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Abstract. This paper studies the complexity of the reachability problem
(a typical and practically important instance of the model-checking prob-
lem) for simply-typed call-by-value programs with recursion, Boolean val-
ues, and non-deterministic branch, and proves the following results. (1)
The reachability problem for order-3 programs is nonelementary. Thus,
unlike in the call-by-name case, the order of the input program does not
serve as a good measure of the complexity. (2) Instead, the depth of types
is an appropriate measure: the reachability problem for depth-n programs
is n-EXPTIME complete. In particular, the previous upper bound given
by the CPS translation is not tight. The algorithm used to prove the up-
per bound result is based on a novel intersection type system, which we
believe is of independent interest.

1 Introduction

A promising approach to verifying higher-order functional programs is to use
higher-order model checking [7,8,15], which is a decision problem about the trees
generated by higher-order recursion schemes. Various verification problems such
as the reachability problem and the resource usage verification [5] are reducible
to the higher-order model checking [8].

This paper addresses a variant of the higher-order model checking, namely,
the reachability problem for simply-typed call-by-value Boolean programs. It is
the problem to decide, given a program with Boolean primitives and a special
constant meaning the failure, whether the evaluation of the program fails. This is
a practically important problem that can be a basis for verification of programs
written in call-by-value languages such as ML and OCaml. In fact, MoCHi [11],
a software model-checker for a subset of OCaml, reduces a verification problem
to a reachability problem for a call-by-value Boolean program.

In the previous approach [11], the rechability problem for call-by-value pro-
grams was reduced to that for call-by-name programs via the CPS transforma-
tion. From a complexity theoretic point of view, however, this reduction via the
CPS transformation has a bad effect: the order of a function is raised by 2 for
each increase of the arity of the function. Since the reachability of order-n call-
by-name programs is (n− 1)-EXPTIME complete in general, the approach may
suffer from double exponential blow-up of the time complexity for each increase
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of the largest arity in a program. Thus, important questions are: Is the double
exponential blow-up of the time complexity (with respect to the arity increase)
inevitable? If not, what is the exact complexity of the reachability problem for
call-by-value programs, and how can we achieve the exact complexity?

The above questions are answered in this paper. We first show that the
single exponential blow-up with respect to the arity increase is inevitable for
programs of order-3 or higher. This implies that when the arity is not fixed,
the reachability problem for order-3 call-by-value programs is nonelementary.
The key observation used in the proof is that the subset of natural numbers
{0, 1, . . . , expn(2)−1} (here expn(k) is the nth iterated exponential function,
defined by exp0(k) = k and expn+1(k) = 2expn(k)) can be embedded into the

set of values of the type

n
︷ ︸︸ ︷

�→ �→ · · · → �→ � by using non-determinism.
Second, we show the depth of types is an appropriate measure, i.e. the reach-

ability problem for depth-n programs is n-EXPTIME complete. The depth of
function type is defined by depth(κ → κ′) = max{depth(κ) + 1, depth(κ′) + 1}.
In particular, the previous bound given by the CPS translation is not tight.
To prove the upper-bound, we develop a novel intersection type system that
completely characterises programs that reach the failure. Since the target is a
call-by-value language with effects (i.e. divergence, non-determinism and fail-
ure), the proposed type system is much different from that for call-by-name
calculi [18,7,9], which we believe is of the independent interest.

Organisation of the paper Section 2 defines the problem addressed in the paper.
Section 3 proves that the reachability problem for order-3 programs is nonele-
mentary. Section 4 provides a sketch of the proof of n-EXPTIME hardness of the
reachability problem for depth-n programs. In Section 5, we develop an intersec-
tion type system that characterises the reachability problem, and a type-checking
algorithm. We discuss related work in Section 6 and conclude in Section 7. For
the space limitation, we omit some details and proofs, which are found in a long
version available from the first author’s web page.

2 Call-by-Value Reachability Problem

The target language of the paper is a simply-typed call-by-value calculus with
recursion, product types (restricted to argument positions), Boolean and non-
deterministic branch. Simple types are called sorts in order to avoid confusion
with intersection types introduced later. The sets of sorts, terms and function
definitions (definitions for short) are defined by the following grammar:

(Sorts) κ, ι ::= � | κ1×. . .×κn → ι
(Terms) s, t, u ::= x | f | λ〈x1, . . . , xn〉.t | t 〈u1, . . . , un〉

| t⊕ u | t | f | if(t, u1, u2) | Fκ | Ωκ

(Definitions) D ::= {fi = λ〈xi,1, . . . , xi,ni〉.ti}i≤m,

where 〈x1, . . . , xn〉 (resp. 〈u1, . . . , un〉) is a non-empty sequence of variables (resp.
terms). The sort � is for Boolean values and the sort κ1× . . .×κn → ι is for
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b ∈ {t, f}
Δ | K � b :: �

x :: κ ∈ K
Δ | K � x :: κ

f :: κ ∈ Δ

Δ | K � f :: κ

Δ | K, �x :: �κ � t :: ι

Δ | K � λ〈�x〉.t :: �κ → ι

Δ | K � t :: �κ → ι′ Δ | K � �u :: �κ

Δ | K � t 〈�u〉 :: ι
Δ | K � t :: � Δ | K � ui :: κ (i ∈ {1, 2})

Δ | K � if(t, u1, u2) :: κ

Δ | K � t :: κ Δ | K � u :: κ

Δ | K � t⊕ u :: κ Δ | K � Fκ :: κ Δ | K � Ωκ :: κ

Fig. 1. Sorting rules for terms

functions that take an n-tuple as the argument and returns a value of ι. A term
is a variable x, a function symbol f (that is a variable expected to be defined
in D), an abstraction λ〈x1, . . . , xn〉.t that takes an n-tuple as its argument, an
application t 〈u1, . . . , un〉 of t to n-tuple 〈u1, . . . , un〉, a non-deterministic branch
t1⊕t2, a truth value (t or f), a conditional branch if(t, u1, u2), a special constant
Fκ (standing for ‘Fail’) to which the reachability is considered, or divergence Ωκ.
A function definition is a finite set of elements of the form f = λ〈x1, . . . , xn〉.t,
which defines functions by mutual recursion. If (f = λ〈�x〉.t) ∈ D, we write
D(f) = λ〈�x〉.t. The domain dom(D) of D is {f | (f = λ〈�x〉.t) ∈ D}.

For notational convenience, we use the following abbreviations. We write �x for
a non-empty sequence of variables x1, . . . , xn, and simply write λ〈x1, . . . , xn〉.t as
λ〈�x〉.t. Similarly, t 〈u1, . . . , un〉 is written as t 〈�u〉, where �u indicates the sequence
u1, . . . , un, and κ1×. . .×κn → ι as �κ → ι, where �κ = κ1, . . . , κn. Note that �κ → ι
is not κ1 → · · · → κn → ι. Sort annotation of Fκ and Ωκ are often omitted. For
a 1-tuple 〈t〉, we often write just t.

The sort system is defined straightforwardly. A sort environment is a finite
set of sort bindings of the form x :: κ (here a double-colon is used for sort
bindings and judgements, in order to distinguish them from type bindings and
judgements). We write K(x) = κ if x :: κ ∈ K. A sort judgement is of the form
Δ | K � t :: κ, where Δ is the sort environment for function symbols and K is
the sort environment for free variables of t. Given sequences �x and �κ of the same
length, we write �x :: �κ for x1 :: κ1, . . . , xn :: κn. Given sequences �t and �κ of the
same length, we write Δ | K � �t :: �κ just if we have Δ | K � ti :: κi for all i ≤ n,
where n is the length of �t. The sorting rules are listed in Fig. 1.

When term t does not contain function symbols, we simply write ∅ | K � t :: κ
as K � t :: κ. We assume that terms in the sequel are explicitly typed, i.e. every
term is equipped with a sort derivation for it and we can freely refer to sorts of
subterms and variables in the term. For function definitions, a judgement is of
the form � D :: Δ, which is derived by the following rule:

Δ | ∅ � D(f) :: κ (for every f :: κ ∈ Δ)

� D :: Δ

A program is a pair of a definition D and a term t of the ground sort � with
� D :: Δ and Δ | ∅ � t :: � for some Δ. A program is written as let rec D in t.
A program let rec ∅ in t with no function symbols is simply written as t.
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The set of values is defined by: v, w ::= λ〈�x〉.t | t | f. Recall that �x is a
non-empty sequence. Evaluation contexts are defined by: E ::= � | E 〈�t〉 |
v 〈w1, . . . , wk−1, E, tk+1, . . . , tn〉 | if(E, t1, t2). Therefore arguments are evalu-
ated left-to-right. The reduction relation on terms is defined by the rules below:

E[(λ〈�x〉.t) 〈�v〉] −→ E[ [�v/�x]t ] E[t1 ⊕ t2] −→ E[ti] (for i = 1, 2)
E[if(t, t1, t2)] −→ E[t1] E[if(f, t1, t2)] −→ E[t2].

We write −→∗ for the reflexive and transitive closure of −→. The reduction
relation is not deterministic because of the non-deterministic branch. A closed
well-typed term t cannot be reduced just if (1) t is a value, (2) t = E[F] or (3)
t = E[Ω]. In the second case, t immediately fails and in the third case, t never
fails since Ω diverges. So we do not need to consider further reduction steps for
E[F] and E[Ω]. By this design choice, −→ is terminating.

Lemma 1. If ∅ � t :: κ, then t has no infinite reduction sequence.

Given a function definition D, the reduction relation −→D is defined by the
same rules as −→ and the following additional rule:

E[f ] −→D E[D(f)].

We write −→∗
D for the reflexive and transitive closure of −→D. Note that reduc-

tion by −→D does not terminate in general.

Definition 1 (Reachability Problem). We say a program let rec D in t
fails if t −→∗

D E[F] for some E. The reachability problem is the problem to
decide whether a given program fails.

Example 1. Let t0 = λf.if(f t, if(f t, Ω,F), Ω), which calls the argument f (at
most) twice with the same argument t and fails just if the first call returns t and
the second call f. Let u0 = (λx.t)⊕ (λx.f) and e1 = t0 u0. Then e1 has just two
reduction sequences starting from e1 −→ t0 (λx.t) and e1 −→ t0 (λx.f), both of
which do not fail. In the call-by-name setting, however, e1 would fail since

e1 −→ if(u0 t, if(u0 t, Ω,F), Ω) −→ if((λx.t) t, if(u0 t, Ω,F), Ω)

−→∗ if(u0 t, Ω,F) −→ if((λx.f) t, Ω,F) −→∗ F.

Consider the program e′1 = t0 u
′
0 where u′

0 = λx.(t ⊕ f), in which the non-
deterministic branch is delayed by the abstraction. Then e′1 would fail both in
call-by-name and in call-by-value.

Example 2. Consider the program P2 = let rec D2 in e2, where D2 = {f =
λx.f x} and e2 = (λy.F) (f t). Then P2 never fails because

e2 = (λy.F) (f t) −→D2 (λy.F) ((λx.f x) t) −→D2 (λy.F) (f t) = e2 −→D2 · · · .

In the call-by-name case, however, P2 would fail since (λx.F) (f t) −→ F.
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Example 3. Consider the program e3 = (λx.t)F. Then e3 (immediately) fails
because e3 = E[F], where E = (λx.t)�. In contrast, e3 would not fail in the
call-by-name setting, in which E is not an evaluation context and e3 −→ t.

We give a technically convenient characterisation of the reachability problem.
Let {f1, . . . , fn} be the set of function symbols in D. The mth approximation of
fi, written Fm

i , is the term obtained by expanding the definition m times, as is
formally defined below:

F 0
i = λ〈x1, . . . , xk〉.Ωι (where fi :: κ1×. . .×κk → ι ∈ Δ)

Fm+1
i = [Fm

1 /f1, . . . , F
m
n /fn](D(fi)).

The mth approximation of t is defined by: [t]mD = [Fm
1 /f1, . . . , F

m
n /fn]t.

Lemma 2. Let P = let rec D in t be a program. Then t −→∗
D E[F] for some

E if and only if [t]nD −→∗ E′[F] for some n and E′.

Size of terms and programs The size of sorts is inductively defined by |�| = 1
and |κ1× . . .×κn → ι| = 1 + |ι| +

∑n
i=1 |κi|. The size of sort environments is

given by |K| =
∑

x::κ∈K |κ|. The size of a term is defined straightforwardly (e.g.
|x| = 1 and |t 〈u1, . . . , un〉| = 1 + |t| +

∑n
i=1 |ui|) except for the abstraction

|λ〈x1, . . . , xn〉.t| = 1 + |t| +
∑n

i=1(1 + |κi|), where κi is the sort of xi. Here a
term t is considered to be explicitly sorted, and thus the size of annotated sorts
should be added. For programs, |let rec D in t| = |t|+

∑

f∈dom(D) |D(f)|.

Order and depth of programs. Order is a well-known measure that characterises
complexity of the call-by-name reachabilityproblem [10,15] (it is (n−1)-EXPTIME
complete for order-nprograms) and, aswe shall see, depth characterises complexity
in the call-by-value case.Order and depth of sorts are defined by:

order (�) = depth(�) = 0
order (�κ → ι) = max{order(ι), order (κ1)+1, . . . , order(κn)+1}
depth(�κ → ι) = max{depth(ι)+1, depth(κ1)+1, . . . , depth(κn)+1}

For a sort environment, depth(K) = max{depth(κ) | x :: κ ∈ K}. Order and
depth of judgements are defined by ϕ(Δ | K � t :: κ) = ϕ(κ), where ϕ ∈
{order , depth}. The order of a sort derivation is the maximal order of judgements
in the derivation. The order of a sorted term t is the order of its sort derivation
Δ | K � t :: κ. The order of a program let rec D in t is the maximal order
of terms t and D(f) (f ∈ dom(D)). The depth of derivations, sorted terms and
programs are defined similarly.

3 Order-3 Reachability is Nonelementary

This section proves the following theorem.

Theorem 1. The reachability problem for order-3 programs is nonelementary.
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The key observation is that, for every n, the subset of natural numbers

{0, 1, . . . , expn(2)−1} can be implemented by

n
︷ ︸︸ ︷

�→ · · · → � → � in a certain
sense (see Definition 2). The non-determinism of the calculus is essential to the
construction. Note that in the call-by-name case, the set of closed terms (modulo
observational equivalence) of this sort can be bounded by 44

n

, since

n
︷ ︸︸ ︷

�→ · · · → �→ � ∼=
n

︷ ︸︸ ︷

�× · · · × �→ �.

The proof in this section can be sketched as follows. Let L ⊆ {0, 1}∗ be
a language in n-EXPSPACE. We can assume without loss of generality that
there exists a Turing machine M that accepts L and runs in space expn(x)
(here x is the size of the input). Given a word w, we reduce its acceptance by
M to the reachability problem of a program (say PM,w) of the call-by-value
calculus in Section 2 extended to have natural numbers up to N ≥ expn(x)
(Lemma 3). The order of PM,w is independent from M and w: it is 3 when the
order of the natural number type is defined to be 1. Recall that the natural
numbers up to expn+x(2) ≥ expn(x) can be implemented by the order-1 sort

n+x
︷ ︸︸ ︷

�→ · · · → � → �. By replacing natural numbers in PM,w with the implemen-
tation, the acceptance of w by M can be reduced to the reachability problem of
an order-3 program without natural numbers.

3.1 Simulating Turing Machine by Program with Natural Numbers

First of all, we define programs with natural numbers up to N , which is an
extension of the typed calculus presented in Section 2. The syntax of sorts and
terms is given by:

(Sorts) κ, ι ::= · · · | �
(Terms) s, t, u ::= · · · | S | P | EQ | 0 | 1 | · · · | N − 1

The extended calculus has an additional ground sort � for (bounded) natural
numbers. Constants S and P are functions of sort �→ � meaning the successor
and the predecessor functions, respectively, and EQ is a constant of sort�×�→ �

which checks if two arguments are equivalent. A constant n indicates the natural
number n. The set of values is defined by: v ::= · · · | S | P | EQ | n. Function
definitions and evaluation contexts are given by the same syntax as in Section 2,
but terms and values may contain natural numbers. The additional reduction
rules are given by

E[Sn] −→D E[n+ 1] (if n+ 1 < N)

E[Pn] −→D E[n− 1] (if n− 1 ≥ 0)

E[EQ 〈n, n〉] −→D E[t]

E[EQ 〈n,m〉] −→D E[f] (if n = m).
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Note that E[SN − 1] and E[P 0] get stuck. A program with natural numbers up
to N is a pair of a function definition D and a term t of sort �, written as
let rec D in t. We assume that programs in the sequel do not contain constant
numbers except for 0. The order of � is defined as 1.

Lemma 3. Let L ⊆ {0, 1}∗ be a language and M be a deterministic Turing ma-
chine accepting L that runs in space expn(x) for some n. Then, for every word
w ∈ {0, 1}∗ of length k and natural number N ≥ expn(k), one can construct a
program PM,w with natural numbers up to N such that PM,w fails if and only
if w ∈ L. Furthermore PM,w is of order-3 and can be constructed in polynomial
time with respect to k.

Proof. Let M be a Turing machine with states Q and tape symbols Σ and w be
a word of length k. We can assume without loss of generality that Q = {t, f}q
(that is, the set of all sequences of length q consisting of t and f) and Σ = {t, f}l.

A configuration is expressed as a value of sort1

Config =

q
︷ ︸︸ ︷

�× · · · × �×
l

︷ ︸︸ ︷

(�→ �)× · · · × (�→ �)×�,

where the first part represents the current state, the second part the tape and
the third part the position of the tape head. The program PM,w has one recursive
function isAccepted of sort Config → �. It checks if the current state is a final
state and it fails if so. Otherwise it computes the next configuration and passes it
to isAccepted itself. The body of the program generates the initial configuration
determined by w and passes it to the function isAccepted .

Clearly we can construct PM,w in polynomial time with respect to k (the
length of w) and the order of PM,w is 3. ��

3.2 Implementing Natural Numbers

Let νn be the order-1 sort defined by ν0 = � and νn+1 = �→ νn. We shall show
that natural numbers up to expn(2) can be implemented as values of νn.

Intuitive Explanation. We explain the intuition behind the construction by
using the set-theoretic model. Let N = {0, 1, . . . , N − 1}. We explain the way
to express the set 2N ∼= {0, 1, . . . , 2N − 1} as (a subset of) non-deterministic
functions of �→ N, i.e. functions of �→ P(N), where P(N) is the powerset of
N. The set (�⇒ N) ⊆ (�→ P(N)) is defined by:

(�⇒ N) = {f : �→ P(N) | f(t) ∪ f(f) = N and f(t) ∩ f(f) = ∅}.

In other words, f ∈ �→ P(N) is in �⇒ N if and only if, for every i ∈ N, exactly
one of i ∈ f(t) and i ∈ f(f) holds. Hence a function f : � ⇒ N determines a

function of N → �, say f̂ , defined by f̂(i) = b iff i ∈ f(b) (b ∈ {t, f}).
1 Strictly speaking, it is not a sort in our syntax because products are restricted
to argument positions. But there is no problem since occurrences of Config in the
following construction are also restricted to argument positions.
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There is a bijection between the set of functions N → � and the subset of
natural numbers {0, 1, . . . , 2N−1}, given by binary encoding, i.e. (f̂ : N → �) �→
∑

i<N,f̂(i)=t 2
i. For example, consider the case that N = 4 and N = {0, 1, 2, 3}.

Then 6 (= 0110 in binary) is represented by f̂6 such that f̂6(0) = f̂6(3) = f and

f̂6(1) = f̂6(2) = t. Therefore f6 is given by f6(t) = {1, 2} and f6(f) = {0, 3}.
Now let us consider the way to define operations such as the successor, pre-

decessor and equality test. The key fact is that there is a term (say get) that

computes f̂(i) for f ∈ � ⇒ N and i ∈ N, and there exists a term (say put)

that computes g ∈ � ⇒ N such that ĝ = f̂ [i �→ b] for f ∈ � ⇒ N, i ∈ N and
b ∈ {t, f}. They are given by the following informal equations:

get 〈f, i〉 = if(f t = i, t, Ω) ⊕ if(f f = i, f, Ω)
put 〈f, i, b〉 = λc�.

(

if(b = c, i, Ω) ⊕ ((λj.if (i = j, j, Ω)) (f c))
)

where f :: �→ N and i, j :: N and b, c :: �. Note that put would be incorrect in
the call-by-name setting. By using these functions, we can write operations like
successor, predecessor and equality test for � ⇒ N. For example, the equality
test eq can be defined by eq = λ〈f, g〉.e 〈f, g,N − 1〉, where e is given by the
following recursive definition:

e 〈f, g, i〉 = if((get 〈f, i〉)=(get 〈g, i〉), if(i = 0, t, e 〈f, g, (i− 1)〉), f).

Formal Development. We formally define the notion of implementations and
show that replacement of natural numbers with its implementations preserves
reachability.

Definition 2 (Implementation of Natural Numbers). Let N be the tuple
(N,D, κ, {Vi}i∈{0,1,...,N−1}, eq, s,p, z,max), where N is a natural number, D is
a function definition, κ is a sort, {Vi}i is an indexed set of pairwise disjoint sets
of closed values of sort κ, eq is a closed value of sort κ × κ → �, s and p are
closed values of sort κ → κ, and z and max are closed values of sort κ. Here
we consider terms without natural numbers. We say N is an implementation of
natural numbers up to N just if the following conditions hold (here V =

⋃

i Vi).

– For every v, v′ ∈ V , evaluation of eq 〈v, v′〉, s v and p v under D never fails.
– z ∈ V0 and max ∈ VN−1.
– For every v ∈ Vn and v′ ∈ Vn′ , eq 〈v, v′〉 −→∗

D t if and only if n = n′, and
eq 〈v, v′〉 −→∗

D f if and only if n = n′.
– For every v ∈ Vn, s v −→∗

D v′ implies v′ ∈ Vn+1 and if n + 1 < N then
s v −→∗

D v′ for some v′ ∈ Vn+1. Similarly, p v −→∗
D v′ implies v′ ∈ Vn−1 and

if n ≥ 1 then p v −→∗
D v′ for some v′ ∈ Vn−1.

The sort of N is κ and the order of N is that of κ.

Given an implementation N of natural numbers up to N and a term t with
natural numbers up to N , we write tN for the term without natural numbers
obtained by replacing constants with values given by N, e.g.,

0N = z SN = s (t u)N = tN uN (λx.t)N = λx.(tN).



188 T. Tsukada and N. Kobayashi

Note that programs do not contain constant numbers except for 0 by definition.
Given a function definition D, DN can be defined straightforwardly. See the long
version for the concrete definition.

Lemma 4. Let let rec D in t be a program with natural numbers up to N ,
and N be an implementation of natural numbers up to N . Then let rec D in t
fails if and only if let rec DN in tN fails.

Given a natural number n ≥ 1, we present an implementation of natural
numbers up to expn(2) whose order is 1. By using the implementation to the
program constructed in Lemma 3, the nonelementary result for the reachability
problem for order-3 programs is established.

For every n, we shall define an implementation N(n) of natural numbers up
to expn(2) by induction on n. As for the base case, the natural numbers up to
exp0(2) = 2 (i.e. {0, 1}) can be naturally implemented by using �. We call this
implementation N(0). As for the induction step, assuming an implementation
N = (N,D, κ, {Vi}i, eq, s,p, z,max) of natural numbers up to N , it suffices to
construct an implementation of natural numbers up to 2N , say �N = (2N , D ∪
D′,�→ κ, {V ′

i }i∈{0,1,...,2N−1}, eq′, s′,p′, z′,max′).

– The additional function definition D′ defines get, put and other auxiliary
functions used to define s′ and others. The definitions of get and put are:

get = λ〈x�→κ, iκ〉. if(eq 〈x t, i〉, t, Ω) ⊕ if(eq 〈x f, i〉, f, Ω)

put = λ〈x�→κ, iκ, b�〉.λc�.
(

if(b = c, i, Ω) ⊕ ((λj.if (eq 〈i, j〉, Ω, j)) (x c))
)

– Let m < 2N and bN−1 . . . b0 be its binary representation. Then V ′
m is the set

of values v of sort �→ κ such that
1. bi = 1 iff v t −→∗ v′ for some v′ ∈ Vi,
2. bi = 0 iff v f −→∗ v′ for some v′ ∈ Vi, and
3. v t −→∗ v′ or v f −→∗ v′ implies v′ ∈

⋃

i∈{0,...,N−1} Vi.

Here x = y is the shorthand for if(x, if (y, t, f), if(y, f, t)). For n ≥ 1, we define
N(n+ 1) = �(N(n)). See the long version for the concrete definition of �N.

Lemma 5. N(n) is an implementation of natural numbers up to expn(2). Fur-
thermore, the sort, the function definition and the operations of N(n) can be
constructed in time polynomial with respect to n.

Proof (Theorem 1). The claim follows from Lemmas 3, 4 and 5. Note that (i)
expn(x) ≤ expn+x(2), and (ii) given an order-n program with natural numbers
up to expm(2), the replacement of natural number constants with N(m) can be
done in time polynomial with respect to m and the size of the program, and the
resulting program is of order n (provided that n ≥ 2). ��
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4 Depth-n Reachability is n-EXPTIME Hard

In this section, we show a sketch of the proof of Theorem 2 below.

Theorem 2. For every n > 0, the reachability problem for depth-n programs is
n-EXPTIME hard.

We reduce the emptiness problem of order-n alternating pushdown systems,
which is known to be n-EXPTIME complete [4], to the reachability problem
for depth-n programs. The basic idea originates from the work of Knapik et
al. [6], which simulates a deterministic higher-order pushdown automaton by a
safe higher-order grammar.

Since Knapik et al. [6] considered call-by-name grammars, we need to fill the
gap between call-by-name and call-by-value. A problem arises when a divergent
term that would not be evaluated in the call-by-name strategy appears in an
argument position. We use the non-deterministic branch and the Boolean values
to overcome the problem. Basically, by our reduction, every term of the ground
sort is of the form f⊕ s, and thus one can choose whether s is evaluated or not,
by selecting one of the two possible reduction f ⊕ s −→ f and f ⊕ s −→ s. A
detailed proof can be found in the long version.

5 Intersection-Type-Based Model-Checking Algorithm

We develop an intersection type system that completely characterises the reacha-
bility problem and give an upper bound of complexity of the reachability problem
by solving the typability problem.

5.1 Types

The pre-types are given by the following grammar:

(Value Pre-types) θ ::= t | f |
∧

i∈I(θ1,i×. . .×θn,i → τi)
(Term Pre-types) τ, σ ::= θ | Fκ

The index I of the intersection is a finite set. We allow I to be the empty set,
and we also write

∧

∅ for the type. The subscript κ of Fκ is often omitted. We
use infix notation for intersection, e.g. (θ1 → τ1) ∧ (θ2 → τ2). The intersection
connective is assumed to be associative, commutative and idempotent. Thus
types

∧

i∈I(θ1,i×. . .×θn,i → τi) and
∧

j∈J (θ
′
1,j×. . .×θ′n,j → τ ′n,j) are equivalent

if {(θ1,i, . . . , θn,i, τi) | i ∈ I} and {(θ′1,j , . . . , θ′n,j , τ ′j) | j ∈ J} are equivalent sets.
Value pre-types are types for values and term pre-types are those for terms.
The value pre-type t is for the Boolean value t and f for the Boolean value

f. The last one is for abstractions. It can be understood as the intersection of
function types of the form θ1×. . .×θn → τ . The judgement λ〈�x〉.t : θ1×. . .×θn → τ
means that, for all values vi : θi (for every i ≤ n), one has [�v/�x]t : τ . For example,
λx.x : t → t and λx.x : f → f. The judgement λ〈�x〉.t :

∧

i∈I(θ1,i×. . .×θn,i → τi)
means that, for every i ∈ I, one has λ〈�x〉.t : θ1,i× . . .×θn,i → τi. Therefore,
λx.x : (t → t) ∧ (f → f).
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The term pre-type F means failure, i.e. t : F just if t −→∗ E[F]. The term
pre-type θ is for terms that is reducible to a value of type θ, i.e. t : θ just if
t −→∗ v and v : θ for some v. For example, consider u0 = (λx.t) ⊕ (λx.f)
and u′

0 = λx.(t ⊕ f) in Example 1. Then u0 : t → t since u0 −→ λx.t, and
u0 : t → f since u0 −→ λx.f. It is worth noting that t : θ1 and t : θ2 does not
imply t : θ1 ∧ θ2, e.g. u0 does not have type (t → t) ∧ (t → f). In contrast,
u′
0 : (t → t)∧(t → f). So the difference between u0 and u′

0 is captured by types.
Given a sort κ, the relation τ :: κ, read “τ is a refinement of κ,” is inductively

defined by the following rules:

t :: � f :: � Fκ :: κ

θk,i :: κk τi :: ι (for all i ∈ I, k ∈ {1, . . . , n})
∧

i∈I(θ1,i×. . .×θn,i → τi) :: κ1×. . .×κn → ι

Note that intersection is allowed only for pre-types of the same sort. So a pre-
type like ((t → t) → t) ∧ (t → t) is not a refinement of any sort. A type is a
value pre-type with its sort θ :: κ or a term pre-type with its sort τ :: κ. A type
is often simply written as θ or τ .

Let θ, θ′ :: κ be value types of the same sort. We define θ ∧ θ′ by:

t ∧ t = t f ∧ f = f (
∧

i∈I

(�θi → τi)) ∧ (
∧

j∈J

(�θj → τj)) =
∧

i∈I∪J

(�θi → τi)

and t ∧ f and f ∧ t are undefined.

5.2 Typing Rules

A type environment Γ is a finite set of type bindings of the form x : θ (here x
is a variable or a function symbol). We write Γ (x) = θ if x : θ ∈ Γ . We assume
type bindings respect sorts, i.e. x :: κ implies Γ (x) :: κ. A type judgement is of
the form Γ � t : τ . The judgement intuitively means that, if each free variable
x in t is bound to a value of type Γ (x), then at least one possible evaluation of
t results in a value of type τ . We abbreviate a sequence of judgements Γ � t1 :
τ1, . . . , Γ � tn : τn as Γ � �t : �τ . The typing rules are listed in Fig. 2.

Here are some notes on typing rules. Rule (Abs) can be understood as
the (standard) abstraction rule followed by the intersection introduction rule.
Rule (App) can be understood as the intersection elimination rule followed by
the (standard) application rule. Note that intersection is introduced by (Abs)
rule and eliminated by (App) rule, which is the converse of the call-by-name
case [7]. Rule (Var) is designed for ensuring weakening. Rule (App-F1) re-
flects the fact that, if t −→∗ E[F], then t 〈�u〉 −→∗ E′[F] where E′ = E 〈�u〉.
Rule (App-F2) reflects the fact that, if t −→ v0 and ui −→∗ vi for i <
l, then t 〈u1, . . . , ul−1, ul, ul+1, . . . , un〉 −→∗ v0 〈v1, . . . , vl−1, E[F], ul+1, . . . , un〉.
The premises t : θ0 and ui : θi (i < l) ensure may-convergence of their evaluation.

Typability of a program is defined by using the notion of the nth approxima-
tion (see Section 2 for the definition). Let P = let rec D in t be a program.
Thus t is a term of sort � with free occurrences of function symbols. We say the
program P has type τ (written as � P : τ) just if � [t]nD : τ for some n.
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x : θ ∧ θ′ ∈ Γ for some θ′

Γ � x : θ
(Var)

b ∈ {t, f}
Γ � b : b

(Bool)

Γ � F : F
(F)

Γ, �x : �θi � t : τi for all i ∈ I

Γ � λ〈�x〉.t : ∧i∈I(
�θi → τi)

(Abs)

Γ � t :
∧

i∈I(
�θi → τi)

Γ � �u : �θl l ∈ I

Γ � t 〈�u〉 : τl
(App)

Γ � t : F

Γ � t 〈�u〉 : F (App-F1)

Γ � t : θ0
Γ � u1 : θ1

...
Γ � ul−1 : θl−1

Γ � ul : F

Γ � t 〈�u〉 : F (App-F2)

Γ � t : t Γ � s1 : τ

Γ � if(t, s1, s2) : τ
(C-T)

Γ � t : f Γ � s2 : τ

Γ � if(t, s1, s2) : τ
(C-F)

Γ � t : F

Γ � if(t, s1, s2) : F
(C-F)

∃i ∈ {1, 2} Γ � ti : τ

Γ � t1 ⊕ t2 : τ
(Br)

Fig. 2. Typing Rules

Soundness and completeness of the type system can be proved by using a
standard technique for intersection type systems, except that Substitution and
De-Substitution Lemmas are restricted to substitution of values and Subject
Reduction and Expansion properties are restricted to call-by-value reductions.
For more details, see the long version of the paper.

Theorem 3. � P : F if and only if P fails.

5.3 Type-Checking Algorithm and Upper Bound of Complexity

We provide an algorithm that decides the typability of a given depth-n program
P in time O(expn(poly(|P |))) for some polynomial poly . Let P = let rec D in t
and suppose that � D :: Δ, Δ � t :: � and Δ = {fi :: δi | i ∈ I}.

We define T (κ) = {τ | τ :: κ} and T (Δ) = {Γ | Γ :: Δ}. For τ, σ ∈ T (κ), we
write τ � σ just if τ = σ ∧ σ′ for some σ′. The ordering for type environments
is defined similarly. Let FD be a function on T (Δ), defined by:

FD(Θ) =
{

f :
∧

{�θ → τ | Θ, �x : �θ � t : τ}
∣

∣

∣ (f = λ〈�x〉.t) ∈ D
}

.

The algorithm to decide whether � let rec D in t : F is shown in Fig. 3.
Termination of the algorithm comes from monotonicity of FD and finiteness of

T (Δ). Correctness is a consequence of the following lemma and the monotonicity
of the approximation (i.e. if [t]mD fails and m ≤ m′, then [t]m

′
D fails).
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1 : Θ0 := {f :
∧ ∅ | f ∈ dom(Δ)}, Θ1 = FD(Θ0), i := 1

2 : while Θi �= Θi−1 do

2-1 : Θi+1 := FD(Θi)
2-2 : i := i+ 1
3 : if Θi � t : F then yes else no

Fig. 3. Algorithm checking if � let rec D in t : F

Lemma 6. Suppose Δ | K � t :: �. Then ∅ � [t]nD : τ if and only if Θn � t : τ .

We shall analyse the cost of the algorithm. For a set A, we write #A for the
number of elements. The height of a poset A is the maximum length of strictly
increasing chains in A.

Lemma 7. Let κ be a sort of depth n. Then #T (κ) ≤ expn+1(2|κ|) and the
height of T (κ) is bounded by expn(2|κ|).

Lemma 8. Let Δ | K � t :: κ be a sorted term of depth n, and Θ :: Δ. Assume
that depth(K) ≤ n− 1. Then AΘ,t = {(Γ, τ) ∈ T (K) × T (κ) | Θ,Γ � t : τ} can
be computed in time O(expn(poly(|t|))) for some polynomial poly.

Proof. We can compute AΘ,t by induction on t. An important case is that the
sort κ is of depth n. In this case, there exists BΘ,t ⊆ T (K)×T (κ) such that (1)
(Γ, τ) ∈ AΘ,t if and only if (Γ, τ ′) ∈ BΘ,t for some τ ′ � τ and (2) for each Γ , the
number of elements in BΘ,t � Γ = {τ | (Γ, τ) ∈ BΘ,t} is bounded by |t|. See the
long version for the proof of this claim. By using BΘ,t as the representation of
AΘ,t, AΘ,t can be computed in the desired bound. For other cases, one can enu-
merate all the elements in AΘ,t, since #AΘ,t ≤ expn(2(|K|+ |κ|)) ≤ expn(2|t|)
(here we assume w.l.o.g. that each variable in dom(K) appears in t). ��

Theorem 4. The reachability problem for depth-n programs is in n-EXPTIME.

Proof. By Lemma 8, each iteration of loop 2 in Fig. 3 runs in n-EXPTIME. Since
the height of T (Δ) is bounded by expn(2|Δ|), one needs at most expn(2|Δ|)
iterations for loop 2, and thus loop 2 runs in n-EXPTIME. Again by Lemma 8,
step 3 can be computed in n-EXPTIME. Thus the algorithm in Fig. 3 runs in
n-EXPTIME for depth-n programs. ��

6 Related Work

Higher-order model checking. Model-checking recursion schemes against modal
μ-calculus (known as higher-order model checking) has been proved to be de-
cidable by Ong [15], and applied to various verification problems of higher-order
programs [7,11,12,17]. The higher-order model-checking problem is n-EXPTIME
complete for order-n recursion schemes [15]. The reachability problem for call-
by-name programs is an instance of the higher-order model checking, and (n−1)-
EXPTIME complete for order-n programs [10].
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Model-checking call-by-value programs via the CPS translation. The previous
approach for model-checking call-by-value programs is based on the CPS trans-
lation. Our result implies that the upper bound given by the CPS translation
is not tight. However this does not imply that the CPS translation followed
by call-by-name model-checking is inefficient. It depends on the model-checking
algorithm. For example, the näıve algorithm in [7] following the CPS transla-
tion takes more time than our algorithm, but we conjecture that HorSat [2]
following the CPS translation meets the tight bound.

Sato et al. [16] employed the selective CPS translation [14] to avoid unneces-
sary growth of the order, using a type and effect system to capture effect-free
fragments and then added continuation parameters to only effectful parts.

Intersection types for call-by-value calculi. Davies and Pfenning [3] studied an
intersection type system for a call-by-value effectful calculus and pointed out
that the value restriction on the intersection introduction rule is needed. In our
type system, the intersection introduction rule is restricted immediately after the
abstraction rule, which can be considered as a variant of the value restriction.

Similarly to the previous work on type-based approaches for higher-order
model checking [7,8,9], our intersection type system is a variant of the Essential
Type Assignment System in the sense of van Bakel [18], in which the typing rules
are syntax directed. Our syntax of intersection types differs from the standard
one for call-by-name calculi. Our syntax is inspired by the embedding of the call-
by-value calculus into the linear lambda calculus [13], in which the call-by-value
function type A → B is translated into !(A � B) (recall that function types in
our intersection type system is

∧

i(τi → σi)).
Zeilberger [19] proposed a principled design of the intersection type system

based on the idea from focusing proofs [1]. Its connection to ours is currently
unclear, mainly because of the difference of the target calculi.

Our type system is designed to be complete. This is a characteristic feature
that the previous work for call-by-value calculi [3,19] does not have.

7 Conclusion

We have studied the complexity of the reachability problem for call-by-value
programs, and proved the following results. First, the reachability problem for
order-3 programs is non-elementary, and thus the order of the program does not
serve as a good measure of the complexity, in contrast to the call-by-name case.
Second, the reachability problem for depth-n programs is n-EXPTIME complete,
which improves the previous upper bound given by the CPS translation.

For future work, we aim to (1) develop an efficient model-checker for call-by-
value programs, using the type system proposed in the paper, and (2) study the
relationship between intersection types and focused proofs [1,19].
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