Skip to main content

Introduction: Nucleic Acids Structure, Function, and Why Studying Them In Vacuo

  • Chapter
  • First Online:
Nucleic Acids in the Gas Phase

Part of the book series: Physical Chemistry in Action ((PCIA))

  • 791 Accesses

Abstract

This introductory chapter sets the stage for the various methods and application that will be described in the book “Nucleic acids in the gas phase.” Using key review articles as references, nucleic acid structures are introduced, with progression from primary structure to the main secondary, tertiary, and quaternary structures of DNA and RNA. Nucleic acid function is also overviewed, from the roles of natural nucleic acids in biology to those of artificial nucleic acids in the biotechnology, biomedical, or nanotechnology fields. Importantly, the question of why studying nucleic acids in the gas phase is addressed from three different points of view. First, because isolated molecules in vacuo cannot exchange energy with their surroundings, reactivity can be studied in well-defined energetic conditions. Second, isolating molecules from their solvent and environment allow to study their intrinsic properties. Finally, the rapidly expanding field of mass spectrometry, an intrinsically gas-phase analysis method, calls for better understanding of ion structure and reactivity in vacuo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Adenine

BIRD:

Blackbody infrared radiation-induced dissociation

bp:

Base pair

C:

Cytosine

DNA:

Deoxyribonucleic acid

FDA:

Food and Drug Adminstration

G:

Guanine

G4-DNA:

G-quadruplex DNA

IR:

Infrared

LNA:

Locked nucleic acid

miRNA:

Micro RNA

mRNA:

Messenger RNA

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

ncRNA:

Noncoding RNA

NMR:

Nuclear magnetic resonance

nt:

Nucleotide

ODN:

Oligodeoxynucleotide

PDB:

Protein data bank

PNA:

Peptide nucleic acid

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

rRNA:

Ribosomal RNA

SASA:

Solvent-accessible surface area

siRNA:

Silencing RNA

T:

Thymine

TFO:

Triplex forming oligonucleotide

tRNA:

Transfer RNA

U:

Uracil

UV:

Ultraviolet

VEGF:

Vascular endothelial growth factor

References

  1. Banoub JH, Newton RP, Esmans E, Ewing DF, Mackenzie G (2005) Recent developments in mass spectrometry for the characterization of nucleosides, nucleotides, oligonucleotides, and nucleic acids. Chem Rev 105:1869–1915

    Article  CAS  Google Scholar 

  2. Carell T, Brandmayr C, Hienzsch A, Muller M, Pearson D, Reiter V, Thoma I, Thumbs P, Wagner M (2012) Structure and function of noncanonical nucleobases. Angew Chem Int Ed Engl 51:7110–7131

    Article  CAS  Google Scholar 

  3. Dudley E, Bond L (2013) Mass spectrometry analysis of nucleosides and nucleotides. Mass Spectrom Rev. doi:10.1002/mas.21388

    Google Scholar 

  4. Grasby JA, Neidle S, Blackburn GM, Gait MJ, Loakes D, Williams DM, Egli M, Flavell M, Flavell A, Pyle AM et al (2006) In: Blackburn GM, Gait MJ, Loakes D, Williams DM (eds) Nucleic acids in chemistry and biology, 3rd edn. RSC Publishing, pp 13–76

    Google Scholar 

  5. Sponer J, Sponer JE, Mladek A, Jurecka P, Banas P, Otyepka M (2013) Nature and magnitude of aromatic base stacking in DNA and RNA: quantum chemistry, molecular mechanics, and experiment. Biopolymers 99:978–988

    CAS  Google Scholar 

  6. Turner DH (2013) Fundamental interactions in RNA: questions answered and remaining. Biopolymers 99:1097–1104

    CAS  Google Scholar 

  7. Duca M, Vekhoff P, Oussedik K, Halby L, Arimondo PB (2008) The triple helix: 50 years later, the outcome. Nucleic Acids Res 36:5123–5138

    Article  CAS  Google Scholar 

  8. Davis JT (2004) G-quartets 40 years later: from 5′-GMP to molecular biology and supramolecular chemistry. Angew Chem Int Ed 43:668–698

    Article  CAS  Google Scholar 

  9. Gueron M, Leroy JL (2000) The i-motif in nucleic acids. Curr Opin Struct Biol 10:326–331

    Article  CAS  Google Scholar 

  10. Drew H, Wing R, Takano T, Broka C, Tanaka S, Itakura K, Dickerson RE (1981) Proc Natl Acad Sci USA:2179–2183

    Google Scholar 

  11. Radhakrishnan I, Patel DJ (1994) Solution structure of a pyrimidine-purine-pyrimidine DNA triplex containing T*AT, C+*GC and G*TA triples. Structure 2:17–32

    Article  CAS  Google Scholar 

  12. Creze C, Rinaldi B, Haser R, Bouvet P, Gouet P (2007) Structure of a d(TGGGGT) quadruplex crystallized in the presence of Li+ ions. Acta Crystallogr 63:682–688

    CAS  Google Scholar 

  13. Wang Y, Patel DJ (1993) Solution structure of the human telomeric repeat d[AG 3 (T 2 AG 3) 3] G-tetraplex. Structure 1:263–282

    Article  CAS  Google Scholar 

  14. Esmaili N, Leroy JL (2005) i-motif solution structure and dynamics of the d(AACCCC) and d(CCCCAA) tetrahymena telomeric repeats. Nucleic Acids Res 33:213–224

    Article  CAS  Google Scholar 

  15. Butcher SE, Pyle AM (2011) The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks. Acc Chem Res 44:1302–1311

    Article  CAS  Google Scholar 

  16. Rostom AA, Fucini P, Benjamin DR, Juenemann R, Nierhaus KH, Hartl FU, Dobson CM, Robinson CV (2000) Detection and selective dissociation of intact ribosomes in a mass spectrometer. Proc Natl Acad Sci USA 97:5185–5190

    Article  CAS  Google Scholar 

  17. Kuhn-Holsken E, Dybkov O, Sander B, Luhrmann R, Urlaub H (2007) Improved identification of enriched peptide RNA cross-links from ribonucleoprotein particles (RNPs) by mass spectrometry. Nucleic Acids Res 35:e95

    Article  Google Scholar 

  18. Wells RD (2007) Non-B DNA conformations, mutagenesis and disease. Trends Biochem Sci 32:271–278

    Article  CAS  Google Scholar 

  19. De S, Michor F (2011) DNA secondary structures and epigenetic determinants of cancer genome evolution. Nat Struct Mol Biol 18:950–955

    Article  CAS  Google Scholar 

  20. Sarkies P, Reams C, Simpson LJ, Sale JE (2010) Epigenetic instability due to defective replication of structured DNA. Mol Cell 40:703–713

    Article  CAS  Google Scholar 

  21. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  CAS  Google Scholar 

  22. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  Google Scholar 

  23. Guil S, Esteller M (2012) Cis-acting noncoding RNAs: friends and foes. Nat Struct Mol Biol 19:1068–1075

    Article  CAS  Google Scholar 

  24. Dethoff EA, Chugh J, Mustoe AM, Al-Hashimi HM (2012) Functional complexity and regulation through RNA dynamics. Nature 482:322–330

    Article  CAS  Google Scholar 

  25. Beaucage SL, Caruthers MH (1981) Deoxynucleoside phosphoramidites—a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett 22:1859–1862

    Article  CAS  Google Scholar 

  26. Francois JC, Lacoste J, Lacroix L, Mergny JL (2000) Design of antisense and triplex-forming oligonucleotides. Methods Enzymol 313:74–95

    Article  CAS  Google Scholar 

  27. Famulok M, Mayer G, Blind M (2000) Nucleic acid aptamers—from selection in vitro to applications in vivo. Acc Chem Res 33:591–599

    Article  CAS  Google Scholar 

  28. Ellington AD, Szostak JW (1990) In viro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  29. Ng EW, Shima DT, Calias P, Cunningham ET Jr, Guyer DR, Adamis AP (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5:123–132

    Article  CAS  Google Scholar 

  30. Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA, Berg RH, Kim SK, Norden B, Nielsen PE (1993) Pna hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365:566–568

    Article  CAS  Google Scholar 

  31. Wengel J, Koshkin A, Singh SK, Nielsen P, Meldgaard M, Rajwanshi VK, Kumar R, Skouv J, Nielsen CB, Jacobsen JP et al (1999) LNA (locked nucleic acid). Nucleotides Nucleosides 18:1365–1370

    Article  CAS  Google Scholar 

  32. Sinkeldam RW, Greco NJ, Tor Y (2010) Fluorescent analogs of biomolecular building blocks: design, properties, and applications. Chem Rev 110:2579–2619

    Article  CAS  Google Scholar 

  33. Rodrigo G, Landrain TE, Shen S, Jaramillo A (2013) A new frontier in synthetic biology: automated design of small RNA devices in bacteria. Trends Genet 29:529–536

    Article  CAS  Google Scholar 

  34. Pinheiro VB, Taylor AI, Cozens C, Abramov M, Renders M, Zhang S, Chaput JC, Wengel J, Peak-Chew SY, McLaughlin SH et al (2012) Synthetic genetic polymers capable of heredity and evolution. Science 336:341–344

    Article  CAS  Google Scholar 

  35. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    Article  CAS  Google Scholar 

  36. Sacca B, Niemeyer CM (2012) DNA origami: the art of folding DNA. Angew Chem Int Ed Engl 51:58–66

    Article  CAS  Google Scholar 

  37. Wilner OI, Willner I (2012) Functionalized DNA nanostructures. Chem Rev 112:2528–2556

    Article  CAS  Google Scholar 

  38. Krishnan Y, Simmel FC (2011) Nucleic acid based molecular devices. Angew Chem Int Ed Engl 50:3124–3156

    Article  CAS  Google Scholar 

  39. Seeman NC (2005) From genes to machines: DNA nanomechanical devices. Trends Biochem Sci 30:119–125

    Article  CAS  Google Scholar 

  40. Tang Y, Ge B, Sen D, Yu HZ (2013) Functional DNA switches: rational design and electrochemical signaling. Chem Soc Rev 43:518–529

    Article  Google Scholar 

  41. Liu SP, Weisbrod SH, Tang Z, Marx A, Scheer E, Erbe A (2010) Direct measurement of electrical transport through G-quadruplex DNA with mechanically controllable break junction electrodes. Angew Chem Int Ed Engl 49:3313–3316

    Article  CAS  Google Scholar 

  42. Genereux JC, Barton JK (2010) Mechanisms for DNA charge transport. Chem Rev 110:1642–1662

    Article  CAS  Google Scholar 

  43. McLuckey SA, Goeringer DE (1997) Slow heating in tandem mass spectrometry. J Mass Spectrom 32:461–474

    Article  CAS  Google Scholar 

  44. Dunbar RC, McMahon TB (1998) Activation of unimolecular reactions by ambient blackbody radiation. Science 279:194–197

    Article  CAS  Google Scholar 

  45. Vékey K (1996) Internal energy effects in mass spectrometry. J Mass Spectrom 31:445–463

    Article  Google Scholar 

  46. Armentrout PB, Ervin KM, Rodgers MT (2008) Statistical rate theory and kinetic energy-resolved ion chemistry: theory and applications. J Phys Chem 112:10071–10085

    Article  CAS  Google Scholar 

  47. Dunbar RC (2004) BIRD (blackbody infrared radiative dissociation): evolution, principles, and applications. Mass Spectrom Rev 23:127–158

    Article  CAS  Google Scholar 

  48. Rodgers MT, Armentrout PB (2000) Noncovalent interactions of nucleic acid bases (uracil, thymine, and adenine) with alkali metal ions. Threshold CID and theoretical studies. J Am Chem Soc 122:8548–8558

    Article  CAS  Google Scholar 

  49. Strittmatter EF, Schnier PD, Klassen JS, Williams ER (1999) Dissociation energies of deoxyribose nucleotide dimer anions measured using BIRD. J Am Soc Mass Spectrom 10:1095–1104

    Article  CAS  Google Scholar 

  50. Klassen JS, Schnier PD, Williams ER (1998) Blackbody infrared radiative dissociation of oligonucleotide anions. J Am Soc Mass Spectrom 9:1117–1124

    Article  CAS  Google Scholar 

  51. Auffinger P, Hashem Y (2007) Nucleic acid solvation: from outside to insight. Curr Opin Struct Biol 17:325–333

    Article  CAS  Google Scholar 

  52. Janin J (1997) Angströms and calories. Structure 5:473–479

    Article  CAS  Google Scholar 

  53. Chaires JB (1997) Energetics of drug-DNA interactions. Biopolymers 44:201–215

    Article  CAS  Google Scholar 

  54. Dearden DV, Liang Y, Nicoll JB, Kellersberger K (2001) Study of gas-phase molecular recognition using fourier-transform ion cyclotron resonance mass spectrometry. J Mass Spectrom 36:989–997

    Article  CAS  Google Scholar 

  55. Balbeur D, Dehareng D, De Pauw E (2007) Conformationally driven gas-phase H/D exchange of dinuleotide negative ions. J Am Soc Mass Spectrom 18:1827–1834

    Article  CAS  Google Scholar 

  56. Vairamani M, Gross ML (2003) G-quadruplex formation of thrombin aptamer detected by electrospray ionization mass spectrometry. J Am Chem Soc 125:42–43

    Article  CAS  Google Scholar 

  57. Mo J, Hakansson K (2006) Characterization of nucleic acid higher order structure by high-resolution tandem mass spectrometry. Anal Bioanal Chem 386:675–681

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Gabelica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gabelica, V. (2014). Introduction: Nucleic Acids Structure, Function, and Why Studying Them In Vacuo. In: Gabelica, V. (eds) Nucleic Acids in the Gas Phase. Physical Chemistry in Action. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54842-0_1

Download citation

Publish with us

Policies and ethics