ, Yates JR (1993) Analysis of oligodeoxynucleotides by negative-ion matrix-assisted laser-desorption mass-spectrometry. J Am Soc Mass Spectrom 4(12):955–963

    CAS  Google Scholar 

  126. Pieles U, Zurcher W, Schar M, Moser HE (1993) Matrix-assisted laser-desorption ionization time-of-flight mass-spectrometry—a powerful tool for the mass and sequence-analysis of natural and modified oligonucleotides. Nucleic Acids Res 21(14):3191–3196

    CAS  Google Scholar 

  127. Li YCL, Cheng SW, Chan TWD (1998) Evaluation of ammonium salts as co-matrices for matrix-assisted laser desorption/ionization mass spectrometry of oligonucleotides. Rapid Commun Mass Spectrom 12(15):993–998

    CAS  Google Scholar 

  128. Asara JM, Allison J (1999) Enhanced detection of oligonucleotides in UV MALDI MS using the tetraamine spermine as a matrix additive. Anal Chem 71(14):2866–2870

    CAS  Google Scholar 

  129. Terrier P, Tortajada J, Buchmann W (2007) A study of noncovalent complexes involving single-stranded DNA and polybasic compounds using nanospray mass spectrometry. J Am Soc Mass Spectrom 18(2):346–358

    CAS  Google Scholar 

  130. Distler AM, Allison J (2002) Additives for the stabilization of double-stranded DNA in UV-MALDI MS. J Am Soc Mass Spectrom 13(9):1129–1137

    CAS  Google Scholar 

  131. Langley GJ, Herniman JM, Davies NL, Brown T (1999) Simplified sample preparation for the analysis of oligonucleotides by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 13(17):1717–1723

    CAS  Google Scholar 

  132. Liu CL, Wu QY, Harms AC, Smith RD (1996) On line microdialysis sample cleanup for electrospray ionization mass-spectrometry of nucleic acid samples. Anal Chem 68(18):3295–3299

    CAS  Google Scholar 

  133. Smirnov IP, Hall LR, Ross PL, Haff LA (2001) Application of DNA-binding polymers for preparation of DNA for analysis by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 15(16):1427–1432

    CAS  Google Scholar 

  134. Gilar M, Belenky A, Wang BH (2001) High-throughput biopolymer desalting by solid-phase extraction prior to mass spectrometric analysis. J Chromatogr A 921(1):3–13

    CAS  Google Scholar 

  135. Williams TL, Fenselau C (1998) p-nitroaniline/glycerol: a binary liquid matrix for matrix-assisted laser desorption/ionization analysis. Eur Mass Spectrom 4(5):379–383

    CAS  Google Scholar 

  136. Berkenkamp S, Menzel C, Karas M, Hillenkamp F (1997) Performance of infrared matrix-assisted laser desorption/ionization mass spectrometry with lasers emitting in the 3 mu m wavelength range. Rapid Commun Mass Spectrom 11(13):1399–1406

    CAS  Google Scholar 

  137. Menzel C, Berkenkamp S, Hillenkamp F (1999) Infrared matrix-assisted laser desorption/ionization mass spectrometry with a transversely excited atmospheric pressure carbon dioxide laser at 10.6 mu m wavelength with static and delayed ion extraction. Rapid Commun Mass Spectrom 13(1):26–32

    CAS  Google Scholar 

  138. Kirpekar F, Berkenkamp S, Hillenkamp F (1999) Detection of double-stranded DNA by IR- and UV-MALDI mass spectrometry. Anal Chem 71(13):2334–2339

    CAS  Google Scholar 

  139. Colby SM, King TB, Reilly JP (1994) Improving the resolution of matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry by exploiting the correlation between ion position and velocity. Rapid Commun Mass Spectrom 8(11):865–868

    CAS  Google Scholar 

  140. Brown RS, Lennon JJ (1995) Mass resolution improvement by incorporation of pulsed ion extraction in a matrix-assisted laser-desorption ionization linear time-of-flight mass-spectrometer. Anal Chem 67(13):1998–2003

    CAS  Google Scholar 

  141. Wu KJ, Shaler TA, Becker CH (1994) Time-of-flight mass-spectrometry of underivatized single-stranded-DNA oligomers by matrix-assisted laser-desorption. Anal Chem 66(10):1637–1645

    CAS  Google Scholar 

  142. Schneider K, Chait BT (1993) Matrix-assisted laser-desorption mass-spectrometry of homopolymer oligodeoxyribonucleotides—influence of base composition on the mass-spectrometric response. Org Mass Spectrom 28(11):1353–1361

    CAS  Google Scholar 

  143. Li YZ, Tang K, Little DP, Koster H, Hunter RL, McIver RT (1996) High-resolution MALDI Fourier transform mass spectrometry of oligonucleotides. Anal Chem 68(13):2090–2096

    CAS  Google Scholar 

  144. Bahr U, Ayguen H, Karas M (2008) Detection and relative quantification of siRNA double strands by MALDI mass spectrometry. Anal Chem 80(16):6280–6285

    CAS  Google Scholar 

  145. Bahr U, Aygun H, Karas M (2009) Sequencing of single and double stranded RNA Oligonucleotides by acid hydrolysis and MALDI mass spectrometry. Anal Chem 81(8):3173–3179

    CAS  Google Scholar 

  146. Kleinekofort W, Avdiev J, Brutschy B (1996) A new method of laser desorption mass spectrometry for the study of biological macromolecules. Int J Mass Spectrom Ion Process 152(2–3):135–142

    CAS  Google Scholar 

  147. Wattenberg A, Sobott F, Barth HD, Brutschy B (1999) Laser desorption mass spectrometry on liquid beams. Eur Mass Spectrom 5(2):71–76

    CAS  Google Scholar 

  148. Mafune F, Takeda Y, Nagata T, Kondow T (1992) Formation and ejection of cluster ions from a liquid beam of aniline ethanol solution by laser photoionization. Chem Phys Lett 199(6):615–620

    CAS  Google Scholar 

  149. Kondow T, Mafune F (2000) Structures and dynamics of molecules on liquid beam surfaces. Annu Rev Phys Chem 51:731–761

    CAS  Google Scholar 

  150. Sobott F, Wattenberg A, Kleinekofort W, Pfenninger A, Brutschy B (1998) Laser desorption mass spectrometry on thin liquid jets. Fresenius J Anal Chem 360(7–8):745–749

    CAS  Google Scholar 

  151. Charvat A, Stasicki B, Abel B (2006) Product screening of fast reactions in IR-laser-heated liquid water filaments in a vacuum by mass spectrometry. J Phys Chem A 110(9):3297–3306

    CAS  Google Scholar 

  152. Sobott F, Kleinekofort W, Brutschy B (1997) Cation selectivity of natural and synthetic ionophores probed with laser-induced liquid beam mass spectrometry. Anal Chem 69(17):3587–3594

    CAS  Google Scholar 

  153. Horimoto N, Kohno J, Mafune F, Kondow T (2000) Ejection mechanism of molecules and neutral clusters from liquid beam under irradiation of IR laser. Chem Phys Lett 318(6):536–542

    CAS  Google Scholar 

  154. Abel B, Charvat A, Diederichsen U, Faubel M, Girmannc B, Niemeyer J, Zeeck A (2005) Applications, features, and mechanistic aspects of liquid water beam desorption mass spectrometry. Int J Mass Spectrom 243(2):177–188

    CAS  Google Scholar 

  155. Charvat A, Abel B (2007) How to make big molecules fly out of liquid water: applications, features and physics of laser assisted liquid phase dispersion mass spectrometry. Phys Chem Chem Phys 9(26):3335–3360

    CAS  Google Scholar 

  156. Kleinekofort W, Schweitzer M, Engels JW, Brutschy B (1997) Analysis of double-stranded oligonucleotides by laser-induced liquid beam mass spectrometry. Int J Mass Spectrom Ion Process 163(1–2):L1–L4

    Google Scholar 

  157. Morgner N, Barth HD, Brutschy B (2006) A new way to detect noncovalently bonded complexes of biomolecules from liquid micro-droplets by laser mass spectrometry. Aust J Chem 59(2):109–114

    CAS  Google Scholar 

  158. Morgner N, Kleinschroth T, Barth HD, Ludwig B, Brutschy B (2007) A novel approach to analyze membrane proteins by laser mass spectrometry: from protein subunits to the integral complex. J Am Soc Mass Spectrom 18(8):1429–1438

    CAS  Google Scholar 

  159. Kohno J, Toyama N, Kondow T (2006) Ion formation to the gas phase by laser ablation on a droplet beam. Chem Phys Lett 420(1–3):146–150

    CAS  Google Scholar 

  160. Hoffmann J, Schmidt TL, Heckel A, Brutschy B (2009) Probing the limits of liquid droplet laser desorption mass spectrometry in the analysis of oligonucleotides and nucleic acids. Rapid Commun Mass Spectrom 23(14):2176–2180

    CAS  Google Scholar 

  161. Hoffmann J, Sokolova L, Preiss L, Hicks DB, Krulwich TA, Morgner N, Wittig I, Schagger H, Meier T, Brutschy B (2010) ATP synthases: cellular nanomotors characterized by LILBID mass spectrometry. Phys Chem Chem Phys 12(41):13375–13382

    CAS  Google Scholar 

  162. Yamaguchi K (2003) Cold-spray ionization mass spectrometry: principle and applications. J Mass Spectrom 38(5):473–490

    CAS  Google Scholar 

  163. Sakamoto S, Yamaguchi K (2003) Low Tm DNA duplexes observed by cold-spray ionization mass spectrometry. Tetrahedron Lett 44(16):3341–3344

    CAS  Google Scholar 

  164. Sakamoto S, Yamaguchi K (2003) Hyperstranded DNA architectures observed by cold-spray ionization mass spectrometry. Angew Chem Int Ed 42(8):905

    CAS  Google Scholar 

  165. Kuzuhara T, Sei Y, Yamaguchi K, Suganuma M, Fujiki H (2006) DNA and RNA as new binding targets of green tea catechins. J Biol Chem 281(25):17446–17456

    CAS  Google Scholar 

  166. Bierau F, Kupser P, Meijer G, von Helden G (2010) Catching proteins in liquid helium droplets. Phys Rev Lett 105(13):133402

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Grégoire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grégoire, G. (2014). Transferring Nucleic Acids to the Gas Phase. In: Gabelica, V. (eds) Nucleic Acids in the Gas Phase. Physical Chemistry in Action. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54842-0_2

Download citation

Publish with us

Policies and ethics