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Abstract. Language equivalence of deterministic pushdown automata
(DPDA) was shown to be decidable by Sénizergues (1997, 2001); Stirling
(2002) then showed that the problem is primitive recursive.

Sénizergues (1998, 2005) also generalized his proof to show decidabi-
lity of bisimulation equivalence of (nondeterministic) PDA where e-rules
can be only deterministic and popping; this problem was shown to be
nonelementary by Benedikt, Géller, Kiefer, and Murawski (2013), even
for PDA with no e-rules.

Here we refine Stirling’s analysis and show that DPDA equivalence
is in TOWER, i.e., in the “least” nonelementary complexity class. The
basic proof ideas remain the same but the presentation and the analysis
are simplified, in particular by using a first-order term framework.

The framework of (nondeterministic) first-order grammars, with term
root-rewriting rules, is equivalent to the model of PDA with restricted
e-rules to which Sénizergues’s decidability proof applies. We show that
bisimulation equivalence is here Ackermann-hard, and thus not primitive
recursive.

1 Introduction

Pushdown automata (PDA) are a standard and widely used model in computer
science; we recall that a PDA is a (generally nondeterministic) finite automaton
equipped with an (unbounded) stack, i.e., with a (LIFO) linear list accessible
at only one end (at the “top”). PDA are naturally used to model (sequential)
programs with recursive procedure calls, and they also form a basis for (auto-
mated) verification of some program properties. A traditional area that employs
deterministic PDA (DPDA) is the syntactic analysis of programming languages.

Given such “devices” or “systems” (like PDA or DPDA), it is standard to
ask if their (functional or behavioural) equivalence can be effectively, or even
efficiently, checked. A classical equivalence is language equivalence, asking if two
given systems accept the same sequences of (external) input symbols, or from
another viewpoint, if they can perform the same sequences of actions.

While language equivalence of PDA was quickly recognized to be undecid-
able, the decidability question for DPDA had been a famous open problem since
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1960s. The decidability was finally shown by Sénizergues [21], who got the Godel
Prize in 2002 for this achievement. Stirling [26] then showed that the problem is
primitive recursive. We note that the known complexity lower bound for DPDA
equivalence is just P-hardness (derived from P-hardness of the emptiness prob-
lem for context-free languages).

A fundamental behavioural equivalence is bisimulation equivalence, also called
bisimilarity; roughly speaking, two states of a system (or of two systems) are
bisimilar if performing an action a in one state can be matched by performing an
action with the same name a in the other state so that the resulting states are
also bisimilar. For deterministic systems this equivalence in principle coincides
with language equivalence, but for nondeterministic ones it is finer.

Sénizergues [22] generalized his proof for DPDA to show decidability of bisi-
mulation equivalence of (nondeterministic) PDA where e-rules (internally chang-
ing the current state) can be only deterministic and stack-popping. (If we allow
the option that a popping e-rule can apply at the same time when an “external-
action” rule can also apply, then bisimilarity becomes undecidable [14].) For this
more general decidable problem no complexity upper bound has been shown.
Regarding the lower bound, the previously known EXpPTIME-hardness [18] has
been recently shifted: Benedikt, Géller, Kiefer, and Murawski [2] showed that
the problem is nonelementary, even for “real-time” PDA (RT-PDA), i.e. PDA
with no e-rules.

Contribution of this paper is summarized in the following points 1, 2.

1. Equivalence of DPDA is in TOWER. We refine Stirling’s ana-
lysis (from [26]) and show that DPDA equivalence is in TOWER, ie., in
the least (reasonably defined) nonelementary complexity class. We note that
TOWER = F3 in the hierarchy of fast-growing complexity classes recently de-
scribed by Schmitz [19]. The basic proof ideas remain the same (as in [26]) but
the presentation and the analysis are simplified, in particular by using a first-
order term framework, called deterministic first-order grammars (detFOG).

2. Bisimilarity of first-order grammars is Ackermann-hard. The ge-
neral framework of (nondeterministic) first-order grammars (FOG), i.e. of finite
sets of term root-rewriting rules, is equivalent to PDA with deterministic and
popping e-rules, i.e. to the model where decidability of bisimilarity was shown by
Sénizergues [22]. We show that bisimulation equivalence is here even Ackermann-
hard, and thus not primitive recursive. The proof is given by a reduction from
the control-state reachability problem for reset (or lossy) counter machines for
which Ackermann-hardness was shown by Schnoebelen (see [20] and references
therein, and [28] for an independent proof related to relevance logic).

Further Comments. Some advantages of using first-order terms, i.e. a formal-
ism with which (not only) every computer scientist is intimately familiar, were
already demonstrated in [15]. Though the close relationship between (D)PDA
and first-order schemes has been long known (see, e.g., [7]), the perspective
viewing (D)PDA as (deterministic) finite sets of term root-rewriting rules seems
not to have been fully exploited so far. We note that the decidability proof
n [15] (for deterministic grammars) was constructed so that it constitutes a
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good basis for extending the decidability proof to the nondeterministic case
(to match [22]). Here we concentrate on bounding the length of shortest words
witnessing nonequivalence, which cannot be easily generalized, as is now also
indicated by the gap between TOWER and the Ackermann-hardness.

We summarize the relevant known results in the following table.

DPDA =detFOG  RT-PDA  PDA~FOG PDA

Lang-Eq P-hard Undecidable Undecidable Undecidable
in TOWER
Bisi-Eq P-hard TOWER-hard ACK-hard Undecidable

in TOWER Decidable Decidable

In the column PDA~FOG we refer to those PDA that are equivalent to first-
order grammars, i.e., to PDA with only deterministic and popping e-rules. PDA
in the last column can have unrestricted e-rules.

The results in the boldface are shown in this paper. The TOWER-
membership is only one result, since language equivalence and bisimilarity in
principle coincide for DPDA. As already mentioned, this result is derived by
a finer look at Stirling’s approach [26], where only a primitive recursive upper
bound is claimed. The TOWER-hardness for RT-PDA is, in fact, a slight ex-
trapolation of the result presented in [2]. The authors only claim nonelementary
complexity but their proof can be adjusted to show TOWER-hardness in the
sense of [19]. (This is the usual case with proofs showing nonelementary comple-
xity lower bounds, as is also explained in [19]; in the particular case of RT-PDA
this was also confirmed by a personal communication with S. Kiefer.)

We also note that the proof of Ackermann-hardness for first-order grammars
presented here uses the feature (namely varying lengths of branches of syntactic
trees of terms) corresponding to (restricted) e-rules; hence TOWER-hardness
remains the best known lower complexity bound for bisimilarity of RT-PDA.

The problem for reset counter machines, used in the hardness proof here, is in
fact Ackermann-complete (or ACK-complete, or F,-complete in the hierarchy
of [19]); the upper bound was shown in [9]. The question of a similar upper
bound for the bisimilarity problem is not discussed here.

Related Work and Some Open Questions. Here we only briefly mention
some results and questions that are very close to the above discussed equivalence
problems, with no attempt to give any sort of a full account. (For an updated
survey of a specific area, namely bisimilarity checking of infinite-state systems,
we can refer to [24].)

The main challenge is still to clarify the complexity status of DPDA equi-
valence, which is still far from being understood. The practical experiments by
Henry and Sénizergues [12] have strengthened the feeling that the TOWER
bound is indeed too large. More pleasant upper bounds were shown for sub-
classes of DPDA. A co-NP upper bound is known for finite-turn DPDA [23].
For simple grammars (real-time DPDA with a single control state), a polyno-
mial algorithm deciding equivalence was shown in [13] (see [8] for a recent upper
bound); it is worth to note that the language inclusion problem is undecidable
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even in this simple case [10]. A recent result also shows NL-completeness of
equivalence of deterministic one-counter automata [3] (answering the forty-year
old polynomiality question posed by Valiant and Paterson).

A natural subclass of PDA are visibly pushdown automata, with EXpTIME-
complete language equivalence problem (Alur and Madhusudan [1]); for bisi-
milarity the ExpTIME-completeness was shown by Srba [25], who also used
Walukiewicz’s result on model checking pushdown systems [29]. For real-time
one-counter automata bisimilarity is PSPACE-complete [4]. An interesting sub-
class is BPA (Basic Process Algebra), corresponding to real-time PDA with
a single control state. In the so called normed case bisimilarity is polynomial
(see the above mentioned [13], [8]), but in general bisimilarity is in 2-EXPTIME
(claimed in [6] and explicitly proven in [16]) and EXPTIME-hard [17].

We can also mention the higher-order case. The decidability question for
higher-order DPDA equivalence remains an open problem; some progress in this
direction was made by Stirling in [27]. Bisimilarity of second-order RT-PDA is
undecidable [5]. Another generalization of pushdown systems are ground term
(or tree) rewrite systems (where rules replace subterms with subterms). Here
the decidability of bisimilarity is open [11].

2 Preliminaries

In this section we define the basic notions; some standard definitions might be
given in restricted forms when we do not need the full generality.

By N we denote the set {0,1,2,...} of nonnegative integers; we put [i,j] =
{i,i+1,...,j}. For a set A, by CARD(A) we denote its cardinality (i.e. the num-
ber of elements when A is finite). By A* we denote the set of finite sequences
of elements of A, which are also called words (over A). By |w| we denote the
length of w € A*. If w = wv then u is a prefix of w, and v is a suffiz of w. By ¢
we denote the empty sequence (|e| = 0).

2.1 Bisimulation Equivalence in LTSs and in Deterministic LTSs

Labelled Transition Systems. A labelled transition system (an LTS) is a
tuple £ = (S, X, (-%)aecs) where S is a finite or countable set of states, X is
a finite set of actions (or letters), and —+C S x S is a set of a-transitions (for
each a € X). We write s —— s instead of (s,s') €—. By s — s, where
w = aias...a, € X*, we denote that there is a path s = sg Ay g 2y Oy
sp =" if s —» &', then &' is reachable from s. By writing s — we mean that
s enables w, i.e., s —» s’ for some s’.

Deterministic LTSs. An LTS £ = (S, ¥, (-%)aex) is deterministic, a det-
LTS for short, if for each pair s € S, a € X' there is at most one s’ such that
s —= . Hence if w is enabled by s then there is precisely one s’ such that
s —% §'. Here we also use expressions like “the path s —» s’” or “the path
s —” since the respective path is unique.
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Bisimilarity. We assume a (general) LTS £ = (S, ¥, (-%)sex). Aset BC SxS
is a bisimulation if for any (s,t) € B we have: for any s — s there is t —— t/
such that (s',t') € B, and for any t — ¢’ there is s — s’ such that (s',t') € B.
States s,t € S are bisimulation equivalent, or bisimilar, written s ~ ¢, if there is a
bisimulation B containing (s,t). In fact, ~ C S x § is the maximal bisimulation,
the union of all bisimulations.

Trace Equivalence and Eqg-levels in Det-LTSs. It is easy to check that in
det-LTSs bisimulation equivalence coincides with so called trace equivalence, i.e.,
in any deterministic LTS £ = (S, X, (—%)aex) we have

s~tiff Ve 5% s et -,

Hence s, t are equivalent iff they enable the same set of words, also called traces.
This suggests the following natural stratification of ~; it can be defined in the

general (nondeterministic) case as well, but the (technically easier) deterministic

case is sufficient for us. We thus assume a given det-LTS £ = (S, X, () e ).
For any k € N we put Y=k = {w;|w| < k}, and

s~ tifVwe XSk s et Uy

We note that ~g= & X S, and ~g2D~1 D~y D ---. Since our assumed L is
deterministic, it is also obvious that (1, oy ~x=n.

We use the notation s ~j t also for k = w, identifying s ~, ¢t with s ~ ¢. For
each pair (s,t) of states we define its equivalence level, its eg-level for short:

EQLv(s,t) =max{k e NU{w}|s ~yt}.

We stipulate that ¥ < w and w — k = w+ k = w for any k € N. (Hence, e.g.,
§ ~e_5t means s ~ ¢ when e = w.)

Witnesses for Nonequivalent Pairs in Det-LTSs. Given a det-LTS £ =
(S, X, (%) 4ex), we note that s o t implies that any shortest word wa (a € X)
witnessing their nonequivalence (i.e., enabled by precisely one of s,t) satisfies
|w| = EQLv(s, t). For technical convenience we introduce the following definition:

a word w € X* is a witness for (s,t)

if it is a shortest word such that for some a € X we have that wa is enabled
by precisely one of s,¢. (A witness w for (s,t) is thus a shortest word satisfying
s % 8t =5t/ where EQLV(s,t') = 0, i.e. s’ o1 t'.) The witness set for (s,t)
is the set of all witnesses for (s,t) (which is empty iff s ~ t).

We state some obvious facts in the next proposition. The crux is that by
performing the same action a € X from s and ¢ in a det-LTS the eq-level drops by
at most one (if at all), and it does drop for some action when w > EQLv (s, t) > 0.

Proposition 1. In any det-LTS L = (S, X, () aex) we have:

1. If EQLv (s, s') > EQLv(s,t), then EQLv(s,t) = EQLv(s',t) and the witness
sets for (s,t) and (s',t) are the same.
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2. If u is a witness for (s,t) and w = wu’, then v’ is a witness for (s',t') where
s 8", t = t'. Hence also EQIv(s',t') = EQLv(s,t) — |wl.
3. If s 25 " and t —> 1", then EQLv(s”,t") > EQlv(s,t) — |v]|.

2.2 First-Order Terms, FO Grammars, and Det-FO Grammars

We aim to look at LTSs in which states are first-order terms. Transitions in such
an LTS will be determined by a finite set of root-rewriting rules. We start with
definitions of these ingredients.

First-Order (Regular) Terms. The terms are built from some specified func-
tion symbols, using variables from a fixed set VAR = {z1, 22, 23,... }.

A finite term is either a variable x;, or A(Gq,...,Gy,) where A is a function
symbol with arity m and G; are finite terms. Each finite term has its (rooted,
finite, ordered) syntactic tree: for x; it is just the root labelled with x;; for
A(G1,...,Gn), the root is labelled with A, and the ordered root-successors are
the trees corresponding to G, ..., G, respectively. The height of a finite term
E, denoted HEIGHT(FE), is the length of the longest branch of its syntactic tree.

Given a syntactic tree of a term, if we allow redirecting the arcs (i.e. changing
their target nodes) arbitrarily, then we get a finite graph presentation (with
a designated root but with possible cycles) of a regular term; its syntactic tree
might be infinite, but the term has only finitely many subterms, where a subterm
can have infinitely many occurrences, in arbitrarily large depths. By size(E) we
mean the size (the number of nodes, say) of the smallest graph presentation of a
regular term E. (At the level of our later analysis, the details of such definitions
are unimportant.)

In what follows, by a “term” we mean a “regular term” if we do not say explic-
itly that the term is finite. We reserve symbols E, F, G, H, and also T, U, V, W,
for denoting (regular) terms.

Substitutions, and Their Associative Composition. By TERMS we de-
note the set of all (regular) terms over a (finite) set N of function symbols
(called “nonterminals” later). A substitution o is a mapping o : VAR — TERMS
whose support supp(o) = {x; | o(x;) # x;} is finite; we reserve the symbol o
for substitutions. By RANGE(c) we mean the set {o(z;) | z; € SUPP(0)}. The
finite-support restriction allows us to present any o as a finite set of pairs. E.g.,
{(xs, H)} where H # x; is a substitution with the one-element support {;}.

By applying a substitution o to a term E we get the term Eo that arises from
E by replacing each occurrence of z; with o(x;); given graph presentations, in
the graph of E we just redirect each arc leading to x; towards the root of o(x;)
(which includes the special “root-designating arc” when E = x;). For E = z; we
thus have Eo = 2,0 = o(z;).

The natural composition of substitutions (where o = o109 satisfies o(x;) =
(01(x;))o2) is obviously associative. We thus write simply Fojo2 when mean-
ing (Fo1)os or E(o103). For future use we might note that {(x;, H)}o is the
substitution arising from o by replacing o(z;) with Ho.
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First-Order Grammars, and Det-FO Grammars. A first-order grammar,
an FO grammar or just a grammar for short, is a tuple G = (N, X, R) where
N = {A;,As,...} is a finite set of ranked nonterminals, viewed as function
symbols with arities, X = {a1, a2, ...} is a finite set of actions (or letters), and
R is a finite set of (root rewriting) rules of the form

A(.’lﬁ‘l,.’l,‘g,...,.%‘m)i)E (1)

where A € N, arity(A) = m, a € X, and F is a finite term over N in
which each occurring variable is from the set {x1,z2,...,2m}. (We exem-
plify the rules by A(z1,x2,x3) LN C(D(zs,B),x2), A(zx1,x2,23) LN T,
D(x1,29) % A(D(x2,25),x1, B); here the arities of A, B,C, D are 3,0,2,2,
respectively.)

A grammar G = (M, X, R) is a det-FO grammar (deterministic first-order
grammar) if for each pair A € N, a € X there is at most one rule of the
type (1).

2.3 LTSs of Grammars, Equivalence Problem, Relation to PDA

LTSs Associated with Grammars and Det-FO Grammars. A grammar
G = (N, X, R) defines the LTS Lg = (TERMS, ¥, (—=)4ex) in which each rule

A(x1,.. ., 2m) — E induces transitions (A(z1,...,2m))0 — Eo

for all substitutions o : VAR — TERMS /.
(Examples of transitions induced by the previously given rules are

Alzy,22,23) —= C(D(as,B),x2), Alws,as,22) — C(D(x2,B),zs),

A(Uy, Uy, Us) 25 C(D(Us, B), Us), A(Uy,Us, Us) — Us, etc.)
We complete the definition of Lg by stipulating that

EQLv(z;, H) = 0 if H # z; (in particular, z; /41 x; for i # j).

To stay in the realm of pure LTSs, we could imagine that each used variable
z € VAR is equipped with a fresh unique action a, and with the rule z %5 z.
But we never consider such “transitions” in our reasoning, and we handle x; as
“dead terms” (not enabling any action). We thus (often tacitly) use the fact that
F % G implies Fo - Go (though not vice-versa in general).

Since the rhs (right-hand sides) in the rules (1) are finite terms, all terms
reachable from a finite term are finite. (It turns out technically convenient to
have the rhs finite while taking the set TERMS s of all regular terms as the state
set of Lg; the other options are in principle equivalent.)

We also observe that the LTS Lg is deterministic iff G is a det-FO grammar.

Equivalence Problems. By the bisimilarity problem (or the bisimulation equi-
valence problem) for FO grammars we mean the decision problem that asks,
given a grammar G and terms Ty, Uy, whether Ty ~ Uy in Lg.

By the equivalence problem for det-FO grammars we mean the restriction of
the bisimilarity problem to deterministic first-order grammars.
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Relation of Grammars and Pushdown Automata. We have mentioned the
relationship between (D)PDA and first-order schemes (see, e.g., [7]). A concrete
transformation of a PDA (or of a DPDA) to an FO grammar (or to a det-
FO grammar) can be found in [15]. We just sketch the idea, though it is not
important here, and can be skipped; it suffices just to accept the main message
mentioned afterwards.

A configuration ¢;Y1Y2...Yr Ll of a PDA, where | is the bottom-of-the-
stack symbol and the control states are ¢i,q2,...,qm, can be viewed as the
term T (q;Y1Y2...Y; L) defined inductively as follows: T(¢; L) = L, T(¢;Ya) =
@Y (T (1), T (g20), ..., T (¢me)). Hence we view each pair (¢;,Y") of a control
state and a stack symbol as a nonterminal [¢;Y] with arity m; a special case is
1 with arity 0. A pushdown rule ¢;Y —= q;p is rewritten to ¢;Y'x BN q;px for
a special formal symbol z, and the rule is transformed to T (¢;Yz) % T (¢; ),
where we define 7 (¢;x) = z;; hence T(¢;Yx) = [¢;Y](x1, T2, . .., ). In fact, we
still modify the operator 7 when deterministic popping e-rules ¢;Y —— q; are
present. (In this case no other rule of the form ¢;¥ — .. can be present.) For
each such rule we do not create the grammar rule 7 (¢;Yx) — T(gjz) (recall
that we have no e-rules in our grammars) but we put 7 (¢;Y ) = 7 (g;). (Hence
the branches of the syntactic tree of 7 (ga) can have varying lengths.)

The main message is that the classical language equivalence of DPDA is easily
inter-reducible with the equivalence of det-FO grammars. (This also uses the fact
that trace equivalence is a version of language equivalence to which the classical
accepting-state equivalence can be easily reduced. Another standard fact is that
in DPDA we can w.l.o.g. assume that all e-rules are deterministic and popping.)
A similar inter-reducibility holds for the bisimilarity problem for PDA and FO
grammars, with the proviso that we restrict ourselves to (nondeterministic) PDA
where all e-rules (if any are present) are deterministic and popping.

2.4 Complexity Classes TOWER and ACK (Ackermann)

We now recall the notions needed for stating our complexity results. A hierarchy
of “hard” complexity classes (where TOWER = F3 and ACK = F,,) as well as
more details can be found in [19].

An elementary function N¥ — N arises by a finite composition of constants,
the elementary operations 4, —,-,div and the exponential operator 1, where

m 1t n=m". E.g., the triple-exponential function f(n) = 922" s elementary.

Tower-Bounded Functions, Class TOWER. Function Tower : N — N defined
by Tower(0) = 1 and Tower(n+1) = 27""(") is nonelementary. We say that a
function f : N — N is Tower-bounded if there is an elementary function g such
that f(n) < Tower(g(n)). By TOWER we denote the class of decision problems
solvable by Turing machines with Tower-bounded time (or space).

Class ACK, and Ackermann-Hardness. Let the family fy, f1, f2,... of func-

tions be defined by putting fo(n) = n+1 and frt1(n) = fu(fe(... fx(n)...))
where f, is applied n+1 times. By (our version of) the Ackermann function we
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mean the function f4 defined by fa(n) = fn(n); it is a “simplest” non-primitive
recursive function. A decision problem belongs to the class ACK if it is solv-
able in time (or space) fa(g(n)) where g is a primitive recursive function. It
is the ACK-hardness, called Ackermann-hardness, what is important here. We
refer to [19] for a full discussion, but for our use the following restricted version
suffices.

We define HP-ACK as the problem that asks, given a Turing machine M, an
input w, and some n € N, whether M halts on w within f4(n) steps. We say
that a problem P is Ackermann-hard if HP-ACK is reducible to P, or to the
complementary problem co-P, by a standard polynomial many-one reduction.

3 Equivalence of Det-FO Grammars Is in TOWER

In this section we show that the lengths of witnesses for pairs of nonequivalent
terms in LTSs associated with det-FO grammars are Tower-bounded. It is then
obvious that the equivalence problem for det-FO grammars is in TOWER.

To make this precise, we define the function MAXFEL : N — N (“Maximal
Finite Eq-Level”) as given below. We stipulate max () = 0, and by size(G, T, U)
we mean the size of a standard presentation of grammar G and terms 7', U. For
any j € N, we put

MAXFEL(j) = max { e | there are a det-FO grammar G and terms T, U such
that T ¢ U in Lg, size(G,T,U) < j, and EQLv(T,U) = e }.

Theorem 2. Function MAXFEL (for det-FO grammars) is Tower-bounded.

Corollary 3. The equivalence problem for det-FO grammars, as well as for
DPDA, is in TOWER.

In Section 3.2 we describe a proof of Theorem 2 at a partly informal level.
Some more formalized proof parts are then given in Section 3.3. Before starting
with the proof, we first observe some important facts in Section 3.1. These facts
are more or less straightforward, and an “impatient” reader might thus have
only a quick look at Section 3.1 and read Section 3.2 immediately, returning to
Section 3.1 if/when needed.

3.1 Compositionality of Terms, and Safe Changes of Substitutions

Given a det-FO grammar G = (N, X, R), the LTS Lg is deterministic, and it
thus has the properties captured by Prop. 1. We now note some other properties,
using the structure of states of Lg, i.e. the structure of terms. (Recall that by a
“term” we mean a “regular term”, unless we explicitly say a “finite term”.)

It is useful to extend the relations ~j and ~ to substitutions. For o, ¢’ :
VAR — TERMS, and k € NU {w} we put

o~ o' if o(x;) ~p o' (x;) for all z; € VAR.

We also put EQLv(o,0’) = max{k| o ~y o'}.
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Congruence Properties, and the Limit of a Repeated Substitution
The items 1, 2 in the next proposition (Prop. 4) state the simple fact that ~y
are congruences (for all k € NU {w}) in our term-setting. The item 3 states a
basic fact underpinning our use of regular terms.

The point where and why we come to regular terms even when starting with
finite terms can be roughly described as follows: If we can replace subterms
o(z;) in a pair (Eo, Fo) with Ho, while keeping the same eq-level, i.e. having
EQLv(Eo, Fo) = EQLv(E{(z;, H)}o, F{(x;, H)}o), then we can repeat such
replacing of o with {(x;, H)}o forever, keeping the same eqg-level all the time. The
limit of this process is the pair (E'c, F'c) where E' = E{(z;, H)}{(z;, H)} -+
and F' = F{(z;, H)}{(z;, H)}---. In (E'o, F'0) the value o(z;) is irrelevant,
and we can thus “remove” x; from the support of o (as described below).

We note that the limit H = H{(z;, H)}{(z;, H)}{(x;, H)}--- is a well-
defined regular term, when H is a (regular) term. If H = z;, then H' = x;,
and otherwise H' is the unique term satisfying H' = H{(z;, H')}; we note that
H' = H if z; does not occur in H, which includes the case H = z; for j # i.
(A graph presentation of H' arises from a graph presentation of H by redirecting
any arc leading to x; towards the root.)

We note that H # x; implies that x; does not occur in H'. We also observe
that if z; does not occur in a term G then o(z;) plays no role in the composition
{(z;, G)}o. In this case {(v;, G)}o = {(v;, G)}o[_,,) Wwhere o[_, ) arises from o
by removing z; from the support (if it is there), i.e.,

0=z, (i) = 2; and o(_,,)(2;) = o(x;) for j # i.

Proposition 4

~

If E ~ F, then Eo ~ Fo. Hence EQLV(E, F) < EQLvV(Fo, Fo).

2. If o ~y, o' then Eo ~y, Eo’. Hence EQLv(o,0’) < EQLv(FEo, Ed’).
Moreover, if o ¢ ¢’ and E ¢ VAR then EQLv(o,0’) < EQLv(FEo, Ed’).

3. If o(x;) ~x Ho and H # x;, then o ~y {(z;, H') }o|_4,) where

A = H{(w, H)H (oo D)}

Proof. The points 1 and 2 can be easily shown by induction on k; for k = w
we use the fact that ~= (7;cy ~;. It is also obvious that EQLv(Es, Eo’) >

|w| +EQLv (o, 0’) if w is a shortest word such that F - x; for some z; € VAR;
if there is no such w, then Ec ~ Eo’.

3. Suppose o(x;) ~, Ho and H # x;, and put o’ = {(z;, H')}0o[_5,); hence
o' = {(x;, H')}o since x; does not occur in H'. We need to show o ~y, o’.

Since ¢'(z;) = o(z;) for j # i, we have EQLv(c, 0') = EQLv(c(x;), o' (z;)) =
EQLv(o(z;), H'o). Hence it suffices to show EQLv(o(z;), H' o) > k; we assume
o(x;) # H'o, since otherwise we are done.

Since H' = H{(x;, H')}, we deduce that H'c = Ho'. Using 2 (and the fact
o'(z;) = o(z;) when H = z;), we deduce that EQLv(Ho, Ho') > EQLv(o,0’) =
EQLv(o(x;), H o).

Hence EQlv(o(x;), H' o) = EQLv(o(z;), Ho) > k (by using Prop. 1(1)). O
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Getting an “Equation” o(z;) ~, Ho

The (technical) item 1 in the next proposition (Prop. 5) is trivial. The item
2 “completes” the item 1 in Prop. 4: Roughly speaking, if we can “increase”
EQLvV(E, F) by applying some o to both E and F', then the reason is that any
witness w for (E, F') reaches some x; on one side and H # x; on the other side.
We have EQLv(z;, H) = 0 but EQLv(o(x;), Ho) might be larger.

Proposition 5

1.IfE %2, F H or E-=s H, F 5 z; where H # x;, then for any o
we have EQLv(o(z;), Ho) > EQLv(FEo, Fo) — |w|.

2. If EQLv(E, F) < EQLv(Eo, Fo) for some o, then for any witness w for
(E, F) there are some x; € SUPP(c) and H # x; such that B - x;, F -
HorE- H, F-% ;.

Proof. 1. Since E - z; implies Eo — o(x;) and F — H implies Fo — Ho,
the claim follows from Prop. 1(3).

2. By induction on e = EQLV(E, F'). We cannot have (E, F) = (z;, ;) since
E R F;if {E,F} = {x;,H} for H # x;, then we are done: ¢ = 0, w = ¢, and
if z; ¢ supp(o) then {Fo, Fo} = {x;, Ho}, in which case EQLv(z;, Ho) > 0
implies that H = x; (for j # i) and o(z;) = x;, whence x; € SUPP(0).

We thus assume that both ROOT(E) and ROOT(F) are nonterminals. If e = 0
(i.e., the roots enable different sets of actions), then EQLv(Eo, Fo) = 0 — a
contradiction; hence e > 0. Then for each a € ¥ where E - E', F - F’ and
EQLV(E’, F') = e—1 (hence for each a “starting” a witness for (E, F')) we have
EQLv(E'c, F'o) > EQLv(Eo, Fo)—1 > e—1. By the induction hypothesis any
witness w’ for (E’, F') satisfies the claim, and thus any witness aw’ for (E, F)
satisfies the claim as well. O

Safe Changes of Subterms in a Pair of Terms (Keeping the Eg-Level)
The form of the next proposition is tailored to match our later use. The crux of
the item 1 (of Prop. 6) trivially follows from the already established facts: we can
“safely” replace a subterm V' in one term of a pair (T, U) with another subterm
V' if EQLv(V,V’) > EQLv(T,U). By “safely” we mean that the eq-level does
not change: if the arising pair is (77, U), say, then EQLv(T",U) = EQLv(T, U);
moreover, even the witness sets for (T,U) and (T',U) are the same.

The item 2 is slightly subtler: if we want to safely replace (Eo, Fo)
with (Eo¢’, Fo') (thus replacing the relevant subterms on both sides simul-
taneously), then a (substantially) weaker condition for EQLv(o,o’) suffices.
Roughly speaking, from (Eo’, Fo') we should first perform a word at least
as long as a witness for (E,F) before the change of substitutions might
matter (regarding the eq-level). For a safe replacing, i.e. for guarantee-
ing EQLv(Eo’,Fo') = EQLv(Eo, Fo), it thus suffices that EQLv(c,0’) >
EQLv(Eo, Fo) — EQLV(E, F).

Proposition 6

1. If EQLv(o,0’) > EQLv(Go,U), then the witness sets for (Go,U) and
(Go',U) are the same (and EQLV(Go,U) = EQLv(Go’,U)).
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2. Assume EQLV(E,F) = k < w and EQLv(FEo, Fo) = e (hence k < e). If
0 ~e—t+1 0 then EQLV(Eo’, Fo') =e.

Proof
1. Since EQLv(Go, Go’") > EQLv(o, ¢’), the claim follows from Prop. 1(1).
2. If e = w, then we have o ~ ¢’, and thus Fo’ ~ Fo ~ Fo ~ Fo'. Suppose
now a counterexample with the minimal e; hence EQLv(E¢’, Fo') = ¢’ > e. (If
e/ < e, then swapping o, ¢’ contradicts our minimality assumption.)

If{E,F} = {x;,H}, then H # z;, k = 0, and EQLv(o(x;), Ho) = e. Since
0 ~ey1 0, we have EQLv (o' (z;), Ho') = e, a contradiction. Otherwise (when
{E,F} # {x;, H}, and thus ROOT(E) and ROOT(F') are nonterminals) we must
have 1 < k < e < ¢, and there is @ € X such that E — E’, F -5 F’ and
EQLV(E'c, F'o) = e—1. We thus have

k—1 <k =EQWV(E',F') < EQIV(E'0, F'o) = e—1 <
<e—1 < EQlv(E'd’, F'o’).

Since 0 ~¢_1_k+1 o', we contradict our minimality assumption. O

We now state a simple corollary of the previous facts; its form will be particu-
larly useful in an inductive argument based on decreasing the support of certain
substitutions.

Corollary 7. Suppose EQLV(Eo, Fo) > EQLV(Ec’o, Fo'o). Then E ¢ F and
for any witness w for (E, F) there are x;, H # x; such that E —» x;, F - H,
or vice versa. For any such x;, H we have

EQlv (Eo'c, Fo'o) = EQLv ( Eo'{(x;, H') }o1_p,1, Fo'{(xi, H') }o1—z,] ),
where H' = H{(z;, H)}{(x;, H)}---.
Proof. Let the assumption hold. We can thus write
k=EQLv(E,F) < EQLv(Ec¢'c,Fo'o) =€ < e=EQLv(Ear, Fo).

Hence E « F. Let us fix a witness w for (F, F); it has the associated z;, H
by Prop 5(2), and |w| = k. We deduce o(z;) ~c—r Ho (by Prop 5(1)), and
0 ~e_t {(zi, H') }o1_5,1 (by Prop. 4(3)).

Since k < k' = EQLv(Eo',Fo’') < ¢ < e, we have 0 ~e_jpqq
{(zi, H')}0[—4,)- The claim thus follows from Prop. 6(2). O

3.2 Proof of Theorem 2 (Partly Informal)

Convention (on Small Numbers, and on (4, 4)-Sink Words)

In the following reasoning we assume a fixed det-FO grammar G = (N, X, R).
To ease the presentation, we also use informally-sounding words like “small”
or “short”. Nevertheless, we will not further formalize such usages, since the
respective expressions have rigorous meanings: we view a number as small if it is
bounded by an elementary function of size(G) (independently of any initial terms
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To,Up). Le., we (implicitly) claim in each such case that there is an elementary
function f : N — N independent of our concrete grammar G, such that the value
f(size(G)) is an upper bound for our “small number”. When we say that a word,
or a sequence in general, is short, then we mean that its length is small. A set
is small if its cardinality is small. A term is small when its (presentation) size
is small.

E.g., we can easily check that if U is shortly reachable from W, i.e., if there
is a short w such that W -5 U, then there are small finite terms H, F such
that W = Ho, U = Fo (F being shortly reachable from H) where RANGE(0)
contains only subterms of W occurring in small depths in W. This is based on
the fact that performing one transition from a term W results in Eo where FE
is the rhs of a rule in R and RANGE(o) contains only depth-1 subterms of W;
we note that size(E) is bounded by the small number TRANSINC (“Increase by
a Transition”) that is equal to the maximal size of the right-hand sides of the
rules in R.

We can explicitly note that W - U implies size(U) < size(W) + |w] -
TRANSINC; if W is finite then also HEIGHT(U) < HEIGHT(W) 4 |w|- TRANSINC.

A useful exercise is to note that if there is a word w € X* such that
A(xy,. .. 2m) — x;, called an (A,i)-sink word, then a shortest such word
is short. (More details for this claim are in Section 3.3.) We say that any (A, )-
sink word ezposes the ith root-successor in any term A(Vi,...,V,,). If there
is no (A,4)-sink word, then the ith root-successor V; in A(Vi,...,V,,) is non-
exposable, and plays no role (i.e., by any change of V; another equivalent term
arises). In fact, we will assume that all root-successors are exposable (since the
grammar G can be harmlessly adjusted to satisfy this), and

we fix a shortest (A,4)-sink word wya

for all A € N, i € [1, arity(A)]. We also define the following small number:

My =1+ max { |wa|; A€ N, i€ [1,arity(A)] }. (2)

Start of the Proof of Theorem 2

We have fixed a det-FO grammar G = (N, X, R), and we now assume a witness
ug for (Ty,Up) where Ty, Uy are finite terms; hence Ty # Uy in Lg and |ug| =
EQLv(Tp, Up). (The restriction to finite Ty, Uy is here technically convenient, not
really crucial.) If ug = aqas ... ag, then (Ty, Uy),uo generate the sequence

(To, Up) =5 (Th,Uy) 25 ... 25 (Ty, Uy) (3)

where we write (T,U) —= (T',U’) instead of T - T", U -+ U’. We note that
EQLv(T;, U;) = k—i; the sequence (To,Uy), (T1,U1), ..., (Tk, Uk) is thus eqlevel-
decreasing, i.e., it satisfies EQLv(Ty, Uy) > EQLv(T1,Uy) > - -+ > EQLv(Tk, Uy).
Moreover, a;41Git2 ... a is a witness for (T}, U;).

We prove Theorem 2 by deriving a Tower-bounded function (of size(G, To, Up))
that bounds the length k of (3); we use two macro-steps described below.
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First Macro-step: Controlled Balancing. Both paths Ty 20 T, Up —25 Uy,
in (3) can have “sinking” and “non-sinking” segments distributed quite differ-
ently. By sinking we mean “exposing subterms” (corresponding to popping,
i.e. stack-height decreasing, in DPDA), by non-sinking we mean the oppo-
site (the stack-height can only increase). We will now show particular “ba-
lancing steps” that allow us to stepwise modify the pairs (T},U;) in (3) so
that the component terms in the final modified (T7';,U;) are more “balanced”
(i.e., more “close to each other”) while the eq-levels are kept unchanged (i.e.,
EQLV(Tj, Uj) = EQLV(E, Uj)) We will have (To, Uo) = (T(), Uo), and all Tj, Uj
will be finite terms.

A slight control of balancing steps will give rise to a certain subsequence
(Tiy,Uiy), (Tiy,Usy)s -, (T4,,U;,) of the sequence of pairs in the “balanced ver-
sion” of (3), where ig = 0. The subsequence satisfies that each pair (T;,,U;,) is
“close” to a certain finite term W;, called a “(balancing) pivot”; this also entails
that the heights of T';; and U;, are bounded by HEIGHT(W}) + x where x is a
small number.

Moreover, the sequence Wy, Wy, ..., W, of pivots will be “sufficiently repre-
sentative” in the sense that for any r € [0, k] we can bound HEIGHT(T) and
HEIGHT(U,) by HEIGHT(W;) + y where y is a small number and j is the largest
such that i; <. In other words, the heights of terms in the segment (T';;,U;;, ),
(Tij+1anj+l)7 (T,’]._;,.Q,Uij_;,_g), ey (TT,UT), where r = ’ij+1—1 lfj < f and
r =k if j = ¢, are bounded by HEIGHT(W)) + z for a small number z.

Hence it suffices to bound ¢ (the length of the subsequence) by a Tower-
bounded function (of size(G, To, Up)); this will be achieved by the second macro-
step, by using the “pivot-path” Wy —% Wy —2 - - —% W, that will be precisely
defined at the end of this first macro-step.

Balancing Steps
We say that a path V' - is root-performable if A(x1, ..., 2,) — where A =
ROOT(V'). For technical convenience we define a non-sink segment as a root-
performable path V - V' where |w| = My. (Thus V' -2 V' might expose a
root-successor in V', but only by the last step if at all; so V. — V'’ surely “misses”
the possibility to expose some root-successor in V' as quickly as possible.)

Let T —5 T’ be a non-sink segment for a part

(T,U) = (T",U")

of (3); hence (T,U) = (Tr—my,Ur—niy), (T7,U") = (T3,U,), and w =
Ar— My+1 Qr—Mo+2 - - - G, for some r € [Moy,k]. Then T = A(V4,...,Vn),
Alzy,.. . 2m) - G, and T g V; for each j € [1,m]. We recall that
lwia, gl < lw] = Mo.

Since T ~pg, U, we must have U g V} for some V/, and EQLv(V}, V)) >
EQLv(T",U’) (by Prop. 1(2,3)).

We thus have T" = Go where o(z;) = V; for j € [1,m], and we can

replace the pair (T7,U’) = (Go,U’) with (T",U") = (Go',U’)
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where o'(x;) = V}. After replacing (7", U’) with (T",U’), the whole respective
suffix of (3) changes: we generate it by (T”,U’), v’ where v’ = ay41 ar42 -+ ax.
This is safe in the sense that the witness sets (and the eq-levels) for (T",U") and
(T",U’) are the same (by Prop. 6(1)).

In our concrete notation, we have transformed (3) to

(To, Up) 25 -+ - (Tr_1,Up_1) 25 (11, Up) Y8 (Try1, Upir) - .. 255 (T, Up)

where T, -2 ﬁ might be not a valid transition but the eq-levels have not
changed, i.e., EQLV(f,«H, Urti) = EQLV(Ty 44, Upgy) for i € [0, k—r]. (The nota-
tion fj should not be mixed with T'; discussed previously; any T} can undergo
several changes, though at most one “balancing”, before becoming the “final”
T;.) R

Since w is short (Jw| = My), the pair (T”,U’) (i.e. (T;-,U,)) is “balanced”
in the sense that both terms are “close” to one term, namely to U: we have
(T",U") = (Go’',U’) where G is a small finite term (since shortly reachable from
A(x1,...,2m)), and RANGE(c’) contains only terms that are shortly reachable
from U, and U’ is itself shortly reachable from U. We capture the discussed
closeness by the notation

U ): (1”//7 (]/)7

and we also say that U is the pivot of our balancing step, while (T, U’) is called
the balancing result.

Analogously to the described left-balancing step, where we replace (Go,U’)
with (Go’,U’), we define a right-balancing step, where (U — U’ is a non-sink
segment and) we replace (T”,Go) with (T”,Go’); here T is the pivot and we
have T = (T, Go’).

An important feature of our (ternary) predicate = is that

W = (T,U) implies that W = Ho, T = Eo, U = Fo

for some small finite terms H, E, F', where RANGE(c) contains only subterms of
W occurring in small depths in W; moreover, at least one of E, F' is shortly
reachable from H (and thus at least one of T, U is shortly reachable from W).
(A precise definition of W |= (T, U) is given in Section 3.3.)

Quadruple-Sequences, and Pivot Paths

We use the described balancing steps as follows. We first artificially create
a “pivot” Wy = B(Tp,Up) for a (possibly added) nonterminal B so that we
have Wy [= (To, Up). Our aim is to transform (3), by stepwise balancing, into a
certain sequence of a different kind, namely to

(Wo,To, Ug), uo) ~ (Wr, T, Uy )y ur) ~» -~ (We, Ty, Up),we) - (4)

where also W; |= (T},U]) for i € [1,/] and u; is a proper suffix of u;_; and a

witness for (I},U/). (The sequence (Ty,Uy), (11,U7), ..., (T;,U;) will be the
subsequence (Ts,,Usy), (Tiy,Usy), ..., (T4,,U;,) discussed earlier.)
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We start with the one-element sequence ((Wp,Ty,Up),up). Then we tra-
verse (3) from left to right, and we perform a first possible balancing step (if
there is any non-sink segment in Tj 9% or Uy %) We prolong our sequence
to (Wo, To, Up), ug) ~~ (W1, Ty,U]), u1) where Wi is the pivot and (77, Uy) the
balancing result of this step; uy is the suffix of ug that is a witness for (77, U7).

Now we continue, by traversing the sequence generated by (77, Uj), u1, or by
(T},U}), u; in general; this generated sequence corresponds to the current version
of the respective suffix of the stepwise modified (3). We look for the first possible
balancing step in this sequence, with one proviso: if we have W; = (Go’,U;)
after a left-balancing step, then the next balancing step can be a right-balancing
(thus changing the pivot-side) only if the “rest-head” G has been in the meantime
erased, i.e., some o’(x;) (that is shortly reachable from W;) has been exposed.
Hence shortly after a left-balancing step corresponding to W |= (Go’, Uj) either
another left-balancing step is performed or G is erased and balancing at both
sides is again allowed.

After any right-balancing step, an analogous proviso applies. This guarantees
that Wj4, is reachable from Wj, by a certain path W ke W41 in which at
most a small number of non-sink segments occurs: either the path W s Wit
is short, or it has a short prefix after which no non-sink segment occurs. (More
details are in Section 3.3.)

We finish creating the sequence (4) when the paths T 2 U; 4 do not
allow further balancing; it is clear that these paths then must be either short
or sinking all the time (in which case the heights of terms in the paths T} L
Uj % are successively decreasing).

To summarize, from the sequence (3), whose length k& we want to bound, we
have come to the sequence (4) that also has the associated pivot-path

Wo -5 Wy =2 ... 25 W, (5)

where the number of non-sink segments in each subpath W;_ BN W; is small.

Second Step: Deriving a Tower-bound from a Pivot Path. As we made
clear, for each term W there is only a small number of pairs (7, U) such that
W = (T,U). Since (To, Uy), (T1,U7), (T5,U3), ..., (T}, Up) in (4) is an eqlevel-
decreasing sequence, we have no repeat of a pair here, and thus the number of
occurrences of each concrete W; in the sequence Wy, W1, ..., Wy is small.

We can intuitively note that if the sequence (3) is “very long” (w.r.t.
size(G,To,Up)) then the maximal HEIGHT(W;) is “much larger” than
HEIGHT(W)). In this case the pivot path (5) must have “long increasing seg-
ments”. In a long increasing segment the pivots W; are “frequent” since each

(sub)path W;_q BN W; has at most a small number of non-sink segments.

We formalize this intuition by help of “stair sequences” that correspond to the
standard “stair-growing” stack-contents in a path from one PDA-configuration
to a larger configuration.
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Stair Sequences. Let us present (5) as
Wo 5 Vi S5 W, 2V, 5 Wy 251, 25 W, (6)

where Vj is the term in the path W;_; LR W; for which the respective w; is

w?!
the shortest possible such that the path V; — W; does not expose any root-
successor in V; (and is thus also root-performable). There is always such Vj; in
some cases we might have V; = W;_; (v} =¢) or V; = W; (v} = ¢).

w'
Hence V; = A(z1,...,2m)0 and W; = Go where A(xq,...,2,) — G and
RANGE(0) contains root-successors in V}; since the number of non-sink segments

in W;_y LR W; is small, G is a small finite term. We say that a subsequence

1 <idg < v <y (7)
of the sequence 1,2, ..., ¢ is a stair sequence if for each j € [1,r—1] the subpath
i; w£j+1 wi _qwi
Vij—— -~ — —V,,

of (6) does not expose any root-successor in V;; (and is thus root-performable).
Moreover, for convenience we require that the sequence is maximal in the sense
that we would violate the above condition by inserting any ¢ where i; < ¢ < ¢j41
for some j € [1,r—1]. This requirement guarantees the small-stair property:

for any j € [1,r—1] we have V;, = A(x1,...,2,)0 and V;,,, = Fo where
wi w) Yo wl

ATy, .oy m) — DAL T B oand F s a small finite term (though

not all terms in the path A(xy,...,zmy) — -+ — F are claimed to be small).

It Suffices to Get a Tower-bound on the Lengths of Stair Sequences
Later we show that the lengths of stair sequences are bounded by a Tower-
bounded function f of size(G), independently of Ty, Up; now we assume such f.
For any pivot W; (in the sequence (5)) we then obviously have

HErGHT(W;) < HEIGHT(W}) + stair - (1 + f(size(G)))

where stair is an appropriate small number.

Since the number of (finite) terms with the height at most H € N is bounded
by y T (m 1 H) for some small numbers m,y (recall that 1 is the exponential
operator), we easily deduce that the number of elements of the sequence (4) is
bounded by a Tower-bounded function (of size(G, To, Up)).

For j € [0,/] we consider ((Wj,T},U),u;) in (4), where we put (g, Up) =
(To, Uop). Let uj = wujt1; we put w = ug when j = £. It is easy to check that the
heights of terms on the paths 7 5 and Uj — are bounded by HEIGHT(W;)+2
where x is a small number. Since the sequence generated by (77, U}), w is eqlevel-
decreasing, and thus has no repeat, we get that |w| is bounded by the value
(y 1 (m 1 (HEIGHT (W) + )))? for some small m, z, y.

We thus routinely derive a Tower-bounded function (of size(G,To, Up)) that
bounds the length of ug and thus EQLv(Ty,Uy). Hence after we show the
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promised Tower-bounded function f (of size(G)) that bounds the lengths of
stair sequences, the proof of Theorem 2 will be finished.

A Tower-bound on the Lengths of Stair Sequences

Let us fix a stair sequence i1 < i3 < --- < 4, referring to the notation around (7).
We now show that r < f(size(G)) for a Tower-bounded function f (independent
of G).

By our definition, which also implies the small-stair property, we can easily

observe that the sequence V;,, Vi,, Vi,, ..., Vi, can be presented as

Aro’, Asolo’, Asobolio’, ..., Arol._qo)_o- 010"
where we write shortly A; instead of A;(z1,...,2m,,) and where
Aj(1, e Ty) — Ajpa(a, .. s Tm,,,)0; for the respective w from (6), i.e.
w = wgg e ngﬂ. Hence the supports of o’ and o are subsets of {z1,z2,...,Zm}
where m is the maximal arity of nonterminals, and RANGE(c;) contains the root-
successors in the small finite term F such that A;(zq,...,%m,) — F. Hence ol
are small, i.e., they are small sets of small pairs of the form (z;, E).

By the definition of (6), we can present W;,, W;,, Wi, ..., W, _ as
Glala GQO—iala GSO—éallo-/a B GTU:”—IJ;"—Q T 0/10/ (8)

where G; are small finite terms. Recalling the discussion around the introduction
of W |= (T,U) (namely the form W = Ho, T = Eo, U = Fo), it is useful to
rewrite (8) as

Hiyo, Hapio, H3pap10, ..., Hrpr_1pr—2-- - p10

where H; are also small finite terms, but maybe with larger heights than Gj,
guaranteeing that the sequence (77 ,Uj ), (T7,,U;,), ..., (T} ,U] ) (extracted
from (4)) can be presented as

(Ero, Fr0),(Expro, Fapro),...,(Erpr—1pr—2- - p10, Frpr_1pr—2---p1o) (9)

where all Ej;, F; are small. This forces us to increase the supports of o and p;
comparing to o’ and o} (since RANGE(o) contains deeper subterms of V;,) but
it is obvious that we can take the supports of ¢ and of all p; as subsets of

SUPO = {x1, T2y ,.Z‘no} (10)

where ng is small. Moreover, all terms in RANGE(p;) are small (but this is not
claimed for o). (We use the symbol “p” instead of a variant of “o” to stress the
small size of all p;.) Given o, (9) is fully determined by the sequence of triples

(Ev, F1,po) (B2, Fa,p1) -+ (Er, Fry pr—1) (11)

which can be viewed as a word in a small alphabet AL (consisting of the respective
triples); we use pg for uniformity, defining it as the empty-support substitution.

We now note a useful combinatorial fact. Let us define a function h : N — N
inductively as follows:
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h(0) = 1, and h(j+1) = h(j) - (1 + ¢")) where ¢ = CARD(AL).

Viewing ¢ as a constant, h is obviously a Tower-bounded function. The pigeon-
hole principle implies that in any h(1)-long segment of (11), i.e. in any segment
with length h(1) = 1+CARD(AL), there are two different occurrences of one
element of AL. Moreover, in any h(j+1)-long segment there are two different,
non-overlapping, occurrences of one h(j)-long segment.

We aim to show that r» < h(ng+1), where r is the length of our stair sequence,
as well as of the sequences (9) and (11), and ng = CARD(SUPy) is introduced
n (10). Since ng and ¢ = CARD(AL) are small numbers (bounded by elementary
functions of size(G)), the value h(nog+1) is obviously bounded by g(size(G)) for
a Tower-bounded function g. Hence after we show r < h(ng+1) (in the following
last part of this section), the proof of Theorem 2 will be finished.

Length r of Any Stair Sequence Is Less Than h(ng+1)
We first introduce certain “recurrent-pattern” sequences, now using general reg-
ular terms and substitutions as ingredients, with no size-restrictions.

We define (n, £)-presentations where n, ¢ € N (not to be mixed with £ in (5)).
Each (n, £)-presentation presents a sequence with 2¢ elements where an element
is a pair of (regular) terms. A sequence that can be presented by an (n,{)-
presentation is called an (n, £)-sequence. An (n, f)-presentation consists of

— a set SUP C VAR where CARD(SUP) < n,
— a pair (E, F) of (regular) terms, and
— substitutions 01,09, ...,0s and ¢ whose supports are subsets of SUP.

If ¢ = 0, then the presented (n, 0)-sequence is the one-element sequence (Eo, Fo).
If £ > 0, then the presented sequence (with 2¢ elements) arises by concatenating
two (n, £—1)-sequences: the first half (with 2~! elements) is presented by SuP,
(E,F), 01,09,...,00—1, 0, and the second half by Sup, (E, F), 01,02...,00_1,
and o’ = oy40.

An example of an (n, 2)-sequence is

(Eo,Fo),(Eci0,Fo10),(Eoyo, Foso), (Eoy1090, Fo1020) (12)

if the supports of 0,01,02 are subsets of SUP with CARD(SUP) < n. If also
SUuPP(o3) C Sup, and we replace o in (12) with o30, we get

(Eoso, Foso),(Eo1030, Fo1030), (Eoqoso, Foso30), (Eoy02030, Fo102030).

Put together, the above 8 pairs constitute an (n, 3)-sequence, presented by SuP,
(E,F), 01, 09, 03, and 0.

We now prove the next claim, which also implies that any h(no+1)-long seg-
ment of the (eglevel-decreasing) sequence (9) contains an (ng, no+1)-subsequence
(i.e. a subsequence that is an (ng, ng+1)-sequence).

Claim. Any h({)-long segment of (9) contains an (no, £)-subsequence.

Proof. We give an inductive definition (based on ¢) of so called good (ng,?)-
presentations. It will be guaranteed that each h(¢)-long segment of (9) has an
(no, £)-subsequence with a good (ng, £)-presentation.
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Any h(0)-long segment is an element (F;p;—1pi—2...p10, Fipi—1pi—2...p10);
it trivially constitutes an (ng,0)-sequence, and we define its good (ng,0)-
presentation as SUP, (E, F), o where (E, F) = (E;, F;) and 0 = p;_1pi—2 . .. p10.

For a h(¢+1)-long segment S of (9) we define a respective good (ng, £+1)-
presentation as follows. We take two h(¢)-long non-overlapping subsegments Sy,
Sy of S such that the respective “images” of S; and Sp in (11) are the same.
(This is possible by the definition of h.)

Let Sup, (E,F), 01, 02, ..., 04, 0 be a good (ng, £)-presentation of a subse-

quence of 1, starting at (the relative) position p7¢ inside S; and at (the abso-

lute) position p¢®s in (9); let ps®s denote the position in (9) that corresponds to

the relative position pj in Sy. Our (inductive) construction of good presenta-
tions guarantees that (E, F') = (E,avs, Fpavs ) and 0 = ppavs _yppavs 5+ - p10. An-
other (inductive) property of good presentations is that Sup, (E, F), 01, 09, ...,
o¢, O¢+10, where where we put o1 = Ppavs _1Ppabs _o " "+ Ppabe s is a good (ng, £)-
presentation of a subsequence of Sz (since the images of S; and Sz in (11) are the
same). (Our definition in the case ¢ = 0 indeed guarantees these two properties.)

Then Sup, (E,F), o1, 02, ..., 0¢t1, 0 is defined to be a good (ng,f+1)-
presentation, presenting a subsequence of the h(¢+1)-long segment S. The above
used properties of good (ng,f)-presentations are obviously guaranteed for the

defined good (ng, £+1)-presentation as well. O

We observe that all elements of a (0, f)-sequence are the same. There is thus
no eqlevel-decreasing (0, £)-sequence for ¢ > 0. The next claim shows that an
eqlevel-decreasing (n, £)-sequence with ¢ > 0 gives rise to an eqlevel-decreasing
(n—1,¢—1)-sequence (arising from the original even-index elements by subterm
replacing that does not change the respective eqg-levels). This implies that

there is no eqlevel-decreasing (n, £)-sequence where n < ¢;

in particular, there is no eqlevel-decreasing (ng, no+1)-sequence. Using the pre-
vious claim, we deduce that there is no h(ng+1)-long segment in (9); this implies
r < h(no+1), and the proof of Theorem 2 is finished.

Claim. Let e; denote the eg-level of the jth element of an (n,()-sequence, and
assume £ >0 and e; > eg > -+ > eqe. Then n > 0 and there is an (n—1,(—1)-
sequence in which the eg-level of its jth element is eq;.

Proof. Let Seq be an (n, £)-sequence, presented by Sup, (E,F), 01,09,...,0y,
and o, where £ > 0 and e; > ey > --- > eqe are the eq-levels of the elements of
Seq in the respective order. We must obviously have n > 0.

Since EQLV(Eo, Fo) = e; > ex = EQLV(Eoy0,Foi0), we can fix some z; €
Sup and H # x;, where E - z; and F - H, or vice versa, for a witness w
for (E, F'). (This follows from Prop. 5(2).) We put

H' = H{(x;, H)}{(2i, H)} -+, and 0} = o {(2;, H')} (for all j € [1,7]).

We note that 0jo = o0o[_,, for any o (where o[_,,) arises from o by putting
O[—z;)(x:) = ;). We say that the above (n, £)-presentation of Seq (accompanied)

with x;, H gives rise to the (n—1,f—1)-sequence Seq’ presented by
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SuP \ {xz}’ (Eall’ ng)a (0/2)[—3671]’ (Jé)[—wi]’ ) (02)[—@],0[—%]' (13)

We now show that Seq’ satisfies the desired condition, i.e., the eq-levels of its
elements are es > e4 > eg > -+ > eqe. We prove this by induction on £.
By Cor. 7 we deduce that EQLV ( Ecy0(_,,], Fol0[_s,] ) = ez, since

EQLv (Eoy0, Fo10) = EQLV ( Eov{(zi, H') }o_4,), For{(xi, H") }o[—z,] )

If £ =1, then we are done.

If ¢ > 1, then the (n,f—1)-presentation Sup, (F, F), 01,02,...,00—1, 0 (pre-
senting the first half of Seq) with x;, H gives rise to the (n—1, —2)-sequence Seq
that is the first half of Seq’; hence Seq] is presented by Sup \ {z;}, (Eo}, Fo}),
(09) =25 (03)[=a4]> - > (Tp_1)[=2:]> O[—=,]- By the induction hypothesis, the eq-
levels in Seq) are ea, €4, ..., eqe 1.

The (n,{—1)-presentation Sup, (E,F), 01,02,...,04—1, 040 (presenting the
second half of Seq) with z;, H gives rise to the (n—1,/—2)-sequence Seq, pre-
sented by SUP\{xi}v (EO’i, Fall)a (Jé)[—xi]a (Jé)[—xi]a R (0271)[—%]3 (Jfo—)[—xi]-
By the induction hypothesis, the eq-levels in Seq; are €9r—149,C0t—14g,...,CoL.

By another (repeated) use of Cor. 7, the eq-levels in Seqs do not change
when we replace (040)[—g,) With (o¢{(zi, H')}0(—2.])[=2:] = (0})[=2:]O[-=,] iD the
presentation. By this replacing we get the sequence Seqs that is the second half
of Seq’, in fact. The proof is thus finished. a

3.3 Formalizing Informal Parts of the Proof of Theorem 2

In this section we just add more formal details to some parts of the proof in
Section 3.2 where the reasoning might look too informal. We assume a given
det-FO grammar G = (N, X, R).

Sink Words, Normal-Form Grammars, Small Number M,

For every A € N and i € [1,m] where m = arity(A) we say that w € X* is an
(A, i)-sink word if A(x1,...,2m) — x;. We can compute a shortest (A,4)-sink
word wa,; for each (A,i) for which such a word exists. The lengths of some
wa, can be exponential in size(G), but we can compute these lengths (and
concise presentations of w4 ;) by a polynomial algorithm based on dynamic
programming. The essential fact is that the length of a shortest (A4, i)-sink word
is 14+|v| where v is a shortest word such that E — x; for the right-hand side
E of arule A(x1,...,2m) — Ein R. If E = x; then v = ¢; otherwise v can
be composed from the (A, i)-sink words corresponding to a respective branch in
the syntactic tree of E.

We assume that the grammar G is in the normal form, i.e., there is w4 ;) for
each (A,). This is harmless: if there is no such word for a concrete pair A, 1,
then we can decrease the arity of A and modify the rules in R accordingly, while
the LTS Lg remains unchanged, in fact.

It is now also quite clear that M defined by (2) is indeed a small number.
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Closeness Predicate = Defined via g, Egr, EL

We recall the small number TRANSINC (the maximal size of the rhs of a rule in R)
that also bounds the term-height increase caused by performing one transition,
and we define another small number:

M, = TRANSINC - (Mp)? + 2 - M.

The points 1-4 below define (a technically convenient form of) the predicate
W = (T,U), divided into three (not necessarily disjoint) cases =p (“both sides
reachable”), Eg (“right-hand side reachable”), and =y, (“left-hand side reach-
able”). We say that a term T is k-reachable from W if W - T where |w| < k.

1) W= (T,U) if each of T, U is M;-reachable from W.

2) W =g (T,U) it U is My-reachable from W and T' = Go where HEIGHT(G) <
My - TRANSINC and o(z;) is Mo-reachable from W for each z; in G.

3) W= (T,U) if T is Mp-reachable from W and U = Go where HEIGHT(G) <
My - TRANSINC and o(z;) is My-reachable from W for each z; in G.

4) W (TU)if W =g (T,U) or W k=1, (T,U) or W =g (T, U).

We can easily verify a claim from Section 3.2: if W = (T,U), then W = Ho,
T = Eo, U = Fo for some small finite terms H, E, F', where RANGE(0) contains
only subterms of W occurring in small depths in W.

Relation ~~ on the Set of Quadruples (W, T,U),u)
Now we define the relation ~» (used in (4)), by the following (deduction) rules

divided into the cases a), b), ¢). In fact, formally we introduce the relations ey

POST BAL POST BAL
(“balance”) and ~~ (“postpone”) where ~»=~"U ~> - ~. We assume that

W E (T,U) and u is a witness for (T,U),

and we describe (W', T',U"),u/) such that (W,T,U),u) “% (W', T",U"), ')
POST

or (W, T,U),u) ~~ (W', T',U"),u'); at the same time we verify that W' |
(T",U’) and that v’ is a proper suffix of u and a witness for (T”,U’).

a) WEg (T,U).
Suppose that u has the shortest prefix w such that one of the paths T —,
U % finishes by a non-sink segment.
i) Suppose w = ujug where T' AT 25 Ty and Ty =2 Th is a non-sink
segment; we thus have |uz| = My, Th = A(Vi,..., V), and Tz = Go
where A(z1,...,2m) — G and o(x;) = V; (for i € [1,m]).

Let U 2% U; 22 Uy and v = uqusu’. Then we deduce
BAL

(W, T,U),u) ~ ((Ur,Go’, Uz), )
putting o’ (x;) = V/ where Uy N V.
We can verify that Uy =g (Go’,Usz). Moreover, v’ is a witness for
(Go',Us) (by using Prop. 6(1)).
i) If w = ujug where U LU Uy and Uy 22 U, is a non-sink
segment, then we proceed symmetrically and deduce
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((VVaTv U)’ ) = ((T17T27G0) )
Here T} =1 (T3, Go’), and v’ is a witness for (15, Go’).
b) W tep (T,U) and W =g (T,U).
Hence W =g (Go,U) where Go is a presentation of T' in the form of the
definition of =g (in the point 2); thus HEIGHT(G) < My - TRANSINC, and
G is not a variable since W (&g (T, U). Suppose now that « has the shortest

prefix w such that one of the following two conditions holds:
i) G - 2; (hence Gcr - cr(:rz) where o(z;) 1s My-reachable from W), o

i) w = ujug where G 2 Gy 22 G and G =2 G is a non-sink segment.
We note that if there is no such w, then w is short. Here we assume u = wu/.

In the case i), G % x;, we take U’ such that U -+ U’ and we deduce
(W, G, U),u) 5" (W, o (), U"), o).

We note that W =g (o(xz;),U’): since |w| < (1 + My - TRANSINC) - My and
U is My-reachable from W, we have that U’ is Mj-reachable from W; and
o(x;) is even My-reachable from W.

In the case ii) we proceed as in a), i.e., for U % U; —2 U, we deduce

(W, Go,U),u) %5 ((Ur, G, Us), )

accordingly (where Gio = A’ (x4, .. ., xm Do 220 '¢" = G50 is the non-sink

segment). Here U; =g (G'0’,Us) and v’ is a witness for (G'o’, Us).
c) Wp (T,U) and W =1, (T, Go).
This case is analogous to b). We can here deduce
(W.T,Go),u) =" (W, T, 0 (1)), )
where W =g (T',0(x;)) and v’ is a witness for (17, 0(x;)), or
(W.T,Go),u) = (11, T, G'o’), ')
where Ty =1, (T2, G'0’) and o' is a witness for (T, G'o”).

We recall that ~ =5 U 23" . BvA»L and we note that <3 - 23" is empty.

We can easily verify the next clalms.

L IE (W, T,U),u) %> (W', T',U"),u) by a), then W’ is My-reachable from a
subterm of a term (7" or U) that is M;j-reachable from W.
2. If (W, T,U),u) 3" (W, T',U"),u') then W’ = W.
3. I (W, T,U),u) 5 (W', T',U"),u') by b) or ¢), then W’ is M;j-reachable
from W.
Hence (W, T,U),u) ~ (W', T",U’),u’) implies that W 5 W/ 2 W} 2
W’ for some vy, v2,v3 and Wy, Wj where |v1| < My, |vs| < My, and W] — U2 — W3
sinks from W] to its subterm Wj: we take vo as the sequence of the appropriate
(A, i)-sink words w4, (along the respective branch in the syntactic tree of W7).
We fix such a path W % W', where w = vjvqvs, for each (W, T,U),u) ~
(W', T'",U"), ). Tt is obvious that W -+ W’ contains at most a small number
of non-sink segments.
We have thus formalized deriving a pivot-path (5) from the sequence (4).
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4 Bisimilarity of FO Grammars Is Ackermann-Hard

Here we prove the next theorem, referring to the notions discussed in Section 2.4.
Theorem 8. Bisimilarity of first-order grammars is Ackermann-hard.

We do not give a direct reduction from HP-ACK, since using Lemma 9 below
is much more convenient. We define the necessary notions first.

Reset Counter Machines (RCMs). An RCM is a tuple M = (d, @, §) where
d is the dimension, yielding d nonnegative counters ci,ca,...,cq, @ is a finite
set of (control) states, and § C Q x OP X @ is a finite set of instructions, where
the set OP of operations contains INC(¢;) (increment ¢; ), DEC(¢;) (decrement ¢;),
and RESET(c;) (set ¢; to 0), fori = 1,2,...,d. We view Q x N? as the set CONF
of configurations of M. The transition relation —C CONF x CONF is induced
by ¢ in the obvious way: If (p,op,q) € § then we have (p, (ni,...,n4)) —
(g, (nh,...,n})) in the following cases:

— op = INC(¢;), nj = n;i+1, and n);, = n; for all j # 4; or
— op = DEC(¢;), n; > 0, nj =n;—1, and n; = n; for all j # i; or
— op = RESET(¢;), nj = 0, and n); = n; for all j #i.

By —™ we denote the reflexive and transitive closure of —.

Control-State Reachability Problem for RCMs

We define the RCM control-state reachability problem in the following form:
given an RCM M = (d, @, ) and (control) states pi, pr, we ask if py is reach-
able from (py, (0,0,...,0)), i.e., if there are my,ma,...,mg € N such that
(Pv; (0,0,...,0)) —" (pr, (M1, ma,...,m4)).

Lemma 9. [20] RCM control-state reachability problem is Ackermann-hard.

We mentioned this problem, and its ACK-completeness, in Section 1. (The
crux of the hardness proof is an efficient construction that, given n € N, provides
RCMs M1, M5 that “weakly compute” the function f, and its inverse, for f,
used in the definition of the Ackermann function. By “weakly” we mean that
some computations can also return smaller values than expected.)

RCM Control-State Reachability Reduces to First-Order Bisimilarity
We finish by proving the next lemma; this establishes Theorem 8, by using
Lemma 9. The given reduction is obviously polynomial. (In fact, it can be checked
to be a logspace reduction, but this is a minor point in the view of the fact that
even a primitive-recursive reduction would suffice here.)

Lemma 10. The RCM control-state reachability problem is polynomially re-
ducible to the complement of the bisimilarity problem for first-order grammars.

Proof. Let us consider an instance M = (d, @, ), pw, pr of the RCM control-
state reachability problem, and imagine the following game between Attacker
(he) and Defender (she). This is the first version of a game that will be afterwards
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implemented as a standard bisimulation game. Attacker aims to show that py is
reachable from (py, (0,0, ...,0)), while Defender opposes this.

The game uses 2d game-counters, which are never decremented; each counter
¢; of M yields two game-counters, namely ¢! and ¢, for counting the numbers
of Increments and Decrements of ¢;, respectively, since the last reset or since
the beginning if there has been no reset of ¢; so far. The initial position is
(piv, ((0,0),...,(0,0))), with all 2d game-counters (organized in pairs) having
the value 0.

A game round from position (p, ((n1,n}), ..., (n4,n}))) proceeds as described
below. It will become clear that it suffices to consider only the cases n; > n}; the
position then corresponds to the M’s configuration (p, (n1—nj,...,nqg—nl)).

If p = py, then Attacker wins; if p # p and there is no instruction (p, op, q) € 4,
then Defender wins. Otherwise Attacker chooses (p,op,q) € §, and the continu-
ation depends on op as follows:

1. If op = INC(¢; ), then the next-round position arises (from the previous one)
by replacing p with ¢ and by performing ¢! := ¢/+1 (the counter of incre-
ments of ¢; is incremented, i.e., n; is replaced with n;+1).

2. If op = RESET(¢;), then the next-round position arises by replacing p with ¢
and by performing ¢! := 0 and c¢P := 0 (hence both n; and n/ are replaced
with 0).

3. If op = DEC(¢;), then Defender chooses one of the following options:

(a) the next-round position arises by replacing p with ¢ and by performing

cP = cP+1 (the counter of decrements of ¢; is incremented, i.e., n} is

?
replaced with n;+1), or

(b) (Defender claims that this decrement is illegal since n; = n} and) the
next position becomes just (n;,n}). In this case a (deterministic) check
if n; = n} is performed, by successive synchronized decrements at both
sides. If indeed n; = n! (the counter-bottoms are reached at the same

moment), then Defender wins; otherwise (when n; # n)) Attacker wins.

If (p, (0,0,...,0)) —* (ps, (M1, Mma,...,mg)) for some my,ma,...,mq, ie.,
if the answer to RCM control-state reachability is YES, then Attacker has a
winning strategy: he just follows the corresponding sequence of instructions. He
thus also always chooses DEC(¢;) legally, i.e. only in the cases where n; > n}, and
Defender loses if she ever chooses 3(b). If the answer is NO (pg is not reachable),
and Attacker follows a legal sequence of instructions, then he either loses in a
“dead” state or the play is infinite; if Attacker chooses an illegal decrement, then
in the first such situation we obviously have n; = n} for the respective counter
¢i, and Defender can force her win via 3(b).

Since the game-counters can be only incremented or reset, it is a routine to
implement the above game as a bisimulation game in the grammar-framework
(using a standard method of “Defender’s forcing” for implementing the choice
in 3). We now describe the corresponding grammar G = (N, X, R).

The set A of nonterminals will include a unary nonterminal I, a nullary
nonterminal 1, and the nonterminals with arity 2d that are induced by control
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states of M as follows: each p € Q induces Ay, Ay 4), Bp, B(p,i,1), B(p,i,2), Where
i=1,2,....d

We intend that a game-position (p, ((n1,n}), ..., (nqe,n}))) corresponds to the
pair of terms

(Ap(fnu,fn’u,...,I”u,]”ﬂ), Bp(I”u,I"’u,...,I”u,]”iu)) (14)

where I* | is a shorthand for I(I(...I(L1)...)) with I occurring k times; we put
191 = 1. The RCM control-state reachability instance M, py, pr will be reduced
to the (non)bisimilarity-problem instance G, Ay (L,..., 1), Bp (L,...,L).

We put X =6 W {a,b}, i.e., the actions of G correspond to the instructions
(or instruction names) of M, and we also use auxiliary (fresh) actions a, b.

The set of rules R contains a sole rule for I, namely I(z;) —— z;, and no
rule for L; hence I" L ~ I™ 1 iff n = n’. Bach instruction INS = (p,op,q) €6
induces the rules in R as follows:

1. If op = INC(¢;), then the induced rules are

Ins
Ap(@1,. .. 22q) —> Ag(@1, ... 2o3-1), I(w2i-1), 24, . .., T2q), and
INs
Bp(.’bl, e ,.’Kgd) £> Bq(l’l, e ,xg(,»_l), I(l’gz;l),.’bgi, e >$2d)~
2. If op = RESET(¢; ), then the induced rules are
INs
Ap(wla e axQd) £> Aq(l'l, e axZ(i—l)aJ—a J—,x2i+1, e a$2d),
Ins
Bp(.’L‘l, . ,.’I,‘Qd) ﬁ} Bq(l‘h - ,.’I,‘Q(Z;l), L, L,.’L‘Qi_;,_l, . ,.’L‘Qd).
3. If op = DEC(¢;), then the induced rules are below; here we use the shorthand
A % B when meaning A(zq, ..., T2q) LN B(x1,...,%24):
INs INs INs, INs,
Ay — Ay, A — Buin, A — B2, By — B,
INS
By — Bq,i,2);
A(q,i) (xlv s 7x2d) L> Aq(.’I}l, sy X241, I(£2i)7x2i+la s ade)a
Bg,iny (w1, .., T24) % By(@1, .., @211, L (¥2:), 2041, - - -, T2d),
Bgiz) (@1, ... 2q) — Ag(@1, ..., 22im1, I(22), T2i41, - - -, T24),
b b
Agiy(®1,.. . w20)  —  x2i-1, Bgin(wi,...,2a) — T2,
b
Bg,i,2) (w1, ..., T2d) — T2i.
Moreover, R contains A, (z1,...,z2q) — L (but not By, (1,...,x2q) — L).

Now we recall the standard (turn-based) bisimulation game, starting with
the pair (A, (L,...,1),Bp(L,...,1)). In the round starting with (7%, 7T%),
Attacker chooses a transition T N ij and then Defender chooses T5_; LN
T5_; (for the same a € X); the next round starts with the pair (77, 7). If a player
gets stuck, then (s)he loses; an infinite play is a win of Defender. It is obvious that
Defender has a winning strategy in this game iff A, (L,..., L) ~ By (L,...,1).

We now easily check that this bisimulation game indeed implements the above
described game; a game-position (p, ((n1,n7),...,(nq4,n}))) is implemented as
the pair (14). The points 1 and 2 directly correspond to the previous points 1
and 2. If Attacker chooses an instruction INS = (p, DEC(¢;),q), then he must
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use the respective rule A, I A(q,i) in 3, since otherwise Defender installs

syntactic equality, i.e. a pair (T,T). It is now Defender who chooses B, Ins

B(q,i,1) (corresponding to the previous 3(a)) or B, ELLY Biq,i,2) (corresponding
to 3(b)). Attacker then must choose action a in the first case, and action b in
the second case; otherwise we get syntactic equality. The first case thus results
in the pair (A4(...), By(...)) corresponding to the next game-position (where
¢P has been incremented), and the second case results in the pair (I™ L, I 1);
we have already observed that I™ | ~ [ ni ] iff g = ny.

Finally we observe that in any pair (A, (...), Bp.(...)) Attacker wins imme-
diately (since the transition A, (...) == L can not be matched).

We have thus established that py is reachable from (py, (0, . ..,0)) if, and only
if, Ay (L,..., L)% By (L,...,1). 0
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