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Abstract. In this paper, we consider multi-dimensional maximal cost-
bounded reachability probability over continuous-time Markov decision
processes (CTMDPs). Our major contributions are as follows. Firstly,
we derive an integral characterization which states that the maximal
cost-bounded reachability probability function is the least fixed-point
of a system of integral equations. Secondly, we prove that the maximal
cost-bounded reachability probability can be attained by a measurable
deterministic cost-positional scheduler. Thirdly, we provide a numerical
approximation algorithm for maximal cost-bounded reachability prob-
ability. We present these results under the setting of both early and
late schedulers. Besides, we correct a fundamental proof error in the
PhD Thesis by Martin Neuhäußer on maximal time-bounded reachabil-
ity probability by completely new proofs for the more general case of
multi-dimensional maximal cost-bounded reachability probability.

1 Introduction

The class of continuous-time Markov decision processes (CTMDPs) (or con-
trolled Markov chains) [13,12] is a stochastic model that incorporates both
features from continuous-time Markov chains (CTMCs) [6] and discrete-time
Markov decision processes (MDPs) [13]. A CTMDP extends a CTMC in the
sense that it allows non-deterministic choices, and it extends an MDP in the
sense that it incorporates negative exponential time-delays. Due to its modelling
capability of real-time probabilistic behaviour and non-determinism, CTMDPs
are widely used in dependability analysis and performance evaluation [2].

In a CTMDP, non-determinism is resolved by schedulers [16]. Informally, a
scheduler determines the non-deterministic choices depending on the finite tra-
jectory of the CTMDP so far and possibly the sojourn time of the current state.
A scheduler is assumed to be measurable so that it induces a well-defined proba-
bility space over the infinite trajectories of the underlying CTMDP. Measurable
schedulers are further divided into categories of early schedulers and late sched-
ulers [10,16]. A scheduler that makes the choice solely by the trajectory so far is
called an early scheduler, while a scheduler that utilizes both the trajectory and
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the sojourn time (at the current state) is called a late scheduler. With schedulers,
one can reason about quantitative information such as the maximal/minimal
probability/expectation of certain property.

In this paper, we focus on the problem to compute max/min resource-bounded
reachability probability on a CTMDP. Typical resource types considered here
are time and cost, where a time bound can be deemed as a special cost bound
with unit-cost 1. In general, the task is to compute or approximate the opti-
mal (max/min) reachability probability to certain target states within a given
resource bound (e.g., a time bound).

Optimal time-bounded reachability probability over CTMDPs has been widely
studied in recent years. Neuhäußer et al. [11] proved that the maximal time-
bounded reachability probability function is the least fixed point of a system
of integral equations. Rabe and Schewe [14] showed that the max/min time-
bounded reachability probability can be attained by a deterministic piecewise-
constant time-positional scheduler. Efficient approximation algorithms are also
developed by, e.g., Neuhäußer et al. [11], Brázdil et al. [3], Hatefi et al. [8] and
Rabe et al. [5].

As to optimal cost-bounded reachability probability, much less is known. To
the best of the author’s knowledge, the only prominent result is by Baier et
al. [1], which establishes a certain duality property between time and cost bound.
Their result is restrictive in the sense that (i) it assumes that the CTMDP
have everywhere positive unit-cost values, (ii) it only takes into account one-
dimensional cost-bound aside the time-bound, and (iii) it does not really provide
an approximation algorithm when both time- and cost-bounds are present.

Besides resource-bounded reachability probability, we would like to mention
another research field on CTMDPs with costs (or dually, rewards), which is
(discounted) accumulated reward over finite/infinite horizon (cf. [4,12], just to
mention a little).

Our Contribution. We consider multi-dimensional maximal cost-bounded
reachability probability (abbr. MMCRP) over CTMDPs, under the setting of
both early and late schedulers, for which the unit-cost is constant. We first prove
that the MMCRP function is the least fixed-point of a system of integral equa-
tions. Then we prove that deterministic cost-positional measurable schedulers
suffice to achieve the MMCRP value. Finally, we describe a numerical algorithm
which approximates the MMCRP value with an error bound. The approximation
algorithm relies on a differential characterization which in turn is derived from
the least fixed-point characterization. The complexity of the approximation al-
gorithm is polynomial in the size of the CTMDP and the reciprocal of the error
bound, and exponential in the dimension of cost vectors.

Besides, we point out a fundamental proof error in the treatment of maxi-
mal time-bounded reachability probability on continuous-time Markov decision
processes [9,11]. We fix this error in the more general setting of maximal cost-
bounded reachability probability by completely new proofs.
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Structure of the Paper. Section 2 introduces some preliminaries of CTMDPs.
Section 3 illustrates the definition of schedulers and the probability spaces they
induce. In Section 4, we define the notion of maximal cost-bounded reachability
probability and derive the least-fixed-point characterization, while we also point
out the proof error in [9,11]. In Section 5, we prove that the maximal cost-
bounded reachability probability can be reached by a measurable deterministic
cost-positional scheduler. In Section 6, we derive a differential characterization
which is crucial to our approximation algorithm. In Section 7, we present our
approximation algorithm. Finally, Section 8 concludes the paper.

Due to page limit, we omit all the proofs and only present the results for late
schedulers. The details can be found at [7].

2 Continuous-Time Markov Decision Processes

In the whole paper, we will use the following convention for notations. We will
denote by R≥0 the set of non-negative real numbers and by N0 the set of non-
negative integers. We use x, d, t, τ to range over real numbers, m,n, i, j to range
over N0, and bold-face letters x, c,d to range over (column) real vectors. Given
c ∈ R

k (k ∈ N), we denote by ci (1 ≤ i ≤ k) the i-th coordinate of c. We denote
by 0 the real vector whose coordinates are all equal to 0 (with the implicitly
known dimension). We extend {≤, <,≥, >} to real vectors and functions in a
pointwise fashion: for two real vectors c,d, c ≤ d iff ci ≤ di for all i; for two
real-valued functions g, h, g ≤ h iff g(y) ≤ h(y) for all y. Given a set Y , we
let 1Y be the indicator function of Y , i.e, 1Y (y) = 1 if y ∈ Y and 1Y (y) = 0
for y ∈ X − Y , where X ⊇ Y is an implicitly known set. Given a positive real
number λ > 0, let fλ(t) := λ · e−λ·t (t ≥ 0) be the probability density function
of the negative exponential distribution with rate λ. Besides, we will use g, h to
range over general functions.

2.1 The Model

Definition 1. A Continuous-Time Markov Decision Process (CTMDP) is a tu-
ple (L,Act,R, {wi}1≤i≤k) where

– L is a finite set of states (or locations);

– Act is a finite set of actions;

– R : L×Act× L → R≥0 is the rate matrix;

– {wi : L×Act → R≥0}1≤i≤k is the family of k unit-cost functions (k ∈ N);

An action a ∈ Act is enabled at state s ∈ L if E(s, a) :=
∑

u∈L R(s, a, u) is
non-zero. The set of enabled actions at s ∈ L is denoted by En(s). We assume
that for each state s ∈ L, En(s) �= ∅.

Let (L,Act,R, {wi}1≤i≤k) be a CTMDP. For each s, s′ ∈ L and a ∈ En(s),

we define P(s, a, s′) := R(s,a,s′)
E(s,a) to be the discrete transition probability from

s to s′ via a. We denote by w(s, a) the real vector {wi(s, a)}1≤i≤k for each
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(s, a) ∈ L × Act . Given s ∈ L and a ∈ Act, we denote by D[s] the Dirac
distribution (over L) at s (i.e., D[s](s) = 1 and D[s](s′) = 0 for s′ ∈ L − {s})
and by D[a] the Dirac distribution (over Act) at a. Moreover, we define (with
min ∅ := 1):

– wmin := min{wi(s, a) | 1 ≤ i ≤ k, s ∈ L, a ∈ En(s),wi(s, a) > 0} ;

– wmax := max{wi(s, a) | 1 ≤ i ≤ k, s ∈ L, a ∈ En(s)} ;

– Emax := max{E(s, a) | s ∈ L, a ∈ En(s)} ;

We will use s, s′ (resp. a, b) to range over states (resp. actions) of a CTMDP.
Often, a CTMDP is accompanied with an initial distribution which specifies

the initial stochastic environment (for the CTMDP).

Definition 2. Let M = (L,Act,R, {wi}1≤i≤k) be a CTMDP. An initial distri-
bution (for M) is a function α : L → [0, 1] such that

∑
s∈L α(s) = 1 .

Intuitively, the execution of a CTMDP (L,Act,R, {wi}1≤i≤k) with a scheduler
is as follows. At the beginning, an initial state s is chosen (as the current state)
w.r.t the initial distribution α. Then the scheduler chooses an action a enabled at
s either before or after a time-delay occurs at the state s. After the time-delay, the
current state is switched to an arbitrary state s′ ∈ L with probability P(s, a, s′),
and so forth. Besides, each cost functionwi assigns to each state-action pair (s, a)
the i-th constant unit-cost wi(s, a) (per time unit) when the CTMDP dwells at
state s. Basically, the scheduler makes the decision of the action to be chosen
when entering a new state, and has two distinct objectives: either to maximize a
certain property or (in contrast) to minimize a certain property. In this paper, we
will focus on the objective to maximize a cost-bounded reachability probability
for a certain target set of states.

In this paper, we focus on an important subclass of CTMDPs, called locally-
uniform CTMDPs (cf. [10]).

Definition 3. A CTMDP (L,Act,R, {wi}1≤i≤k) is locally-uniform if E(s, a) =
E(s, b) and wi(s, a) = wi(s, b) for all 1 ≤ i ≤ k, s ∈ L and a, b ∈ En(s).

Intuitively, a locally uniform CTMDP has the property that the time-delay and
the cost is independent of the action chosen at each state. For locally-uniform
CTMDPs, we simply use E(s) to denote E(s, a) (a ∈ En(s) is arbitrary), and
w(s),wi(s) for w(s, a),wi(s, a) likewise.

2.2 Paths and Histories

In this part, we introduce the notion of paths and histories. Intuitively, paths
reflect infinite executions of a CTMDP, whereas histories reflect finite executions
of a CTMDP. Below we fix a CTMDP M = (L,Act,R, {wi}1≤i≤k) .

Definition 4. A(n infinite) path π is an infinite sequence

π =
〈
s0

a0,t0−−−→ s1
a1,t1−−−→ s2 . . .

〉
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such that si ∈ L, ti ∈ R≥0 and ai ∈ Act for all i ≥ 0; We denote si, ti and ai by
π[i], π〈i〉 and π(i), respectively. A (finite) history ξ is a finite sequence

ξ =
〈
s0

a0,t0−−−→ s1
a1,t1−−−→ s2 . . . sm

〉
(m ≥ 0)

such that si ∈ L, ti ∈ R≥0 and ai ∈ Act for all 0 ≤ i ≤ m− 1, and sm ∈ L; We
denote si, ti, ai and m by ξ[i], ξ〈i〉, ξ(i) and |ξ|, respectively. Moreover, we define
ξ ↓:= ξ [|ξ|] to be the last state of the history ξ .

Below we introduce more notations on paths and histories. We denote the set of
paths and histories (of M) by Paths(M) and Hists(M), respectively. We define
Histsn(M) := {ξ ∈ Hists(M) | |ξ| = n} to be the set of all histories with length
n (n ≥ 0). For each n ∈ N0 and π ∈ Paths(M), we define the history π[0..n] to
be the finite prefix of π up to n; Formally,

π[0..n] :=

〈

π[0]
π(0),π〈0〉−−−−−−→ . . . π[n]

〉

.

Given π ∈ Paths(M) and (s, a, t) ∈ L × Act × R≥0, we denote by s
a,t−−→ π the

path obtained by “putting” the prefix “s
a,t−−→” before π; Formally,

s
a,t−−→ π :=

〈

s
a,t−−→ π[0]

π(0),π〈0〉−−−−−−→ π[1]
π(1),π〈1〉−−−−−−→ . . .

〉

.

Analogously, we define s
a,t−−→ ξ (for ξ ∈ Hists(M)) to be the history obtained

by “putting” “s
a,t−−→” before the history ξ.

Intuitively, a path π reflects a whole execution (trajectory) of the CTMDP
where π[i] is the current state at the i-th stage, π(i) is the action chosen at π[i]
and π〈i〉 is the dwell-time (time-delay) on π[i]. On the other hand, a history ξ
is a finite prefix of a path which reflects the execution up to |ξ| stages.

Below we extend sets of histories to sets of paths in a cylindrical fashion.

Definition 5. Suppose n ∈ N0 and Ξ ⊆ Histsn(M). The cylinder extension of
Ξ, denoted Cyl(Ξ), is defined as follows:

Cyl(Ξ) := {π ∈ Paths(M) | π[0..n] ∈ Ξ} .

In this paper, we concern costs on paths and histories. The cost is assigned
linearly w.r.t the unit-cost and the time spent in a state. The following definition
presents the details.

Definition 6. Given a path π ∈ Paths(M) and a set G ⊆ L of states, we
denote by Cj(π,G) (1 ≤ j ≤ k) the j-th accumulated cost along π until G is
reached; Formally, if π[m] ∈ G for some m ≥ 0 then

Cj(π,G) :=

n∑

i=0

wj(π[i], π(i)) · π〈i〉
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where n ∈ N0 ∪ {−1} is the smallest integer such that π[n + 1] ∈ G; otherwise
Cj(π,G) := +∞ . Given a history ξ ∈ Hists(M), we denote by Cj(ξ) (1 ≤ j ≤
k) the accumulated cost of ξ w.r.t the j-th unit-cost function; Formally,

Cj(ξ) :=

|ξ|−1∑

i=0

wj(ξ[i], ξ(i)) · ξ〈i〉 .

We denote byC(π,G) andC(ξ) the vectors {Cj(π,G)}1≤j≤k and {Cj(ξ)}1≤j≤k.

2.3 Measurable Spaces on Paths and Histories

In the following, we define the measurable spaces for paths and histories, follow-
ing the definitions of [16,10]. Below we fix a CTMDPM=(L,Act,R, {wi}1≤i≤k).
Firstly, we introduce the notion of combined actions and its measurable space.

Definition 7. A combined action is a tuple (a, t, s) where a ∈ Act, t ∈ R≥0 and
s ∈ L. The measurable space (ΓM,UM) over combined actions is defined as
follows:

– ΓM := Act× R≥0 × L is the set of combined actions;

– UM := 2Act ⊗B(R≥0)⊗ 2L is the product σ-algebra for which B(R≥0) is the
Borel σ-field on R≥0 .

The following definition introduces the notion of templates which will be used
to define the measurable spaces.

Definition 8. A template θ is a finite sequence θ = 〈s, U1, . . . , Um〉 (m ≥ 0)
such that s ∈ L and Ui ∈ UM for 1 ≤ i ≤ m; The length of θ, denoted by |θ|, is
defined to be m. The set of histories Hists(θ) spanned by a template θ is defined
by:

Hists (〈s, U1, . . . , Um〉) :=
{
ξ ∈ Histsm(M) |

ξ[0] = s and (ξ(i), ξ〈i〉, ξ[i + 1]) ∈ Ui+1 for all 0 ≤ i < m
}

.

Now we introduce the measurable spaces on paths and histories, as in the fol-
lowing definition.

Definition 9. The measurable space (Ωn
M,Sn

M) over Histsn(M) (n ∈ N0) is
defined as follows: Ωn

M = Histsn(M) and Sn
M is generated by the family

{Hists(θ) | θ is a template and |θ| = n}

of subsets of Histsn(M).
The measurable space (ΩM,SM) over Paths(M) is defined as follows: ΩM =

Paths(M) and SM is the smallest σ-algebra generated by the family

{Cyl(Ξ) | Ξ ∈ Sn
M for some n ≥ 0}

of subsets of Paths(M).
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3 Schedulers and Their Probability Spaces

The stochastic feature of a CTMDP is endowed by a (measurable) scheduler
which resolves the action when a state is entered. In the following, we briefly in-
troduce late schedulers for CTMDPs. Most notions in this part stem from [16,10].
Below we fix a locally-uniform CTMDP M = (L,Act,R, {wi}1≤i≤k) .

Definition 10. A late scheduler D is a function

D : Hists(M)× R≥0 ×Act → [0, 1]

such that for each ξ ∈ Hists(M) and t ∈ R≥0, the following conditions hold:

–
∑

a∈ActD(ξ, t, a) = 1 ;

– for all a ∈ Act, D(ξ, t, a) > 0 implies a ∈ En(ξ↓) .

D is measurable iff for all n ≥ 0 and a ∈ Act, the function D(�, �, a) is measur-
able w.r.t (Ωn

M × R≥0, Sn
M ⊗ B(R≥0)), provided that the domain of D(�, �, a) is

restricted to Histsn(M)× R≥0 .

Intuitively, a late scheduler D chooses a distribution over actions immediately
after the time-delay at the current state s (i.e., the last state of a history) is
ended; the time-delay observes the negative exponential distribution with rate
E(s). The decision D(ξ, t, �) is based on the history ξ and the dwell time t at ξ↓;
the next state is determined stochastically w.r.t P(ξ↓, a, �), where a is in turn
determined w.r.t D(ξ, t, �). The local-uniformity allows a late scheduler to make
such decision, without mathematical ambiguity on the accumulated cost and
the probability density function for the time-delay. Moreover, the measurability
condition will be needed to define a probability measure for the measurable space
(ΩM,SM).

Each measurable late scheduler will induce a probability measure on combined
actions, when applied to a specific history. Below we introduce the probability
measure induced by measurable late schedulers.

Definition 11. Let ξ ∈ Hists(M) be a history and D a measurable late sched-
uler. The probability measure μD

M(ξ, �) for the measurable space (ΓM,UM) is
defined as follows:

μD
M(ξ, U) :=

∫
R≥0

fE(ξ↓)(t) ·
⎧⎨
⎩

∑
a∈En(ξ↓)

D(ξ, t, a) ·
[∑
s∈L

1U (a, t, s) ·P(ξ↓, a, s)
]⎫⎬
⎭ dt

for each U ∈ UM.

Now we define the probability spaces on histories and paths. Firstly, we de-
fine the probability space on histories. To this end, we introduce the notion of
concatenation as follows.

Definition 12. Let ξ ∈ Hists(M) be a history and (a, t, s) ∈ ΓM be a com-
bined action. We define ξ ◦ (a, t, s) ∈ Hists(M) to be the history obtained by

concatenating (a, t, s) to ξ↓ (i.e. ξ ◦ (a, t, s) = ξ[0] . . . ξ↓ a,t−−→ s) .
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Then the probability space on histories of fixed length is given as follows.

Definition 13. Suppose D is a measurable late scheduler and α is an initial
distribution. The sequence

{
PrnM,D,α : Sn

M → [0, 1]
}
n≥0

of probability measures

is inductively as follows:

Pr0M,D,α(Ξ) :=
∑

s∈Ξ

α(s) ;

Prn+1
M,D,α(Ξ) :=

∫

Ωn
M

[∫

ΓM
1Ξ(ξ ◦ γ) μD

M(ξ, dγ)

]

PrnM,D,α(dξ) ;

for each Ξ ∈ Sn
M .

Finally, the probability space on paths is given as follows.

Definition 14. Let D be a measurable late scheduler and α be an initial distri-
bution. The probability space (ΩM,SM,PrM,D,α) is defined as follows:

– ΩM and SM is defined as in Definition 9;

– PrM,D,α is the unique probability measure such that

PrM,D,α(Cyl(Ξ)) = PrnM,D,α (Ξ)

for all n ≥ 0 and Ξ ∈ Sn
M .

We end this section with a fundamental property asserting that the role of initial
distribution α can be decomposed into Dirac distributions on individual states.

Proposition 1. For each measurable late scheduler D and each initial distribu-
tion α, PrM,D,α(Π) =

∑
s∈L α(s) · PrM,D,D[s](Π) for all Π ∈ SM.

4 Maximal Cost-Bounded Reachability Probability

In this section, we consider maximal cost-bounded reachability probabilities.
Below we fix a locally-uniform CTMDP M = (L,Act,R, {wi}1≤i≤k) and a set
G ⊆ L. For the sake of simplicity, we omit the ‘M’ which appear in the subscript
of ‘Pr’.

Definition 15. Let D be a measurable late scheduler. Define the function
probDG : L× R

k → [0, 1] by: probDG(s, c) := PrD,D[s] (Π
c
G) where

Πc
G := {π ∈ Paths(M) | C(π,G) ≤ c} .

Define probmax
G : L × R

k → [0, 1] by: probmax
G (s, c) := supD∈LM probDG(s, c) for

s ∈ L and c ∈ R
k, where LM is the set of all measurable late schedulers.
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From the definition, we can see that Πc
G is the set of paths which can reach

G within cost c, probmax
G (s, c) is the maximal probability of Πc

G with initial
distribution D(s) (i.e., fixed initial state s) ranging over all late schedulers. It
is not hard to verify that Πc

G is measurable, thus all functions in Definition 15

are well-defined. It is worth noting that if c �≥ 0, then both probDG(s, c) and
probmax

G (s, c) is zero.
The following theorem mainly presents the fixed-point characterization for

probmax
G , while it also states that probmax

G is Lipschitz continuous.

Theorem 1. The function probmax
G is the least fixed-point (w.r.t ≤) of the high-

order operator TG :
[
L× R

k → [0, 1]
]
→

[
L× R

k → [0, 1]
]
defined as follows:

– TG(h)(s, c) := 1
R

k
≥0
(c) if s ∈ G;

– If s �∈ G then

TG(h)(s, c) :=
∫ ∞

0

fE(s)(t) · max
a∈En(s)

[
∑

s′∈L

P(s, a, s′) · h(s′, c− t ·w(s))

]

dt ;

for each h : L× R
k → [0, 1]. Moreover,

|probmax
G (s, c)− probmax

G (s, c′)| ≤ Emax

wmin
· ‖c− c′‖∞

for all c, c′ ≥ 0 and s ∈ L .

The Lipschitz constant Emax

wmin
will be crucial to the error bound of our approxi-

mation algorithm.
Now we describe the proof error in [9,11]. The error lies in the proof of [9,

Lemma 5.1 on Pages 119] which tries to prove that the time-bounded reachability
probability functions are continuous. In detail, the error is at the proof for right-
continuity of the functions. Let us take the sentence “This implies ... for some
ξ ≤ ε

2 .” from line -3 to line -2 on page 119 as (*). (*) is wrong in general, as one
can treat D’s as natural numbers, and define

Prn(“reach G within z”) :=

{
n · z if z ∈ [0, 1

n ]

1 if z ∈ ( 1n ,∞)
.

Then supn Prn(“reach G within z”) equals 1 for z > 0 and 0 for z = 0. Thus
supD PrD(“reach G within z”) on z ≥ 0 is right-discontinuous at z = 0, which
does not satisfy (*) (treat D as a natural number). Note that a concrete coun-
terexample does not exist as [9, Lemma 5.1] is correct due to this paper; it is the
proof that is flawed. Also note that Lemma 5.1 is important as the least fixed-
point characterization [9, Theorem 5.1 on Page 120] and the optimal scheduler
[9, Theorem 5.2 on page 124] directly rely on it. We fix the error in the more
general setting of cost-bounded reachability probability by providing new proofs.
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5 Optimal Schedulers

In this section, we establish optimal late schedulers for maximal cost-bounded
reachability probability. We show that there exists a deterministic cost-positional
late scheduler that achieves the maximal cost-bounded reachability probability.
Below we fix a locally-uniform CTMDP M = (L,Act,R, {wi}1≤i≤k) . We first
introduce the notion of deterministic cost-positional schedulers.

Definition 16. A measurable late sheduler D is deterministic cost-positional
iff (i) D(ξ, t, �) = D(ξ′, t′, �) whenever ξ↓ = ξ′↓ and C(ξ) + t ·w(ξ↓) = C(ξ′) +
t′ ·w(ξ′↓), and (ii) D(ξ, t, �) is Dirac for all histories ξ and t ≥ 0.

Intuitively, a deterministic cost-positional scheduler makes its decision solely on
the current state and the cost accumulated so far, and its decision is always
Dirac. The following theorem shows that such a scheduler suffices to achieve
maximal cost-bounded reachability probability.

Theorem 2. For all c ∈ R
k and G ⊆ L, there exists a deterministic cost-

positional measurable late scheduler D such that probmax
G (s, c) = PrD,D[s](Π

c
G)

for all s ∈ L .

6 Differential Characterization for Maximal Reachability
Probabilities

In this section, we derive differential characterization for the function probmax
G .

The differential characterization will be fundamental to our approximation al-
gorithm. Below we fix a locally-uniform CTMDP (L,Act,R, {wi}1≤i≤k) and a
set G ⊆ L.

The differential characterization relies on a notion of directional derivative as
follows.

Definition 17. Let s ∈ L−G and c ≥ 0. Define

∇+probmax
G (s, c) := lim

t→0+

probmax
G (s, c+ t ·w(s)) − probmax

G (s, c)

t
.

If ci > 0 whenever wi(s) > 0 (1 ≤ i ≤ k), define

∇−probmax
G (s, c) := lim

t→0−

probmax
G (s, c+ t ·w(s))− probmax

G (s, c)

t
;

Otherwise, let ∇−probmax
G (s, c) = ∇+probmax

G (s, c) .

The following theorem gives a characterization for the directional derivative.

Theorem 3. For all s ∈ L−G and c ≥ 0, ∇+probmax
G (s, c) = ∇−probmax

G (s, c).
Moreover,

∇+probmax
G (s, c) = max

a∈En(s)

∑

s′∈L

R(s, a, s′) · (probmax
G (s′, c)− probmax

G (s, c)) .
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As ∇+probmax
G (s, c) = ∇−probmax

G (s, c), we will solely use ∇probmax
G (s, c) to

denote both of them.
Theorem 3 allows one to approximate probmax

G (s, c+ t ·w(s)) by probmax
G (s, c)

and ∇+probmax
G (s, c). An exception is the case w(s) = 0. Below we tackle this

situation.

Proposition 2. Let YG := {s ∈ L | w(s) = 0} . For each c ≥ 0, the function
s �→ probmax

G (s, c) is the least fixed-point (w.r.t ≤) of the high-order operator
Yc,G : [YG → [0, 1]] → [YG → [0, 1]] defined as follows:

Yc,G(h)(s) :=

max
a∈En(s)

[
∑

s′∈YG

P(s, a, s′) · h(s′) +
∑

s′∈L−YG

P(s, a, s′) · probmax
G (s′, c)

]

.

7 Numerical Approximation Algorithms

In this section, we develop an approximation algorithm to compute the maxi-
mal cost-bounded reachability probability under late schedulers. In the following
we fix a locally-uniform CTMDP M = (L,Act,R, {wi}1≤i≤k). Our numerical
algorithm will achieve the following tasks:

Input: a set G ⊆ L, a state s ∈ L, a vector c ∈ N
k
0 and an error bound ε > 0;

Output: a value x ∈ [0, 1] such that |probmax
G (s, c)− x| ≤ ε.

For computational purposes, we assume that each wi(s) is an integer; rational
numbers (and simultaneously the input cost bound vector) can adjusted to inte-
gers by multiplying a common multiplier of the denominators, without changing
the maximal probability value to be approximated.

We base our approximation scheme on Theorem 3 and Proposition 2. In the
following we fix a set G ⊆ L.

Below we illustrate the discretization and the approximation scheme for late
schedulers. Note that probmax

G (s, c) = 1 whenever s ∈ G and c ≥ 0. Thus we do
not need to incorporate those points into the discretization.

Definition 18. Let c ∈ N
k
0 and N ∈ N. Define

Disc(c, N) := {d ∈ R
k | 0 ≤ d ≤ c and N · di ∈ N0 for all 1 ≤ i ≤ k} .

The set Dc
N of discretized grid points is defined as follows:

Dc
N := (L−G)×Disc(c, N) .

The following definition presents the approximation scheme on Dc
N .

Definition 19. Define XG := (L −G) − YG. The approximation scheme ΥG
c,N

on Dc
N consists of the following items:
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– exactly one rounding argument for each element of Dc
N ;

– a system of equations for elements in XG ×Disc(c, N) ;

– a linear program on YG for each d ∈ Disc(c, N) .

Rounding Arguments: For each element y ∈ Dc
N , the rounding argument for

y is as follows:

probG(y) :=
K

N2
if probG(y) ∈

[
K

N2
,
K + 1

N2

)

for some integer 0 ≤ K ≤ N2 .

Equations: The system of equations is described as follows. For all (s,d) ∈ Dc
N

with w(s) �= 0 and d− 1
N ·w(s) ≥ 0, there is a linear equation

probG(s,d)− probG(s, pre(d, s))
1
N

= (E1)

max
a∈En(s)

∑

s′∈L

R(s, a, s′) ·
(
probG(s

′, pre(d, s)) − probG(s, pre(d, s))
)

where pre(d, s) := d− 1
N ·w(s). For all (s,d) ∈ Dc

N with w(s) �= 0 and d− 1
N ·

w(s) �≥ 0, there is a linear equation

probG(s,d) = 0 . (E2)

Linear Programs: For each d ∈ Disc(c, N), the collection {probG(s,d)}s∈YG

of values is the unique optimum solution of the linear program as follows:

min
∑

s∈YG
probG(s,d), subject to:

– probG(s,d) ≥
∑

s′∈LP(s, a, s′) · probG(s′,d) for all s ∈ YG and a ∈ En(s);

– probG(s,d) ∈ [0, 1] for all s ∈ YG;

where the values {probG(s,d)}s∈XG are assumed to be known. All probG(s,d)’s
and probG(s,d) above with s ∈ G are predefined to be 1.

Generally, probG(s,d) approximates probmax
G (s,d) and probG(s,d) approximates

the same value with a rounding operation. A detailed computational sequence
of the approximation scheme is described in Algorithm 1.

In principle, we compute the “higher” grid point probG(s,d + 1
N · w(s)) by

probG(s,d) and (E1), and then update other “higher” points through the linear
program. The rounding argument is incorporated to avoid precision explosion
caused by linear programming. The following proposition shows that Algorithm 1
indeed terminates after a finite number of steps.

Proposition 3. Algorithm 1 terminates after a finite number of steps for all
c ∈ N

k
0 and N ∈ N.

The following theorem states that the approximation scheme really approx-
imates probmax

G . To ease the notation, we shall use probG(s,d) or probG(s,d)
to denote both the variable at the grid point and the value it holds under the
approximation scheme.
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Algorithm 1. The Computation of ΥG
c,N (for late schedulers)

1: Set all grid points in {(s,d) ∈ Dc
N | d− 1

N
·w(s) �≥ 0} to zero by (E2);

2: Compute all probG(s,d) that can be directly obtained through the linear program;

3: Compute all probG(s,d) that can be directly obtained by the rounding argument;
4: Compute all probG(s,d) that can be directly obtained through (E1), and back to

Step 2. until all grid points in Dc
N are computed;

Theorem 4. Let c ∈ N
k
0 and N ∈ N with N ≥ Emax. For each (s,d) ∈ Dc

N ,

|probG(s,d)− probmax
G (s,d)| ≤

(
2 · E2

max ·wmax

N ·wmin
+

1

N

)

·
[

k∑

i=1

di

]

+
Emax

N

and
∣
∣probG(s,d)− probmax

G (s,d)
∣
∣ ≤

(
2 ·E2

max ·wmax

N ·wmin
+

1

N

)

·
[

k∑

i=1

di

]

+
Emax

N
+

1

N2

From Theorem 4, we derive our approximation algorithm as follows.

Corollary 1. There exists an algorithm such that given any ε > 0, s ∈ L,
G ⊆ L and c ∈ N

k
0 , the algorithm outputs a d ∈ [0, 1] which satisfies that

|d− probmax
G (s, c)| ≤ ε. Moreover, the algorithm runs in

O((max{Emax,
M

ε
})k · (Πk

i=1ci) · (|M|+ log
M

ε
)8)

time, where M := (2 · E2
max · wmax

wmin
+ 1) ·

[∑k
i=1 ci

]
+ Emax + 1 and |M| is the

size of M .

Proof. The algorithm is an simple application of Theorem 4. If s ∈ G, the al-
gorithm just returns 1. Otherwise, the algorithm just calls Algorithm 1 with
N := �max{Emax,

M
ε }� + 1 and set d = probG(s, c); By Theorem 4, we di-

rectly obtain that |d− probmax
G (s, c)| ≤ M · 1

N . For each d ∈ Disc(c, N), the

total computation of {probG(s,d)}s∈XG∪YG and {probG(s,d)}s∈XG∪YG takes
O(|M| + log M

ε )
8) time since the most time consuming part is the linear pro-

gram which takes O((|M|+logN)8) time (cf. [15]). Thus the total running time
of the algorithm is O((max{Emax,

M
ε })k · (Πk

i=1ci) · (|M| + log M
ε )

8) since the
size of Disc(c, N) is O(Nk · (Πk

i=1ci)) .

8 Conclusion

In this paper, we established an integral characterization for multi-dimensional
maximal cost-bounded reachability probabilities in continuous-time Markov de-
cision processes, the existence of deterministic cost-positional optimal scheduler
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and an algorithm to approximate the cost-bounded reachability probability with
an error bound, under the setting of both early and late schedulers. The approx-
imation algorithm is based on a differential characterization of cost-bounded
reachability probability which in turn is derived from the integral characteriza-
tion. The error bound is obtained through the differential characterization and
the Lipschitz property described. Moreover, the approximation algorithm runs in
polynomial time in the size of the CTMDP and the reciprocal of the error bound,
and exponential in the dimension of the unit-cost vector. An important missing
part is the generation of an ε-optimal scheduler. However, we conjecture that
an ε-optimal scheduler is not difficult to obtain given that the approximation
scheme has been established.

A future direction is to determine an ε-optimal scheduler, under both early
and late schedulers. Besides, we believe that the paradigms developed in this
paper can also be applied to minimum cost-bounded reachability probability
and even stochastic games [12] with multi-dimensional cost-bounded reachability
objective.

Acknowledgement. I thank Prof. Joost-Pieter Katoen for his valuable advices
on the writing of the paper, especially for the Introduction part. I also thank
anonymous referees for valuable comments.
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