Skip to main content

MS-Based Approaches for Nucleic Acid Structural Determination

  • Chapter
  • First Online:
Nucleic Acids in the Gas Phase

Part of the book series: Physical Chemistry in Action ((PCIA))

  • 780 Accesses

Abstract

The vast majority of the human genome consists of sequences that do not code for proteins. Understanding their function must rely on approaches that are capable of providing more than mere sequence information. Alone or in combination with other techniques, mass spectrometry (MS) can provide an excellent platform for investigating non-coding nucleic acids (NA) at many different levels. This chapter reviews MS-based approaches developed to pursue the structural elucidation of species that are not readily amenable to the classic high-resolution techniques. Indeed, MS has recently found increasing applications as a detection platform for chemical probes used to interrogate NA structure in solution. These developments have been riding on the concomitant advances of computational approaches, which are rapidly closing the resolution gap with NMR and crystallography by taking full advantage of the sparse constraints afforded by alternative techniques. Further, the hierarchic nature of NA structure, which is characterized by the three-dimensional organization of discrete structural elements, lends itself well to the investigation by techniques that are capable of revealing the position of structure-defining interactions. For this reason, novel strategies are being developed to study secondary, tertiary, and quaternary interactions in the gas phase, which may retain memory of the solution architecture. The popularization of ion mobility spectrometry (IMS) has opened new avenues for investigating the overall topology of non-coding elements, which promise to contribute significantly to the elucidation of progressively larger NA systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Adenine nucleotide

BDG:

4,4′-Bihenyl-diglyoxal

BKT:

Bikethoxal

C:

Cytosine nucleotide

CASP:

Critical assessment of protein structure prediction

CCS:

Collisional cross section

CID:

Collision-induced dissociation

CMCT:

1-Cyclohexyl-3-(2-morpholinoethyl)-carbodiimide metho-p-toluene sulfonate

CPT:

Cisplatin

DMS:

Dimethylsulfate

DNA:

Deoxyribonucleic acid

ECD:

Electron capture dissociation

EDD:

Electron detachment dissociation

EDTA:

Ethylenediaminetetraacetic acid

ESI:

Electrospray ionization

FIV:

Feline immunodeficiency virus

G:

Guanine nucleotide

GUI:

Graphic user interface

HDX:

Hydrogen–deuterium exchange

HIV-1:

Immunodeficiency virus type 1

IMS:

Ion mobility spectrometry

IRMPD:

Infrared multiphoton dissociation

KT:

Kethoxal, β-ethoxy-α-ketobutyraldehyde

MALDI:

Matrix-assisted laser desorption ionization

mRNA:

Messenger ribonucleic acid

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

MS3D:

Mass spectrometry three-dimensional

NA:

Nucleic acids

NB:

Neomycin B

NC:

HIV-1 nucleocapsid protein

NM:

Nitrogen mustard

NMIA:

N-methylisatoic anhydride

NMR:

Nuclear magnetic resonance

PCR:

Polymerase chain reaction

PDG:

1,4-Phenyl-diglyoxal

PPT:

Polypurine tract

RMSD:

Root mean square deviation

RNA:

Ribonucleic acid

SAXS:

Small-angle X-ray scattering

SHAMS:

2′-Hydroxyl acylation by mass spectrometry

SHAPE:

2′-Hydroxyl acylation by primer extension

SL1 though 4:

HIV-1 stemloop 1 through 4

T:

Thymine nucleotide

U:

Uracil nucleotide

UV:

Ultraviolet

WC:

Watson–Crick

Ψ-RNA:

HIV-1 packaging signal

References

  1. Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Cell 31:147–157

    CAS  Google Scholar 

  2. Gesteland RF, Cech TR, Atkins JF (2006) The RNA world: the nature of modern RNA suggests a prebiotic RNA world. CSHL Press, New York, NY

    Google Scholar 

  3. Winkler W, Nahvi A, Breaker RR (2002) Nature 419:952–956

    CAS  Google Scholar 

  4. Nudler E, Mironov AS (2004) Trends Biochem Sci 29:11–17

    CAS  Google Scholar 

  5. Mattick JS, Makunin IV (2006) Hum Mol Genet 15 Spec No 1:R17–R29

    Google Scholar 

  6. Pheasant M, Mattick JS (2007) Genome Res 17:1245–1253

    CAS  Google Scholar 

  7. Brion P, Westhof E (1997) Annu Rev Biophys Biomol Struct 26:113–137

    CAS  Google Scholar 

  8. Draper DE (2013) Biopolymers 99(12):1105–1113

    CAS  Google Scholar 

  9. Bloomfied VA, Crothers DM, Tinoco I Jr (2000) Nucleic acids—structures, properties, and functions, 1st edn. University Science, Sausalito, CA

    Google Scholar 

  10. Draper DE (1999) J Mol Biol 293:255–270

    CAS  Google Scholar 

  11. Leontis NB, Westhof E (2001) RNA 7:499–512

    CAS  Google Scholar 

  12. Leontis NB, Lescoute A, Westhof E (2006) Curr Opin Struct Biol 16:279–287

    CAS  Google Scholar 

  13. Lietzke SE, Barnes CL, Kundrot CE (1995) Curr Opin Struct Biol 5:645–649

    CAS  Google Scholar 

  14. Mooers BHM (2009) Methods 47:168–176

    CAS  Google Scholar 

  15. Varani G, Tinoco I Jr (1991) Q Rev Biophys 24:479–532

    CAS  Google Scholar 

  16. Fürtig B, Richter C, Wöhnert J, Schwalbe H (2003) Chembiochem 4:936–962

    Google Scholar 

  17. Rose PW, Bi C, Bluhm WF, Christie CH, Dimitropoulos D, Dutta S, Green RK, Goodsell DS, Prlic A, Quesada M, Quinn GB, Ramos AG, Westbrook JD, Young J, Zardecki C, Berman HM, Bourne PE (2013) Nucleic Acids Res 41:D475–D482

    CAS  Google Scholar 

  18. Cate JH, Gooding AR, Podell E, Zhou K, Golden BL, Kundrot CE, Cech TR, Doudna JA (1996) Science 273:1678–1685

    CAS  Google Scholar 

  19. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) Science 289:905–920

    CAS  Google Scholar 

  20. D’Souza V, Dey A, Habib D, Summers MFJ (2004) Mol Biol 337:427–442

    Google Scholar 

  21. Wang Y-X, Zuo X, Wang J, Yu P, Butcher SE (2010) Methods 52:180–191

    CAS  Google Scholar 

  22. Tinoco I Jr, Borer PN, Dengler B, Levin MD, Uhlenbeck OC, Crothers DM, Bralla J (1973) Nat New Biol 246:40–41

    CAS  Google Scholar 

  23. Zuker M (1989) Science 244:48–52

    CAS  Google Scholar 

  24. Zuker M (2003) Nucleic Acids Res 31:3406–3415

    CAS  Google Scholar 

  25. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Monatshefte Für Chem Chem Mon 125:167–188

    CAS  Google Scholar 

  26. Wuchty S, Fontana W, Hofacker IL, Schuster P (1999) Biopolymers 49:145–165

    CAS  Google Scholar 

  27. Mathews DH, Andre TC, Turner DH, Zuker M (1997) In: Leontis NB, Santa Lucia J Jr (eds) Molecular modeling of nucleic acids. American Chemical Society, San Francisco, CA

    Google Scholar 

  28. Bellaousov S, Reuter JS, Seetin MG, Mathews DH (2013) Nucleic Acids Res 41:W471–W474

    Google Scholar 

  29. McCaskill JS (1990) Biopolymers 29:1105–1119

    CAS  Google Scholar 

  30. Woese CR, Magrum LJ, Gupta R, Siegel RB, Stahl DA, Kop J, Crawford N, Brosius R, Gutell R, Hogan JJ, Noller HF (1980) Nucleic Acids Res 8:2275–2294

    CAS  Google Scholar 

  31. Gutell RR, Lee JC, Cannone JJ (2002) Curr Opin Struct Biol 12:301–310

    CAS  Google Scholar 

  32. Michel F, Westhof E (1990) J Mol Biol 216:585–610

    CAS  Google Scholar 

  33. Cedergren R, Major F (1998) RNA structure and function. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  34. Parisien M, Major F (2008) Nature 452:51–55

    CAS  Google Scholar 

  35. Lemieux S, Major F (2006) Nucleic Acids Res 34:2340–2346

    CAS  Google Scholar 

  36. Jossinet F, Ludwig TE, Westhof E (2010) Bioinformatics 26:2057–2059

    CAS  Google Scholar 

  37. Westhof E, Masquida B, Jossinet F (2011) Cold Spring Harb Perspect Biol 3:309–320

    Google Scholar 

  38. Marti-Renom MA, Madhusudhan MS, Fiser A, Rost B, Sali A (2002) Structure 10:435–440

    CAS  Google Scholar 

  39. Cruz JA, Blanchet M-F, Boniecki M, Bujnicki JM, Chen S-J, Cao S, Das R, Ding F, Dokholyan NV, Flores SC, Huang L, Lavender CA, Lisi V, Major F, Mikolajczak K, Patel DJ, Philips A, Puton T, Santalucia J, Sijenyi F, Hermann T, Rother K, Rother M, Serganov A, Skorupski M, Soltysinski T, Sripakdeevong P, Tuszynska I, Weeks KM, Waldsich C, Wildauer M, Leontis NB, Westhof E (2012) RNA 18:610–625

    CAS  Google Scholar 

  40. Peattie DA, Gilbert W (1980) Proc Natl Acad Sci U S A 77:4679–4682

    CAS  Google Scholar 

  41. Ehresmann C, Baudin F, Mougel M, Romby P, Ebel J-P, Ehresmann B (1987) Nucleic Acids Res 12:9109–9128

    Google Scholar 

  42. Stern S, Moazed D, Noller HF (1988) Methods Enzymol 164:481–489

    CAS  Google Scholar 

  43. Zwieb C, Ross A, Rinke J, Meinke M, Brimacombe R (1978) Nucleic Acids Res 5:2705–2720

    CAS  Google Scholar 

  44. Brimacombe R, Stiege W, Kyriatsoulis A, Maly P (1988) Methods Enzymol 164:287–309

    CAS  Google Scholar 

  45. Zhang Q, Yu ET, Kellersberger KA, Crosland E, Fabris D (2006) J Am Soc Mass Spectrom 17:1570–1581

    CAS  Google Scholar 

  46. Krol A, Carbon P (1989) Methods Enzymol 180:212–227

    CAS  Google Scholar 

  47. Yu E, Fabris D (2003) J Mol Biol 330:211–223

    CAS  Google Scholar 

  48. Tullius TD, Dombroski BA (1985) Science 230:679–681

    CAS  Google Scholar 

  49. Tullius TD, Greenbaum JA (2005) Curr Opin Chem Biol 9:127–134

    CAS  Google Scholar 

  50. Pogozelski WK, McNeese TJ, Tullius TDJ (1995) Am Chem Soc 117:6428–6433

    CAS  Google Scholar 

  51. Ralston CY, Sclavi B, Sullivan M, Deras ML, Woodson SA, Chance MR, Brenowitz M (2000) Methods Enzymol 317:353–368

    CAS  Google Scholar 

  52. Merino EJ, Wilkinson KA, Coughlan JL, Weeks KMJ (2005) Am Chem Soc 127:4223–4231

    CAS  Google Scholar 

  53. Wilkinson KA, Merino EJ, Weeks KM (2006) Nat Protoc 1:1610–1616

    CAS  Google Scholar 

  54. Cadet J, Sage E, Douki T (2005) Mutat Res 571:3–17

    CAS  Google Scholar 

  55. Zwieb C, Brimacombe R (1980) Nucleic Acids Res 8:2397–2411

    CAS  Google Scholar 

  56. Wilms C, Noah JW, Zhong D, Wollenzien P (1997) RNA 3:602–612

    CAS  Google Scholar 

  57. Harris ME, Christian EL (2009) Methods Enzymol 468:127–146

    CAS  Google Scholar 

  58. Lawley PD, Brookes P (1967) J Mol Biol 25:143–160

    CAS  Google Scholar 

  59. Brewer LA, Goelz S, Noller HF (1983) Biochemistry (Mosc) 22:4303–4309

    CAS  Google Scholar 

  60. Lippard SJ (1982) Science 218:1075–1082

    CAS  Google Scholar 

  61. Zhang Q, Crosland E, Fabris D (2008) Anal Chim Acta 627:117–128

    CAS  Google Scholar 

  62. Biemann K, McCloskey JA (1962) J Am Chem Soc 84:2005–2007

    CAS  Google Scholar 

  63. Quinn R, Basanta-Sanchez M, Rose RE, Fabris D (2013) J Mass Spectrom 48(6):703–712

    CAS  Google Scholar 

  64. Cheng X, Camp DG, Wu Q, Bakhtiar R, Springer DL, Morris BJ, Bruce JE, Anderson GA, Edmonds CG, Smith RD (1996) Nucleic Acids Res 24:2183–2189

    CAS  Google Scholar 

  65. Benjamin DR, Robinson CV, Hendrick JP, Hartl FU, Dobson CM (1998) Proc Natl Acad Sci U S A 95:7391–7395

    CAS  Google Scholar 

  66. Keough T, Baker TR, Dobson RL, Lacey MP, Riley TA, Hasselfield JA, Hesselberth PE (1993) Rapid Commun Mass Spectrom 7:195–200

    CAS  Google Scholar 

  67. Limbach PA (1996) Mass Spectrom Rev 15:297–336

    CAS  Google Scholar 

  68. McLuckey SA, Habibi-Goudarzi S (1993) J Am Chem Soc 115:12085–12095

    CAS  Google Scholar 

  69. Nordhoff E, Kirpekar F, Roepstorff P (1996) Mass Spectrom Rev 15:67–138

    Google Scholar 

  70. Kowalak JA, Pomerantz SC, Crain PF, McCloskey JA (1993) Nucleic Acids Res 21:4577–4585

    CAS  Google Scholar 

  71. Kirpekar F, Douthwaite S, Roepstorff P (2000) RNA 6:296–306

    CAS  Google Scholar 

  72. Hossain M, Limbach PA (2007) RNA 13:295–303

    CAS  Google Scholar 

  73. Little DP, Aaserud DJ, Valaskovic GA, McLafferty FW (1996) J Am Chem Soc 118:9352–9359

    CAS  Google Scholar 

  74. Taucher M, Breuker KJ (2010) Am Soc Mass Spectrom 21:918–929

    CAS  Google Scholar 

  75. Henry C (1997) Anal Chem 69:243A–246A

    Google Scholar 

  76. Venter JC, Smith HO, Hood L (1996) Nature 381:364–366

    CAS  Google Scholar 

  77. Wang BH, Biemann K (1993) Proceedings of the 41st ASMS conference on mass spectrometry and allied topics, San Francisco, CA

    Google Scholar 

  78. Limbach PA, Crain PF, McCloskey JA (1994) Nucleic Acids Res 22:2183–2196

    CAS  Google Scholar 

  79. Cantara WA, Crain PF, Rozenski J, McCloskey JA, Harris KA, Zhang X, Vendeix FAP, Fabris D, Agris PF (2011) Nucleic Acids Res 39:D195–D201

    CAS  Google Scholar 

  80. Stone MP, Huang H, Brown KL, Shanmugam G (2011) Chem Biodivers 8:1571–1615

    CAS  Google Scholar 

  81. Swenberg JA, Lu K, Moeller BC, Gao L, Upton PB, Nakamura J, Starr TB (2011) Toxicol Sci 120:S130–S145

    CAS  Google Scholar 

  82. Kellersberger KA, Yu E, Kruppa GH, Young MM, Fabris D (2004) Anal Chem 76:2438–2445

    CAS  Google Scholar 

  83. Turner KB, Yi-Brunozzi HY, Brinson RG, Marino JP, Fabris D, Le Grice SF (2009) RNA 15:1605–1613

    CAS  Google Scholar 

  84. Fabris D, Yu ET (2010) J Mass Spectrom 45:841–860

    CAS  Google Scholar 

  85. Jensen ON, Kulkarni S, Aldrich JV, Barofsky DF (1996) Nucleic Acids Res 24:3866–3872

    CAS  Google Scholar 

  86. Steen H, Petersen J, Mann M, Jensen ON (2001) Protein Sci 10:1989–2001

    CAS  Google Scholar 

  87. Turner KB, Brinson RG, Yi-Brunozzi HY, Rausch JW, Miller JT, Le Grice SFJ, Marino JP, Fabris D (2008) Nucleic Acids Res 36:2799–2810

    CAS  Google Scholar 

  88. Brinson RG, Turner KB, Yi-Brunozzi HY, Le Grice SF, Fabris D, Marino JP (2009) Biochemistry (Mosc) 48:6988–6997

    CAS  Google Scholar 

  89. Turner KB, Kohlway AS, Hagan NA, Fabris D (2009) Biopolymers 91:283–296

    CAS  Google Scholar 

  90. Ganem B, Li YT, Henion JD (1991) J Am Chem Soc 113:6294–6296

    CAS  Google Scholar 

  91. Loo JA (1997) Mass Spectrom Rev 16:1–23

    CAS  Google Scholar 

  92. Turner KB, Hagan NA, Kohlway A, Fabris D (2006) J Am Soc Mass Spectrom 17:1401–1411

    CAS  Google Scholar 

  93. Hvidt A, Linderstrøm-Lang K (1954) Biochim Biophys Acta 14:574–575

    CAS  Google Scholar 

  94. Englander SWJ (2006) Am Soc Mass Spectrom 17:1481–1489

    CAS  Google Scholar 

  95. Johnston PD, Redfield AG (1977) Nucleic Acids Res 4:3599–3615

    CAS  Google Scholar 

  96. Englander SW, Sosnick TR, Englander JJ, Mayne L (1996) Curr Opin Struct Biol 6:18–23

    CAS  Google Scholar 

  97. Yu ET, Hawkins AE, Eaton J, Fabris D (2008) Proc Natl Acad Sci U S A 105:12248–12253

    CAS  Google Scholar 

  98. Yu ET, Zhang Q, Fabris D (2005) J Mol Biol 345:69–80

    CAS  Google Scholar 

  99. Light-Wahl KJ, Springer DL, Winger BE, Edmonds CG, Camp DG, Thrall BD, Smith RD (1993) J Am Chem Soc 115:803–804

    CAS  Google Scholar 

  100. Ganem B, Li Y-T, Henion JD (1993) Tetrahedron Lett 34:1445–1448

    CAS  Google Scholar 

  101. Turner KB, Hagan NA, Fabris D (2007) J Mol Biol 369:812–828

    CAS  Google Scholar 

  102. Stephenson W, Asare-Okai PN, Chen AA, Keller S, Santiago R, Tenenbaum SA, Garcia AE, Fabris D, Li PTXJ (2013) Am Chem Soc 135:5602–5611

    CAS  Google Scholar 

  103. Gabelica V, De Pauw E (2002) J Am Soc Mass Spectrom 13:91–98

    CAS  Google Scholar 

  104. Yang J, Mo J, Adamson JT, Hakansson K (2005) Anal Chem 77:1876–1882

    CAS  Google Scholar 

  105. Mo J, Hakansson K (2006) Anal Bioanal Chem 386:675–681

    CAS  Google Scholar 

  106. Taucher M, Breuker K (2012) Angew Chem Int Ed 51:11289–11292

    CAS  Google Scholar 

  107. McLuckey SA (1992) J Am Soc Mass Spectrom 3:599–614

    CAS  Google Scholar 

  108. Woodin RL, Bomse DS, Beauchamp JL (1978) J Am Chem Soc 100:3248–3250

    CAS  Google Scholar 

  109. Fabris D, Kellersberger KA, Wilhide JA (2012) Int J Mass Spectrom 312:155–162

    CAS  Google Scholar 

  110. Revercomb HE, Mason EA (1975) Anal Chem 47:970–983

    CAS  Google Scholar 

  111. Von Helden G, Hsu M-T, Kemper PR, Bowers MTJ (1991) Chem Phys 95:3835–3837

    Google Scholar 

  112. Giles K, Pringle SD, Worthington KR, Little D, Wildgoose JL, Bateman RH (2004) Rapid Commun Mass Spectrom 18:2401–2414

    CAS  Google Scholar 

  113. Shvartsburg AA, Smith RD (2008) Anal Chem 80:9689–9699

    CAS  Google Scholar 

  114. Clemmer DE, Jarrold MF (1997) J Mass Spectrom 32:577–592

    CAS  Google Scholar 

  115. Gidden J, Ferzoco A, Baker ES, Bowers MTJ (2004) Am Chem Soc 126:15132–15140

    CAS  Google Scholar 

  116. Baker ES, Bowers MTJ (2007) Am Soc Mass Spectrom 18:1188–1195

    CAS  Google Scholar 

  117. Gidden J, Baker ES, Ferzoco A, Bowers MT (2005) Int J Mass Spectrom 240:183–193

    CAS  Google Scholar 

  118. Baker ES, Dupuis NF, Bowers MTJ (2009) Phys Chem 113:1722–1727

    CAS  Google Scholar 

  119. Gabelica V, Baker ES, Teulade-Fichou MP, De Pauw E, Bowers MTJ (2007) Am Chem Soc 129:895–904

    CAS  Google Scholar 

  120. Porter KC, Beck JL (2011) Int J Mass Spectrom 304:195–203

    CAS  Google Scholar 

  121. Yu ET, Fabris D (2004) Anal Biochem 344:356–366

    Google Scholar 

Download references

Acknowledgments

Financial support was provided by The RNA Institute through a Pilot Research Program grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Fabris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fabris, D. (2014). MS-Based Approaches for Nucleic Acid Structural Determination. In: Gabelica, V. (eds) Nucleic Acids in the Gas Phase. Physical Chemistry in Action. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54842-0_10

Download citation

Publish with us

Policies and ethics