Affine Parallelization of Loops with Run-Time
Dependent Bounds from Binaries

Aparna Kotha, Kapil Anand, Timothy Creech, Khaled E1Wazeer,
Matthew Smithson, and Rajeev Barua

University of Maryland,
College Park, MD 20742
{akotha,kapil,tcreech,wazeer ,msmithso,barua}@umd.edu

Abstract. An automatic parallelizer is a tool that converts serial code
to parallel code. This is an important tool because most hardware today
is parallel and manually rewriting the vast repository of serial code is
tedious and error prone. We build an automatic parallelizer for binary
code, i.e. a tool which converts a serial binary to a parallel binary. It
is important because: (i) most serial legacy code has no source code
available; (ii) it is compatible with all compilers and languages.

In the past binary automatic parallelization techniques have been de-
veloped and researchers have presented results on small kernels from
polybench. These techniques are a good start; however they are far from
parallelizing larger codes from the SPEC2006 and OMP2001 benchmark
suites which are representative of real world codes. The main limitation of
past techniques is the assumption that loop bounds are statically known
to calculate loop dependencies. However, in larger codes loop bounds are
only known at run-time; hence loop dependencies calculated statically
are overly conservative making binary parallelization ineffective.

In this paper we present a novel algorithm that enhancing past tech-
niques significantly by guessing the most likely loop bounds using only
the memory expressions present in that loop. It then inserts run-time
checks to see if these guesses were indeed correct and if correct executes
the parallel version of the loop, else the serial version executes. These
techniques are applied to the large affine benchmarks in SPEC2006 and
OMP2001 and unlike previous methods the speedups from binary are as
good as from source. We also present results on the number of loops par-
allelized directly from a binary with and without this algorithm. Among
the 8 affine benchmarks among these suites, the best existing binary par-
allelization method achieves an average speedup of 1.74X, whereas our
method achieves a speedup of 3.38X. This is close to the speedup from
source code of 3.15X.

Keywords: Automatic Parallelization, Binary Rewriting, Affine loop
parallelization, Run-time dependent loop bounds.

1 Introduction

With the advent of multi-core machines it is most efficient to run parallel code
on them. However, most code ever written is serial. Several methods have been

Z. Shao (Ed.): ESOP 2014, LNCS 8410, pp. 554-574, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

Affine Parallelization of Loops with Run-Time Dependent Bounds 555

proposed to parallelize serial code which include: (i) explicitly rewriting se-
rial code using Message Passing Interface (MPI), pthreads, Threading Building
Blocks (TBB) etc; (ii) using program directives such as Open Multi-Processing
(OMP) to specify parallelism in serial code and (iii) using an automatic paral-
lelizer to convert serial code to parallel without any human intervention. Auto-
matic parallelizer is more attractive than the first two methods since: (i) it is
not prone to human error; (ii) programmers do not need to be trained to think
and program in parallel. Hence, we choose automatic parallelization to bridge
the gap between serial code and parallel hardware.

In this paper we develop mechanisms to implement an automatic parallelizer
within a binary rewriter. i.e. we develop a tool that takes as input serial binary
code and produces as output a parallel binary. The advantages of parallelizing
binary code include: (i) it works on old legacy code for which no source code
is available; (ii) it works for all binaries of an instruction set irrespective of
the language/compiler they come from; (iii) it works on hand-coded assembly
language programs as well; (iv) it can be used by the end user who does not
have access to the source code.

In the past a few attempts have been made to parallelize affine codes directly
from binaries Kotha et al. (2010); Pradelle et al. (2012). Though these papers
present good foundational ideas and results on polybench kernels, they are only
a start to parallelizing large real world affine codes. The major limitation of these
methods is that their algorithms are not powerful enough to handle loops with
run-time dependent loop bounds and such loops are present in abundance in real
life code. In this paper we present a novel algorithm to work on such loops whose
bounds are run-time dependent or statically unknown. The idea is that we guess
the most likely loop bounds using the memory expressions present in the loop
and add run-time checks to see if these were indeed correct before executing the
parallel version of the loop. These run-time checks may slow down the program
in the worst case but open up for more possible parallelism. Our results show
that affine benchmarks from the SPEC2006 and OMP2006 benchmark suites
(much larger benchmarks representative of real world codes) can be parallelized
with our techniques.

Further, this paper is arranged as follows. Section 2 presents the closest related
work contrasting our techniques to them. Section 3 presents the limitations of the
present binary affine parallelization techniques using an example and motivates
the algorithm followed by a brief algorithm and more examples in section 4.
The core algorithm is presented in section 5 followed by the description of our
infrastructure in section 6 and the results in section 7.

2 Related Work

In this section, we present potentially competing related work contrasting it
to this paper in the following categories: (i) static automatic parallelization of
binaries; (ii) dynamic automatic parallelization of binaries; (iii) automatic vec-
torization of binaries and (iv) array delinearization techniques.

556 A. Kotha et al.

Static Automatic Parallelization of Binaries: Kotha et al. (2010) and
Pradelle et al. (2012) are the only two static methods we are aware of that
have done automatic parallelization in a binary rewriter. Both these methods
present results on small kernels that are a part of the polybench benchmark
suite. Pradelle et al. (2012) automatically parallelizes binaries by feeding the
binary intermediate form to the polyhedral compiler. Its results are only on the
polybench benchmark suite. Kotha et al. (2010) statically parallelizes binaries by
using dependence information determined from binaries. However, its methods
are limited to affine loops where loop bounds are known and hence, it also can
only parallelize small kernels from the polybench benchmark suite. Both these
methods present a brief section on run-time dependent loop bounds and suggest
adding run-time checks to check if different accesses were indeed to different
arrays. Their methods are highly lacking since they have no mechanisms to
reason about dependencies between accesses to the same array and in the absence
of such a mechanism it will be conservative and not parallelize real world code.
We build on this work and have devised a novel algorithm to guess the possible
loop bounds of affine loops. We are able to parallelize affine benchmarks from
the SPEC2006 and OMP2001 benchmark suites.

Dynamic Automatic Parallelization of Binaries: Dynamic automatic par-
allelization techniques present in literature are Yardimci and Franz (2006),
Wang et al. (2009) and J. Yang and Whitehouse (2011). Yardimci and Franz
(2006) focuses on a dynamic method to detect non-affine parallelism. Wang et al.
(2009) presents a dynamic method to parallelize binaries using speculative slicing
and J. Yang and Whitehouse (2011) presents a method to use run-time informa-
tion to parallelize binary code. All the three methods are dynamic. Hence, they
suffer from run-time overheads from analysis. Most importantly, they do not
optimize for affine loops whereas our method does.

Vectorization of Binaries: Nakamura et al. (2011) and Dasgupta and Dasgupta
(2003) present techniques to analyze binaries and vectorize them. Their analysis is
limited to vectorization of binaries and do not attempt to parallelize using threads
like we do.

Array Delinearization Techniques: Array Delinearization methods Maslov
(1992) Franke and O’boyle (2003) take source code with linearized multi-
dimensional accesses, and convert them to multi-dimensional accesses when pos-
sible. Ideally, if we delinearize array accesses in a binary we can parallelize them
as effectively as from source. However, source-level methods to delinearize ar-
ray accesses cannot be adapted to binaries easily. Delinearization methods such
as Maslov (1992), Franke and O’boyle (2003) require high level intermediate C like
representation which is not available from binary code. They use symbolic informa-
tion which contains information about the number, location, and dimension sizes
of arrays, to delinearize arrays. Finding this information in the general case from
stripped binaries (i.e. those without symbolic information) is impossible since it
is discarded by the linker. Hence, delinearization methods cannot be adapted for
binary code.

Affine Parallelization of Loops with Run-Time Dependent Bounds 557

The method in this paper circumvents the problem of missing array informa-
tion in binaries by not attempting to recover guaranteed information about array
locations and dimension sizes. Instead it guesses the possible bounds for loops.
When the guesses are correct, the code can be parallelized. Run-time checks en-
sure that when the guessed bounds are wrong, the serial code is executed. No pre-
vious method guesses loop bounds from binaries, or uses run-time checks like our
method. The result is that our method is the first to parallelize binary code with
unknown loop bounds.

3 Motivation

To parallelize affine loops, traditional techniques calculate distance vectors for each
loop and use them to reason about parallelizing the loop. In this section we first
describe the best-known methods for obtaining distance vectors from source code
for affine loops with run-time determined loop bounds. We then present the limita-
tions of the existing binary method for the same and briefly describe our method.

int A[20,50] The code shows a normalized loop, i.e. a loop
for i =0 — ub; step 1 with a lower bound of zero and a step of one.
for j =0 — ub; step 1 Loops can be normalized using existing meth-
Ali,jl =Al[i,j] + 10 ods such as the normalization pass in LLVM.

Fig. 1. Code Example

Distance vectors from source for code in figure 1 are calculated as follows. Ex-
isting methods make the assumption that row and column accesses are within the
bounds of the array’s dimensions. They solve for two iterations that refer to the
same memory location in the infinite space for each dimension separately. If no so-
lution exists, like in this example, they conclude that no two iterations ever access
the same memory. This implies that iterations of the j loop can execute in parallel
(i.e., the component of the distance vector for j dimension is zero.) Similarly, they
proves that the loop i is parallel.

To obtain distance vectors from binary for this code we cannot use the above
source method since it relies on known affine expressions for array indexes in terms
of induction variables, which are not apparent from the binary. Instead we start
with the existing method for binaries in Kotha et al. (2010). It shows that we can
recover linearized expressions for memory accesses from a binary, and solving these
linearized expressions gives us distance vectors. In the presence of loop bounds the
solutions from binaries are very powerful, and can handle most linear algebraic
kernels as presented in Kotha et al. (2010). However, when loop bounds are run-
time dependent, we need to solve these linearized expressions in the infinite space
(since we need to assume that the loop bounds can take any value at run-time).
This greatly reduces the precision of the analysis.

Let us apply the existing binary method to code in figure 1. From its binary,
we recover a memory expression of the form Basey + 200i + 4j which corresponds
to the A[i,j] access (assuming the element size is 4). The “200” in 200: is because

558 A. Kotha et al.

the size of a row is 50 elements, each of 4 bytes. We need to reason about this ac-
cess in the infinite space for i and j since the loop bounds are unknown. In the
infinite space, iterations (2, 0), (1, 50) and (0, 100) refer to the same memory lo-
cation. All the iterations except (2, 0) are not possible since the legal range of j is
[0,49] and beyond 49 the code accesses columns out of bounds wrapping into rows.
Source code methods assume that such iterations are not possible; hence prov-
ing the loop is parallel. However, the binary method in Kotha et al. (2010) cannot
make any such assumptions about iterations remaining within array bounds, since
array bounds and dimensions are not known. As a result, without loop bounds, the
binary method in Kotha et al. (2010) fails to prove that this loop is parallel because
false loop-carried dependence appears.

In this paper we present a method to statically guess the most likely upper
bounds of loops when loop bounds are statically unknown. We then use run-
time checks to see if the loop bounds were indeed within the guessed range and
execute the parallel version when the run-time checks succeed, else we execute
the serial version. For example, for code in figure 1, using the theory presented
in Kotha et al. (2010) we discover the memory expression for the A[i][j] access to
be Bases + 200i +4j. We then look at the coefficients multiplying the induction vari-
ables in this memory expression and guess that the likely limit of the induction
variable with the smallest coefficient (i.e. j, as the immediately higher coefficient
divided by the coefficient of this induction variable; i.e. in this example we guess
the limit on j as (Coefficient of i /Coefficient of j) (i.e. 2)° = 50). By guessing that
j is less than 50 no two iterations will access the same memory location because
now j has been prevented to wrap into i. At run-time, we check if j is indeed less
than s0. In this case, this check will always succeed and we will always execute the
parallel version of the loop.

4 Examples

In this section we first briefly describe the steps of the algorithm described in sec-
tion 5 and then apply it to four code examples to show how their loops can be
parallelized from a binary even though the loop bounds are run-time dependent.

First, we state the algorithm that we use to guess the loop bounds for a loop
directly from a binary and then present details in section 5.

Step 1: Divide memory accesses (both reads and writes) in a loop into Depen-
dence Groups (DGs). Intuitively, a DG is a subset of memory addresses in the loop
that are sufficiently close to one another.

Step 2: Arrange all DGs in ascending order of their base addresses, from
DG; tO DGr.

Step 3: For all the DGs that have writes in them make best guesses for the possi-
ble range for induction variables. These guesses are called intra-group constraints,
since they are obtained by working on one DG at a time.

Step 4: Initiate worklist with DGs that have constraints remaining after step 3.

Step 5: Work on each pg; in the worklist and solve for the values of induc-
tion variables such that the accesses in pG; do not overlap with those in DG; 4.

Affine Parallelization of Loops with Run-Time Dependent Bounds 559

This generates further guesses on the induction variables. Merge these new con-
straints with existing constraints for the same induction variable by choosing the
minimum. These guesses are called inter-group constraints because they are ob-
tained by constraining DG; to not overlap DG; 1) .

int A[20,50]

int B[20,50] int A[20,50] int A[100]

for i =0 — ub; step 1 for i =0 — ub; step 1 for i =0 — ub; step 1
forj=0—>ubj step 1 forj=0—>ubj step 1 Ali] =1i;
B[i,j] = A[i,j] + 10 A[2i,j] = 10%i+j A[i+50] = i + 50;
(a) Example 1 (b) Example 2 (a) Example 3

Example 1: The memory address expressions that we recover from the binary of
example 1 are of the form Bases + 200i + 45 and Basep + 200i + 45 (Assuming that
the size of an integer is 4.). Base4 and Basep will at least differ by 4000, since the
size of each array is 4000 bytes. Without loss of generality let’s assume we recover
the following from the binary 100 + 200 + 45 and 4100 4 200i + 4;.

When the code above is compiled to a striped binary, all symbolic information
is lost. Hence we no longer know the location or dimension sizes (20, 50) of array
A. Hence we can no longer infer (as we implicitly do from source) that ub; < 20 and
ub; < 50. Instead we must assume that the loop bounds can take any value.

We now show briefly how our algorithm is applied to these accesses to guess the
bounds on i and j. In Step 1, we check to see if the accesses belong to different DGs.
The heuristic we use is that the difference of the bases is greater than a factor (5 for
our experiments) of the highest coefficient; i.e. Baseg — Base4 > 5 x 200 i.e. (4100-
100) > 5 x 200. Since this is true both the accesses will belong to different DGs. In
Step 2, we arrange the DGs in ascending order of their bases. 100 +200i +4; belongs
to DG because its base is lower than the second access which belongs to DG». In
Step 3, we solve for intra-group constraints in DG» since it contains a write. We
guess the bound on j by dividing the co-efficient multiplying i (the just higher co-
efficient in the linearized equation) by the co-efficient of j i.e. (*)° = 50). Hence,
we guess that 7 must belong to [0, 49]. In step 4, we create a worklist with all DGs
that have constraints remaining. In this example both the DGs have constraints
remaining on 4; hence both of them will belong to the worklist. In step 5, we guess
the bound on i by solving that DG i.e. 100+200i+ 45 does not overlap with DG i.e.
4100+200i +45 given the highest possible value for j is 49; i.e. 1004-200i+4%49 < 4100.
Hence, ¢ must be less than 19.02 or in the range [0, 19]. Since DG> is the highest
DG we do not solve for it overlapping with any other DG.

After we have applied our algorithm to this loop, our guess for i is [0, 19] and j is
[0, 49]. We now solve for dependencies within this range for the loop and discover
that the loop can be parallelized. We also add lightweight run-time checks before
the parallel version of the loop (which will always succeed for this loop).

Example 2: The memory address expression that we recover from the binary in
example 2 is Base 4 +400i+45. Since there is only one access, step 1 and 2 will result
in placing it in DG;. In step 3, we guess that the bound of j is (*)° = 100) or the
range of j is guessed to be [0, 99]. There would be no step 4 and 5 for this loop since
there is only one DG.

560 A. Kotha et al.

Next we calculate dependencies assuming the range of j is [0, 99] and i can take
any value and discover that the loop can be parallelized. In reality however the
range of j will not exceed [0, 49]. But our larger discovered bounds work well since
even if they did exceed 49 and be below 99 this loop can still be parallelized i.e. if
the programmer decided to access two rows using a column increment (which most
programmers would not do) it is still a parallel loop. From the binary this means
that we see array A of size [20,50] as an array of size [10,100]. However, this is fine
since we reason about the dependencies in the correct way and parallelize the loop
only when our run-time checks succeed.

Example 3: The equations we will recover from the binary of example 3 are Base 4 +
4; and Base s + 200 + 4i. After step 1, we will place them in different DGs since the
difference between the bases (200) is greater than 5 times the highest co-efficient 4.
After arranging the DGs in ascending order in step 2, Base 4 +4i will belong to DGy
and Base 4 +200+4: will belong to DG». No intra-group guesses are calculated in step
3 since the recovered equations are single dimensional. After step 4, the worklist
is populated with both the DGs since both contain s for which there is no guess as
yet. In step 5, we solve for inter-group guesses such that DG, does not overlap with
DGa, i.e. 4i < 200 or i < 50. Hence, the range we guess for i is [0, 49] which is also
the actual limit on ¢ from source. The run-time check will always succeed in binary
code and we will execute the parallel version of this loop. This is correct because,
regardless of the value of ub;, the two array references access non-intersecting por-
tions of the array. Our method correctly treats these non-intersecting portions as
different arrays.

5 Algorithm to Guess Loop Bounds

In this section we describe in detail the algorithm briefly presented in section 4.
First we describe which loops from binary code we work on and then in subsequent
subsections we describe the steps of the algorithm in detail.

First, we would like to present to you the kind of loops on which our algorithm
is applied on and the kind of loops on which our algorithm is effective. We apply
our method to every loop that has only affine accesses in them 1i.e. accesses of the
form A[i+3][5j], A[i+j][k+i], A[j][j] etc are all processed by our method. We also
apply our method only on loops whose bounds are loop invariant. Our method is
able to effectively parallelize loop nests with array accesses of the form A[i][2j],
A[3j][i+100], and A[j][i] i.e. normalized accesses with induction variables in any
order; however affine accesses having multiple induction variables in a single array
index expression (such as Afi+j]) or having repeated induction variables (such as
A[j][j]) are not currently effectively parallelized by our method. Our guesses may be
incorrect for these loops. Hence, the run-time checks might fail for these loops and
the serial version of the code may be executed. However, these kinds of accesses
are rare in real code and hence our method is nearly as powerful from binary as
from source.

Affine Parallelization of Loops with Run-Time Dependent Bounds 561

Every affine memory address that we recover from the binary is a linearized
multidimensional equation of the form Kotha et al. (2010):
MemAddr(Base, d) = Base + ;} dj X ij (1)
i=t

(where Base and d’s are constants or loop invariant quantities, i’s are induction
variables, and d; >=d, >= >=d,). We arrange the memory expression with d’s in
this order since in the algorithm we use the immediately higher coefficient while
guessing the value of a particular induction variable, i.e. we use d(,,) when guess-
ing the values of induction variable i,. We will refer to memory addresses from bi-
nary using MemAddr(Base, d) throughout the paper. Different memory addresses from
binary will have different Base and ds. Since we work on loops with only affine ac-
cesses in them, if we discover that a loop contains an access that is not affine i.e.
we cannot discover a linearized expression for it then we do not work that loop.

In the following subsections we first describe our algorithm and then present an
intuition for it.

5.1 Step 1: Divide the Accesses into DGs

A DG is a subset of memory references in the loop that are sufficiently close to
one another and these set of references most likely do not overlap with other DGs.
Intuitively, while dividing memory references into DGs we try to guess all the ref-
erences which access the same array, or a region of an array not overlapping with
other regions. This is not immediately apparent since binaries lack symbolic infor-
mation containing the locations and sizes of arrays.

We create DGs using the following method. We look at the address of each mem-
ory reference and place it in an already present DG if it is sufficiently close to the
addresses already in that DG; else we create a new DG with this memory address.
We define that two accesses are sufficiently close to one another if the difference
between the bases is within a factor (5) of the highest coefficient in the memory
expression. The formal algorithm is presented in algorithm 1. We use a factor 5
which we find effective in most cases; however any other method can be used as
well to determine which accesses are close to each other.

We now describe some of the terms used in the algorithm. pe1ist is the list of
DGs that is initialized to NULL and then populated as we consider every memory
access in the loop. 4 is the highest coefficient in the memory expression; hence, if
the difference between the base and any of the bases already in a DG is within a
factor of it, we guess that it most likely belongs to the same memory array and place
this reference in that DG. CDmres is @ number that guesses the maximum difference
between references in the same DG. Currently we set CDmres t0 5. With CDmyres = 5,
two accesses to A[i] and A[i+4] will belong to the same DG, whereas two accesses
to A[i] and A[i+10] will belong to different DGs.

We manually looked at many affine benchmarks and determined that having
accesses Afi] and Afi+e] where e > 5 in the same loop is relatively rare in affine
codes; as most constants in affine codes are less than 5. Most of the codes only look
at neighbouring values (i.e. use constants + 2) to update an array. Hence, even if we
had accesses to A[i+2] and A[i-2], the difference 4 is still lower than the factor 5 we

562 A. Kotha et al.

choose. If the rare case occurs, and there are accesses to Ali] and A[i+e] (e > 5), we
would treat them as accesses to two different arrays. Accesses to different arrays
A and B will belong to different DGs unless the highest dimension of A has size
less than 5 (which again is very rare) and B immediately follows A in the binary’s
data layout. Most often in affine codes, the array sizes are relatively huge running
into thousands. If this rare case appears we will treat both A and B as the same
array. In both the above cases, the run-time checks will fail and the serial version
of the loop will be executed. Hence, the loop may run slower than from source, but
correctness is always maintained.

Algorithm 1. Step 1: Algorithm to divide accesses into DGs
Input: MemAddr(Base,d) for all accesses in loop
Output: DGlist has the accesses divided into DGs

Require: Initialize DGlist to NULL
for all MemAddr(Base,d) in loop do

Initialize TmpDGlist to NULL
for all DG; in DGlist do
if |Base — Any base in DG;|<di1 X CDrpres then
Put MemAddr(Base,d) in DG;
Put DG; in TmpDGlist
end if
end for
if sizeof TmpDG List > 1 then
Merge all the DGs in TmpDG List
end if
if sizeof TmpDG List == 0 then
A new DG with MemAddr in it is added to DGlist
end if
end for

5.2 Step 2: Arrange DGs in Ascending Order

In this step we reorganize the DGs in De1list in ascending order of the bases present
in them. After arranging those in ascending order the following will be true:

All bases in bg; < All bases in pe, < --- < All bases in per (This will be < since if
they are equal they would belong to the same DG). We call this ordering of DGs,
the FullList.

5.3 Step 3: Induce Intra-group Dependencies

In this step we make our best guesses for all array bounds, and hence induction
variables, except the array bound of the highest dimension in an array reference.
We make the guesses based on the assumption that array references accesses arrays
within the bounds of each dimension.

We apply step 3 to every DG that has a write in it. The reason we apply it to DGs
with writes in them is that even if a read accesses across bounds it does not create a

Affine Parallelization of Loops with Run-Time Dependent Bounds 563

Algorithm 2. Step 3.1: Guesses for induction variables using one access

Input: All DGs that have a write in them
Output: Initial guesses for the induction variables
Require: Initialize each of g1, g2, -+ ,gn to TOP
for all DG, in FullList that has a write in it do
for all MemAddr(Base,d) in DG; do
for k=2 —>n do

g1k = Ld(fi;l)J
gx = min(gr, gix)
end for
end for

end for

loop dependency that prevents parallelization; hence guessing bounds considering
DGs with only reads is not necessary. For example, if there is an affine loop that
only reads from an array, there is no need to guess bounds for such a loop as it is
parallel in the infinite space as long as there is no scalar dependency in it.

Step 3 is divided into two sub steps 3.1 and 3.2. Step 3.1 is applied to every
access in a DG and step 3.2 is applied to a pair of accesses in a DG. We first present
the algorithms for both the sub steps before presenting intuitions for them.

Step 3.1: The formal algorithm for step 3.1 is presented in algorithm 2. We are
working on loop nests with induction variables say ii, i2,- - - , in and guesses for each
g1,82, -, gn. First, we initialize the guesses for each of these induction variables to
TOP representing infinity which is what we know about each of the induction vari-
ables before the start of this step. Then we look at every memory access which is of
the form Memaddr(Base, d) (from eq(1)) and make guesses for each induction variable
as follows.

The guess on iy, gix = Ld“;;l)j Vk € [2,n)] (2)

We then update the guess already in gx for iy using

gx = min(gx, gix) (3)

Note: min(TOP, g1x) = gix Since TOP represents infinity.

We apply this to every memory access in every DG that has a write and guess for
every induction variable other than the highest dimension i;. Note that we cannot
make a guess for i; since there is no 4, in the equation. Hence, we do not have a
guess for i; in this step. The guess for i; is made in step 5 and will be described
later.

Step 3.2: After we have applied step 3.1 to all DGs that have a write in them,
we work on the same DGs considering pairs of accesses in them and apply step 3.2
on them. This algorithm is presented in algorithm 3.

We now describe the algorithm briefly. We first initialize x1,xo,--- , x, to zeroes.
These represent the adjustment we need to make to each of the induction variable
bound guesses at the end of this step. Then we consider pairs of accesses in this
DG, if the bases are different then we store the absolute difference in Basesiss. We
then run a loop that checks to see which factor of this difference came from which

564 A. Kotha et al.

Algorithm 3. Step 3.2: Guesses for induction variables using pair of accesses
Input: All DG;s that have a write in them and g1, g2, - - , gn from step 3.1
Output: Refined guesses for induction variables

Require: Initialize x1,x2,- - ,x, to zeroes
for MemAddri(Basei,d),MemAddrz(Basesz,e) in DG; do
Baseq; 55 = | Basey - Bases |

for k& :Bl —ndo
. aseq;ff
if ged(dy.er) > 1 then
LBasediff J
ged(dy,ex)
T, = maz(Tk, T11)
Baseg;
Basea; ;5 = Basea;f5 — Lgcd(d:"ef:)J x ged(di, ex)
end if
end for
end for
fork=1—ndo
9k = gk — Tk
end for

Tl =

co-efficient and keep track of that in dxs. Later these are subtracted from the guesses
for induction variables g, from step 3.1.

It is important to make this adjustment to the guesses on loop bounds from step
3.1 since by doing so we are making sure that each of the accesses do not run into
the higher dimension of the other. After this adjustment we will not have spuri-
ous dependencies from binary that prevent prallelization. We will present further
intuition to this step below.

Intuition for Step 3.1: Let us assume that the binary code we are accessing
came from source code where the loop nest had induction variables (say i1, i, - , in)
and an array accesses A[Ci X i1 + B1][C2 X i2 + Ba] -+ [Cn X in + By] in the loop and the
size of array A is [n1][n2] - - - [nn]. Assume that none of the induction variables is re-
peated; however any ordering of the induction variables is allowed. This access when
recovered from the binary will be of the form.

(BaSEA—F;}BjX ﬁ nm)+§JCj>< ﬁ np X ij (4)
j=t m=j+1 j=t +1

n=j

(This assumes an element size of 1; else each one of the terms will be multi-
plied by the element size.) The algorithm is correct even if the compiler uses the
column-major layout; we assume the row-major layout only for explaining the intu-
ition. Our results also include FORTR AN benchmarks for which the gfortran com-
piler uses the column-major layout. Base, and all the terms containing B’s (shown
in parenthesis above) are rolled into the constant term when recovered from the
binary. We know that the memory address that we recover from binary is of the
form Memaddr(Base, d) (from eq.(1)).

Equating (4) and (1) we get:

n n
Base = Basex + ¥ Bj X II np (5)
j=1 n=j+1

n
and, dj = Cj X m=j+1nm (6)

Affine Parallelization of Loops with Run-Time Dependent Bounds 565

First, let us calculate the actual upper bounds of the induction variables from
source. From source we know that the array indices do not access arrays out of
their bounds. Hence, each dimension index must be less than the actual size of
that dimension.

2.€. Cx X ik + By < ng (7)

Rearranging the terms, ix < (“kC*kBk) (8)

Hence, the upper bound of iy from source is ("“c_k Be) |

Second, let us see what our guess for induction variable iy is by applying step
3.1 to this access. Our guess for induction variable iy is obtained by substituting
eq(6) in eq(2)

e gu= """ vk e 2,1 9)

Next taking the minimum of gy and Top (the initialized value) we get,
gx = min(TOP, gix) = gix = LC(kQ | Vi € [2,10] (10)

We now show that the guesses for induction bounds are greater than or equal to
the actual loop bounds. This is important because if the guesses were lower than
the actual bounds our run-time checks would fail. We have already seen that the
guess on the induction variable ix = C(“’Clk) ™ this is greater than the actual limit
of iy, which is (“kc_kBk) from eq.(8). We observe that if ¢, is 1 and By is 0, then
the value we would have guessed is the same as the actual upper bound. Further,
if cx is 1 as well, the guess for iy is nx, which is the size of that array dimension.
Every guess we make for the induction variables is actually higher than or equal
to its actual bound as shown above. By taking the minimum at every step we have
a guess that is at least its actual bound.

Intuition for step 3.2: Let us assume that there is a second accesses to A,
A[C1 X i1 4+ B1 +E1]---[Ca X in + By + Eqo] in this loop where Es are small numbers < 5.
The memory address for this access from binary will benof the form:

n n n .
Basen + % (Bj +Ej) X II nx+ % Cyx Il ny X ij (11)
i=t x=j+1 R

Recollect that this access when recovered from the binary will be of the form
MemAddr(Bases, e), from equation (1):

MemAddr(Basep, e) = Basep + '§1 ej X ij (12)
=
Equating eq.(11) and eq.(12), we get:
Base; =Basey + ¥ (Bj +Ej) X II ng (13)
i=1 x=j+1
and, ej = C; x L o (14)

First, let us prove that both the references belong to the same DG using step 1
since we would apply step 3.2 to them only if both of them belong to the same DG.
From step 1 we know that if the difference between the bases is < di x CDrures, then
they will belong to the same DG.

i.e. if |Base; — Base| < di X CDrhres (15)

then, both the accesses will belong to this DG.
The difference between the bases from eq.(13) and eq.(5) is

Base; —Base = X Ej X Il nj (16)
j=1 x=j+1

566 A. Kotha et al.

We know from eq.(14) and eq.(6) that:

di =e1 =C1 X ﬁnm (17)
Now, substituting eq. (16) and eq. (17) in eq. (15) we get:
If 2 Ej X n nj < Ci X I nn X CDrnres (18)
=j+1 n=2
, then both the accesses Wlll belong to this DG
S4B+t chE;EI < CDmes (19)

(Wthh will be true in most cases since ¢; and Es are small positive numbers < 5
and ny - - -n, are relatively large, and CDmyes 18 5 in our experiments.)

Hence, both these accesses represented by MemAddr(Base, d) and MemAddr(Basez,e)
from the binary will belong to the same DG.

First, let us see what the bounds for the induction variable from source would
be in the presence of the second access as well. We know that accesses from source
do not access out of bounds in correct programs. We have seen that the bounds for
each induction variable (ix) only considering the first access is (nkc’k B) as shown in
eq.(8). Now considering that the second access does not access out of bounds we
get:

Ck X ik + Bk + Ex < ng (20)

Rearranging the terms, i, < @~ BB (21)

Cx
The difference between the bounds calculated from eq.(8) and eq.(21) is &
Now let us apply algorlthm 3 to both these accesses.

We know that Baseaisrs = 21 Ej X ﬁ+ n;. By dividing it with ged(dx, ex) = dx (since
x=j

di = ex in our case) repeatedly in loop and keeping the remainder of it for the next
iteration we recover xs of the form Lgtj as long as cgs are factors of Exs. By sub-
tracting xs from the already present guesses of the induction variables we get
go= Cl) “™ _ B Many of the Es will be zeroes, hence we will not make adjustment
to many bounds however we will make adjustment to the bounds that have small
constant Es in their terms. Further, it is good to note that the term we subtract
using algorithm 3 is equivalent to the difference of the bounds as shown above.

It is important to note at this point that by subtracting from the already guessed
bounds, we are making sure that the second access which accesses a few extra ele-
ments in some dimensions does not run into the higher dimension of the first access.
This is very important because if we do not make this adjustment we will have ex-
tra dependencies from binary which will prevent parallelization and by subtracting
the extra from bounds we will not see those spurious dependencies. Also it is im-
portant to note that the new guess we have for the bounds is also higher than or
equal to the actual bounds of the loop.

5.4 Step 4: Create the Worklist

In this step we create a worklist with DGs that have accesses with remaining con-
straints so that we can apply step 5 on them to guess the upper bounds for the
remaining induction variables. After step 3 we have upper bound constraints for

Affine Parallelization of Loops with Run-Time Dependent Bounds 567

all the induction variables in the memory addresses other than the ones that cor-
respond to the highest dimension in the write accesses. We need a method to guess
the upper bound on these induction variables as well. This method is step 5. Hence,
we now create a worklist with all DGs in which there is an induction variable for
which we do not have an upper bound guess as yet. These would be the highest
dimension induction variables since we do not have guesses for those after step
3. This worklist will enable us to work on only those DGs that have remaining
constraints.

5.5 Step 5: Work on Inter-group Constraints

In this step we look at all DGs in the worklist created in step 4 (recall that these
DGs have induction variables for which we have no guesses as yet) and solve for
this DG not overlapping with the immediately following DG in the FullList. While
creating DGs we assumed that each DG corresponds to a non-overlapping array
region. Hence, it is required that different DGs do not overlap with each other; else
this would generate false dependencies from binaries. Solving this generates further
guesses on the remaining induction variables. These guesses are called inter-group
constraints.

The formal method for solving that pe; from worklist does not overlap with
DG(;+1) (the immediately following DG in the FullList of DGs) is presented in algo-
rithm 4, we describe it briefly here. For every bg; that has constraints remaining we
substitute the guesses for all induction variables other than the highest one in all
its memory expressions and require that this be less than the lowest base in pG; 4.
Solving the above constraint we can obtain an higher bound for the highest induc-
tion variable. We then choose the minimum of the present guess and the already
present minimum guess for that induction variable. This way we ensure that all
our guesses are respected.

Algorithm 4. Step 5: Algorithm for Inter-group constraints
Input: Worklist from step 4 and guesses g1, g2, - , gn from step 3.2
Output: Final guesses for bounds g1, g2, - , gn
for all DG, in worklist after step 4 do

for all MemAddr(Base,d) in DG; do
Basejow = Lowest Base from DG (;11) in FullList

n
Basejyq,, —Base—('22 da*g2)
=

g = | dy
g1 = min(g1, g1)
end for
end for

Intuition for step 5: Now that we have presented an algorithm for calculating
the bounds on the highest induction variable, let us apply this to an access from
source code, to show that our method guesses the value for the highest induction
variable that is > to the actual bound on that induction variable.

568 A. Kotha et al.

In step 3 we assumed we were working with loop nests comprising of the
following induction variables (say,ii,is,---in) and array accesses
A[Ci X i1 +B4]---[Ca X in + By] in the loop, and the size of array A is [ni][n,] - - - [na]. Let
this access belong to pg;.

First, let us recollect the guesses for all induction variables except the highest
induction variable from step 3. One of the guesses we would have made for induc-
tion variable ix (where k € [2,n]) is c(k*éi ™ (eq.(9)). Hence, the final guess after
step 4 will be equal to or lower than this guess.

Next, let us assume that there is an access to array B in the same loop belonging
t0 DG(; 41y, i-€. the immediately following DG in the FullList. If this second array B
is laid immediately after a in the binary, then Bases will be at least:

Basep = Basej + ﬁ1 n; (this term is the size of A) (22)
5=

Let us assume that all accesses corresponding to B belong to bG;.1). The lowest
address of DG; ;) Will be Bases.

Next, we apply the method in algorithm 4 for solving pe; not overlapping with
DG(; 41y from source to derive the guess for i; and then verify that this guess is cor-
rect. For doing so we must substitute our guesses for all the induction variables
except the highest dimension induction variable in the expression of memory ad-
dress A and this must be less than Bases. The expression for memory address A
obtained by substituting the intra-group guesses eq.(9) in eq.(4) is:

n n n n n Ci_qXn;j
Basep+ X BjX II mnx+CiX IT nxXit+ X Cyx II mgx(J Cl J —1) (23)
=1 x=j+1 x=2 j=2 x=j+1 J

The only unknown in eq.(23) is i;. This must be less than Bases (from eq.(22)).
Hence,

n n n n n n n
Basea+ 3 BjX II nx+CiX IT nxXit+ 3 CjX II nxy— ¥ CjX II ng
3=t x=jtt x=2 =17 x=it1 3 j+1

=2 x=j
. (24)
<Basep+ II nj
j=1
Rearranging the terms we get,
o n n n
Elnj—(cix I nxt 5 Byx 11 1nx)
i < i= x= an x=j+ (25)
Ci1X II ng
x=2
Further, (£ Bjx M ny)
j=2 =j
R i A (26)
C1 X IT nyg
x=2
; . n B
Qe ip <G —1- g —(d) (27)

The remaining values are small since the constant C’s and B’s are small and the
sizes of arrays in affine code are generally large.
Hence, the guess for i; will be:

=™y (28)

C1
As seen before from source we require that the array expression must not ex-
ceed the size of the array dimension. Hence the highest dimension array expression
(C1 x i1 + B1) must not exceed the highest dimension (ny).
2.€. C1 X iy + By < ny (29)

Rearranging the terms i, < (“lc’lBl)

Affine Parallelization of Loops with Run-Time Dependent Bounds 569

Hence, the maximum value i, can take is (nlc’l B) _ 1 and this is what we get by
solving the equations from binary.

We have now seen that the algorithm 4 to calculate the bounds on the highest
dimension induction variable yields a limit on it that is the true limit on it even
from source code.

At the end of step 5, we now have made best guesses for all induction variables
in the loop that appear in a memory address. If there is an induction variable
that does not appear in any memory access, then we just assume that it can take
any value since we have no way of determining its bounds. This does not hurt our
method and is reasonable since even from source if an induction variable does not
appear in any of the memory addresses present in the loop it could take any value
at run-time and this would be legal.

For array accesses that came from dynamically allocated memory we apply
the same algorithm described above. It is important to note that all ds in the
MemAddr(Base, d) expression would be loop invariant symbols rather than constants.
In many cases the memory expression we recover from binary code for these ac-
cesses will be of the form

Base + Xy X Xg-+-Xp X i1 + X9 X X3+-Xg X ig+ -4+ %Xy X ip (30)

where all the xs and Base are loop invariant quantities. By applying the algorithm
to such an access we guess that the bound on iy is x,_;). We then check that the
actual bounds are less than this loop invariant quantity (this check would succeed)
before executing the parallel version of the loop.

Now that we have constraints on all the induction variables, we calculate the
distance vectors and take parallelizing decisions for this loop assuming these as
loop bounds. We then clone this loop and run the parallel version of the loop when
the run-time checks for all induction variables succeed; else we run the serial version
of the loop. Since we check at run-time that the loop bounds that we have guessed
are actually correct we will always be conservatively correct. Please note that using
the distance vector method to parallelize is our implementation method, one may
use any parallelizing decision algorithm including polyhedral methods.

6 Implementation-SecondWrite

In this section we describe the binary rewriting infrastructure, SecondWrite
Kotha et al. (2010); O’Sullivan et al. (2011); Anand and et. al. (2013) used for this
research and how the automatic parallelizer interacts with rest of the system.
Architecture of Binary Rewriter called SecondWrite is presented in fig-
ure 2. SecondWrite’s custom binary reader and de-compiler modules translate the
input x86 binary into the intermediate representation (IR) of the LLVM compiler.
LLVM is a well-known open-source compiler Lattner and Adve (2004) developed
at the University of Illinois, and is now maintained by Apple Inc. LLVM IR is lan-
guage and machine independent. Thereafter the LLVM IR produced is optimized
using LLVM’s pre-existing optimizations, as well as our enhancements, including
automatic parallelization. Our new algorithm is implemented within this static

570 A. Kotha et al.

EXISTING LLVM COMPILER

c LLVM IR Optimized _.OUtpm
Crits| Lvm LLVM IR | Optimized | x86 back-end binary
front end imizati LLVM IR
Ada—
‘ortran —=> C back-end _,Output
e - Ccode
OUR NEW CODE l |
Y1
Input Binary reader «High IR enhancements
binary T & i (Stack splitting,
disassembler LLVM IR Symbol conversion)
A
*Optimizations
X86 ISA (Parallelization, Security)
_ XML

Fig. 2. SecondWrite

affine automatic parallelizer. Finally, the LLVM IR is code generated to output
x86 code using LLVM’s existing x86 code generator.

Currently SecondWrite rewrites x86 binaries from both Linux and Windows.
It successfully rewrites binaries coming from source totaling over 2 million lines
of code, including all of the SPEC2006 benchmarks. Real world programs such as
the apache web server (230K+ LOC), Lynx browser (135K+ LOC) and MySQL
(1.7M LOC) are also successfully rewritten. Rewritten benchmark binaries on av-
erage run 10% faster than highly optimized input binaries, and 45% faster than
unoptimized input binaries because of the existing optimizations in LLVM not in-
cluding parallelization.

SecondWrite is able to rewrite binaries without relocation informa-
tion Smithson et al. (2010). SecondWrite implements various mechanisms
O’Sullivan et al. (2011); Anand and et. al. (2013) to obtain an intermediate
representation which contains features like procedure arguments, return values,
types, high-level control flow, symbols and aggregate data structures. Second-
Write also employs extra mechanisms to safely handle indirect calls and indirect
branches Smithson et al. (2010). It employs alias analysis frameworks present
in LLVM to discover all the possible target procedures at indirect callsites,
given by the points-to set of the operand in indirect call instruction. An edge is
added from the indirect call-site to all its possible target procedures. Indirect
branches are mostly present due to jump tables in the binary. Procedure boundary
determination techniques are devised to limit the possible branch targets within
the current procedure and extra control flow edges are added corresponding to
the possible targets determined by alias analysis. If one of the target is outside
procedure boundary, it is handled as an indirect call.

The algorithm presented in section 5 can be implemented in any static or dy-
namic binary rewriter as long as symbol recognition and induction variable anal-
ysis is implemented in the system.

7 Results

We use “-03” optimized binaries from gcc-4.3 and gfortran-4.3 as input to Sec-
ondWrite, which includes the new algorithm proposed in this paper within a static

Affine Parallelization of Loops with Run-Time Dependent Bounds 571

affine parallelizer. The static affine automatic parallelizer, that is in Second Write
works on LLVM IR. We build a source automatic parallelizer by feeding it LLVM
IR generated from clang LLVM (2007) (a C language front-end for llvim) for the
‘C’” benchmarks and LLVM IR generated using the dragonegg LLVM (2009) plu-
gin (a plugin that integrates the LLVM optimizers and code generator with GCC)
for the FORTRAN benchmarks. The LLVM IR fed to the stand-alone automatic
parallelizer contains array location and dimension information, hence the source
parallelizer uses it to take parallelization decisions. We run all the binaries on the
AMD Opteron(TM) processor 6212 and present results.

In this section we present our results on parallelizing binaries from SPEC2006
and OMP2001 using our new algorithm. First, we introduce our benchmarks. Sec-
ond, we present the speedups we have from source and binary. For the binary num-
bers, we present results for speedups both with and without the new algorithm.
Third, we present the actual number of affine loops that are parallelized from the
binary with and without the algorithm. We measure speedups by measuring the
clock time to run the programs on 1 thread and 8 threads.

Table 1. Description of Benchmarks

Benchmark Language # LOC Suite Benchmark Language # LOC Suite

swim Fortran 275 OMP2001 quake C 1151 OMP2001
bwaves Fortran 680 SPEC2006 libquantum C 2605 SPEC2006
mgrid Fortran 789 OMP2001 milc C 9575 SPEC2006
Ibm C 908 SPEC2006 cactus Fortran + C 59827 SPEC2006

First, table 1 lists the 8 affine benchmarks that we present our results on. Our
source and binary parallelizers correctly parallelize every benchmark from both
the benchmark suites; however do not give any speedup on the remaining bench-
marks since those benchmarks do not contain affine rich regions. We have picked
only the affine rich benchmarks from the SPEC2006 and OMP2001 benchmark
suites. We manually profiled every benchmark belonging to both the benchmark
suites and after examining the hot regions classified benchmarks as affine or not
affine. We present our results on all the affine benchmarks discovered from both
the benchmark suites. The benchmarks swim, mgrid and quake belong to the
OMP2001 benchmark suite and bwawves, lbm, libqguantum, milc and cactus belong
to the SPEC2006 benchmark suite. These benchmarks range from 275 to 59,827
lines of code as shown in table 1.

Second, figure 3 presents the speedup for 8 threads from source and binary for
each of the benchmarks w.r.t the gcc “-O3” compiled single thread version of the
benchmark. There are three bars for each benchmark; (i) the first bar is the speedup
of the benchmark from source code for 8 threads; (ii) the second bar is the speedup
of the binary for 8 threads without the new algorithm using only the theory pre-
sented in Kotha et al. (2010) and (iii) the third bar is the speedup of the binary for
8 threads using the new algorithm presented in this paper. We observe that swim,
bwaves, mgrid, quake, milc and cactus gain significant speedups when the new al-
gorithm presented in this paper is present in the static affine binary parallelizer.

572 A. Kotha et al.

@Source
£ Binary w/o algo

= Binary with algo

Speedup of 8 threads
g

I

E

bwaves mgrid Ibm quake libquantum milc cactus Average

(I
%“ J
[

Fig. 3. Speedup of 8 threads for the affine benchmarks from SPEC2006 and OMP2001

The significant affine loops in these benchmarks have run-time determined loop
bounds and hence using our new algorithm we are able to parallelize these loops
that were not parallelized using the theory developed before. The benchmarks lbm
and libquantum do not have any difference in the speedups with and without the
algorithm. The reason being; (i) in lbm, the loops bounds are statically known and
hence the theory in Kotha et al. (2010) is sufficient to parallelize the affine loops
in it and (ii) in libguantum the loops are single dimensional with a write to one
single dimensional memory accesses. These loops can be parallelized without the
new algorithm and hence we see a speedup in libquantum even without the new
algorithm. Overall the average speedup for 8 threads for the 8 benchmarks from
binaries increases from 1.75X to 3.38X with the addition of the new algorithm. Our
binaries run slightly faster than source since SecondWrite is able to rewrite “-03”
binaries to run 10% faster than the input binaries.

Table 2. Number of loops parallelized with and without the new algorithm

Benchmark # loops w/o algo # loops with algo Benchmark # loops w/o algo # loops with algo

swim 6 18 quake 7 9

bwaves 0 1 libquantum 18 18
mgrid 0 6 milc 37 43
Ibm 4 4 cactus 112 126

Third, table 2 presents the number of loops that are parallelized from the binary
with and without the new algorithm. We observe that in the benchmarks lbm and
libquantum the number of loops parallelized with and without the algorithm do
not change. The reasons for this have been explained earlier. In swim, quake, milc
and cactus, a number of loops are parallelized even when the new algorithm is not
present in the static affine binary parallelizer; however, these loops are small and do
not contribute to the run-time of the benchmark. Hence, these loops do not result
in a speedup from 8 threads for these benchmarks. We make this comparison to
show that it is not the number of loops that are parallelized that matter, but it is
important to parallelize the run-time intensive loops that can be parallelized by
our new algorithm.

Affine Parallelization of Loops with Run-Time Dependent Bounds 573

8 Discussion and Future Directions

In this section we describe few salient aspects of our algorithm choice and alternate
ideas that can be tested in the future.

8.1 Choice of a Heuristic Based Method

In the algorithm presented in this paper, one observes that we are solving a sys-
tem of equations using a set of constraints to obtain loop bounds. We also observe
that the number of constraints we have are not sufficient to solve for definite solu-
tions for loop bounds. In this scenario, there are two possible methods to obtain a
solution: (i) using a linear systems of equation solver that gives all possible solu-
tions; and (ii) using a heuristic based solution relying on assumptions about loop
structure and memory accesses, which gives one solution.

We choose a heuristic based approach over an equation solver for the following
reasons: (1) it gives only one definite solution that can be used to insert run-time
checks in the code and execute the parallel version only if the check succeeds; and
(ii) it arrives at a solution in linear time complexity. One way of looking at our
heuristic based algorithm is that it picks the one solution from all the possible
solutions (that can be obtained using a solver) making assumptions on the loop
structure most amenable to parallelization. Hence, even though there are many
other solutions, this is the one that is mostly likely correct and going to yield from
parallelization. Further, using our method we obtain the solution in linear time as
against in exponential time complexity using a solver.

8.2 Future Directions

The present algorithm is two-dimensional; i.e. if the guess is wrong then at run-
time it uses the fall-back solution and executes the serial version of the loop. In the
future the following ideas can be used to enhance it.

1. If a run-time checks fails, then the loop bounds for that loop can be written
to a log file and in future they can be used to parallelize the loop. That way in
future with some run-time feedback, the algorithm to parallelize affine loops
can be enhanced further.

2. In the present algorithm, we make a lot of assumptions to arrive at one set
of loop bounds. In future, we will look into refining our assumptions to arrive
at a few possible loop bounds and then use run-time feedback to use a different
one in the next execution if this set fails in this run. This will provide fall-back
solutions beyond serial execution.

3. In the present algorithm, we do not include any mechanism for user feed-
back. In future, we envision a system where the user can explicitly turn off
parallelization of certain loops it they know that it would not be as profitable.

574 A. Kotha et al.

References

Anand, K., et al.: A compiler level intermediate representation based binary analysis and
rewriting system. In: Proceedings of the 8th ACM European Conference on Computer
Systems (2013)

Dasgupta, A., Dasgupta, A.: Vizer: A framework to analyze and vectorize intel x86 bi-
naries (2003)

Franke, B., O’boyle, M.: Array recovery and high-level transformations for dsp applica-
tions. ACM Trans. Embed. Comput. Syst. (2003)

Yang, J., Soffa, M.L., Skadron, K., Whitehouse, K.: Feasibility of dynamic binary par-
allelization (2011)

Kotha, A., Anand, K., Smithson, M., Yellareddy, G., Barua, R.: Automatic paralleliza-
tion in a binary rewriter. In: Proceedings of the 2010 43rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (2010)

Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program analysis &
transformation. In: Proceedings of the International Symposium on CGO (2004)

LLVM, clang: a C language family frontend for LLVM (2007), http://clang.1lvm.org/

LLVM, DragonEgg - Using LLVM as a GCC backend (2009),
http://dragonegg.llvm.org/

Maslov, V.: Delinearization: an efficient way to break multiloop dependence equations.
In: Proc. the SIGPLAN 1992 Conference on Programming Language Design and Im-
plementation, pp. 152-161 (1992)

Nakamura, T., Miki, S., Oikawa, S.: Automatic vectorization by runtime binary transla-
tion. In: Proceedings of the 2011 Second International Conference on Networking and
Computing (2011)

O’Sullivan, P., Anand, K., Kotha, A., Smithson, M., Barua, R., Keromytis, A.D.:
Retrofitting security in cots software with binary rewriting. In: Proceedings of the
26th International Information Security Conference (2011)

Pradelle, B., Ketterlin, A., Clauss, P.: Polyhedral parallelization of binary code. ACM
Trans. Archit. Code Optim. (2012)

Smithson, M., Anand, K., Kotha, A., Elwazeer, K., Giles, N., Barua, R.: Binary rewrit-
ing without relocation information. Technical report, University of Maryland, College
Park (2010)

Wang, C., Wu, Y., Borin, E., Hu, S., Liu, W., Sager, D., Ngai, T.-F., Fang, J.: Dynamic
parallelization of single-threaded binary programs using speculative slicing. In: Pro-
ceedings of the 23rd International Conference on Supercomputing, ICS 2009 (2009)

Yardimci, E., Franz, M.: Dynamic parallelization and mapping of binary executables on
hierarchical platforms. In: Proceedings of the 3rd Conference on Computing Frontiers
(2006)

http://clang.llvm.org/
http://dragonegg.llvm.org/

	Affine Parallelization of Loops with Run-Time
Dependent Bounds from Binaries

	1 Introduction
	2 Related Work
	3 Motivation
	4 Examples
	5 Algorithm to Guess Loop Bounds
	5.1 Step 1: Divide the Accesses into DGs
	5.2 Step 2: Arrange DGs in Ascending Order
	5.3 Step 3: Induce Intra-group Dependencies
	5.4 Step 4: Create theWorklist
	5.5 Step 5:Work on Inter-group Constraints

	6 Implementation-SecondWrite
	7 Results
	8 Discussion and Future Directions
	8.1 Choice of a Heuristic Based Method
	8.2 Future Directions

	References

