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Abstract. Websites today routinely combine JavaScript from multi-
ple sources, both trusted and untrusted. Hence, JavaScript security is
of paramount importance. A specific interesting problem is information
flow control (IFC) for JavaScript. In this paper, we develop, formalize
and implement a dynamic IFC mechanism for the JavaScript engine of a
production Web browser (specifically, Safari’s WebKit engine). Our IFC
mechanism works at the level of JavaScript bytecode and hence lever-
ages years of industrial effort on optimizing both the source to bytecode
compiler and the bytecode interpreter. We track both explicit and im-
plicit flows and observe only moderate overhead. Working with bytecode
results in new challenges including the extensive use of unstructured
control flow in bytecode (which complicates lowering of program context
taints), unstructured exceptions (which complicate the matter further)
and the need to make IFC analysis permissive. We explain how we ad-
dress these challenges, formally model the JavaScript bytecode semantics
and our instrumentation, prove the standard property of termination-
insensitive non-interference, and present experimental results on an op-
timized prototype.

Keywords: Dynamic information flow control, JavaScript bytecode,
taint tracking, control flow graphs, immediate post-dominator analysis.

1 Introduction

JavaScript (JS) is an indispensable part of the modern Web. More than 95% of
all websites use JS for browser-side computation in Web applications [1]. Ag-
gregator websites (e.g., news portals) integrate content from various mutually
untrusted sources. Online mailboxes display context-sensitive advertisements.
All these components are glued together with JS. The dynamic nature of JS
permits easy inclusion of external libraries and third-party code, and encourages
a variety of code injection attacks, which may lead to integrity violations. Con-
fidentiality violations like information stealing are possible wherever third-party
code is loaded directly into another web page [2]. Loading third-party code into
separate iframes protects the main frame by the same-origin policy, but hinders
interaction that mashup pages crucially rely on and does not guarantee absence
of attacks [3]. Information flow control (IFC) is an elegant solution for such
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problems. It ensures security even in the presence of untrusted and buggy code.
IFC for JS differs from traditional IFC as JS is extremely dynamic [3,1], which
makes sound static analysis difficult.

Therefore, research on IFC for JS has focused on dynamic techniques. These
techniques may be grouped into four broad categories. First, one may build
an IFC-enabled, custom interpreter for JS source [4,5]. This turns out to be ex-
tremely slow and requires additional code annotations to handle semi-structured
control flow like exceptions, return-in-the-middle, break and continue. Second,
we could use a black-box technique, wherein an off-the-shelf JS interpreter is
wrapped in a monitor. This is nontrivial, but doable with only moderate over-
head and has been implemented in secure multi-execution (SME)[6,7]. However,
because SME is a black-box technique, it is not clear how it can be generalized
beyond non-interference [8] to handle declassification [9,10]. Third, some variant
of inline reference monitoring (IRM) might inline taint tracking with the client
code. Existing security systems for JS with IRM require subsetting the language
in order to prevent dynamic features that can invalidate the monitoring process.
Finally, it is possible to instrument the runtime system of an existing JS engine,
either an interpreter or a just-in-time compiler (JIT), to monitor the program
on-the-fly. While this requires adapting the respective runtime, it incurs only
moderate overhead because it retains other optimizations within the runtime
and is resilient to subversion attacks.

In this work, we opt for the last approach. We instrument a production JS
engine to track taints dynamically and enforce termination-insensitive non-inter-
ference [11]. Specifically, we instrument the bytecode interpreter in WebKit, the
JS engine used in Safari and other open-source browsers. The major benefit
of working in the bytecode interpreter as opposed to source is that we retain
the benefits of these years of engineering efforts in optimizing the production
interpreter and the source to bytecode compiler.

We describe the key challenges that arise in dynamic IFC for JS bytecode (as
opposed to JS source), present our formal model of the bytecode, the WebKit JS
interpreter and our instrumentation, present our correctness theorem, and list
experimental results from a preliminary evaluation with an optimized prototype
running in Safari. In doing so, our work significantly advances the state-of-the-art
in IFC for JS. Our main contributions are:

— We formally model WebKit’s bytecode syntax and semantics, our instrumen-
tation for IFC analysis and prove non-interference. As far as we are aware,
this is the first formal model of bytecode of an in-production JS engine. This
is a nontrivial task because WebKit’s bytecode language is large (147 byte-
codes) and we built the model through a careful and thorough understanding
of approximately 20,000 lines of actual interpreter code.!

! Unlike some prior work, we are not interested in modeling semantics of JS specified
by the ECMAScript standard. Our goal is to remain faithful to the production
bytecode interpreter. Our formalization is based on WebKit build #r122160, which
was the last build when we started our work.
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— Using ideas from prior work [12], we use on-the-fly intra-procedural static
analysis of immediate post-dominators to restrict overtainting, even with
bytecode’s pervasive unstructured conditional jumps. We extend the prior
work to deal with exceptions. Our technique covers all unstructured control
flow in JS (including break and continue), without requiring additional code
annotations of prior work [5] and improves permissiveness.

— To make IFC execution more permissive, we propose and implement a byte-
code-specific variant of the permissive-upgrade check [13].

— We implement our complete IFC mechanism in WebKit and observe moder-
ate overheads.

Limitations. We list some limitations of our work to clarify its scope. Although
our instrumentation covers all WebKit bytecodes, we have not yet instrumented
or modeled native JS methods, including those that manipulate the Document
Object Model (DOM). This is ongoing work, beyond the scope of this paper.
Like some prior work [4], our sequential non-interference theorem covers only
single invocations of the JS interpreter. In reality, JS is reactive. The interpreter
is invoked every time an event (like a mouse click) with a handler occurs and
these invocations share state through the DOM. We expect that generalizing to
reactive non-interference [14] will not require any instrumentation beyond what
we already plan to do for the DOM. Finally, we do not handle JIT-compilation
as it is considerably more engineering effort. JIT can be handled by inlining our
IFC mechanism through a bytecode transformation.

Due to lack of space, several proofs and details of the model have been omitted
from this paper. They can be found in a technical appendix available from the
authors’ homepages.

2 Related Work

Three classes of research are closely related to our work: formalization of JS se-
mantics, IFC for dynamic languages, and formal models of Web browsers. Maffeis
et al. [15] present a formal semantics for the entire ECMA-262 specification, the
foundation for JS 3.0. Guha et al. [16] present the semantics of a core language
which models the essence of JS and argue that all of JS 3.0 can be translated to
that core. S5 [17] extends [16] to include accessors and eval. Our work goes one
step further and formalizes the core language of a production JS engine (Web-
Kit), which is generated by the source-to-bytecode compiler included in WebKit.
Recent work by Bodin et al. [18] presents a Coq formalization of ECMAScript
Edition 5 along with an extracted executable interpreter for it. This is a formal-
ization of the English ECMAScript specification whereas we formalize the JS
bytecode implemented in a real Web browser.

Information flow control is an active area of security research. With the
widespread use of JS, research in dynamic techniques for IFC has regained mo-
mentum. Nonetheless, static analyses are not completely futile. Guarnieri et
al. [19] present a static abstract interpretation for tracking taints in JS. How-
ever, the omnipresent eval construct is not supported and this approach does
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not take implicit flows into account. Chugh et al. propose a staged information
flow approach for JS [20]. They perform server-side static policy checks on stat-
ically available code and generate residual policy-checks that must be applied
to dynamically loaded code. This approach is limited to certain JS constructs
excluding dynamic features like dynamic field access or the with construct.

Austin and Flanagan [21] propose purely dynamic IFC for dynamically-typed
languages like JS. They use the no-sensitive-upgrade (NSU) check [22] to han-
dle implicit flows. Their permissive-upgrade strategy [13] is more permissive
than NSU but retains termination-insensitive non-interference. We build on the
permissive-upgrade strategy. Just et al. [12] present dynamic IFC for JS bytecode
with static analysis to determine implicit flows precisely even in the presence of
semi-unstructured control flow like break and continue. Again, NSU is lever-
aged to prevent implicit flows. Our overall ideas for dealing with unstructured
control flow are based on this work. In contrast to this paper, there was no for-
malization of the bytecodes, no proof of correctness, and implicit flow due to
exceptions was ignored.

Hedin and Sabelfeld propose a dynamic IFC approach for a language which
models the core features of JS [4], but they ignore JS’s constructs for semi-struc-
tured control flow like break and continue. Their approach leverages a dynamic
type system for JS source. To improve permissiveness, their subsequent work [23]
uses testing. It detects security violations due to branches that have not been
executed and injects annotations to prevent these in subsequent runs. A further
extension introduces annotations to deal with semi-structured control flow [5].
Our approach relies on analyzing CFGs and does not require annotations.

Secure multi-execution (SME) [6] is another approach to enforcing
non-interference at runtime. Conceptually, one executes the same code once for
each security level (like low and high) with the following constraints: high inputs
are replaced by default values for the low execution, and low outputs are per-
mitted only in the low execution. This modification of the semantics forces even
unsafe scripts to adhere to non-interference. FlowFox [7] demonstrates SME in
the context of Web browsers. Executing a script multiple times can be prohibitive
for a security lattice with multiple levels. Further, all writes to the DOM are con-
sidered publicly visible output, while tainting allows persisting a security label
on DOM elements. It is also unclear how declassification may be integrated into
SME. Austin and Flanagan [24] introduce a notion of faceted values to simulate
multiple executions in one run. They keep n values for every variable correspond-
ing to n security levels. All the values are used for computation as the program
proceeds but the mechanism enforces non-interference by restricting the leak of
high values to low observers.

Browsers work reactively; input is fed to an event queue that is processed
over time. Input to one event can produce output that influences the input to
a subsequent event. Bohannon et al. [14] present a formalization of a reactive
system and compare several definitions of reactive non-interference. Bielova et
al. [25] extend reactive non-interference to a browser model based on SME. This
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is currently the only approach that supports reactive non-interference for JS. We
will extend our work to the reactive setting as the next step.

Finally, Featherweight Firefox [26] presents a formal model of a browser based
on a reactive model that resembles that of Bohannon et al. [14]. It instantiates
the consumer and producer states in the model with actual browser objects like
window, page, cookie store, mode, connection, etc. Our current work entirely
focuses on the formalization of the JS engine and taint tracking to monitor
information leaks. We believe these two approaches complement each other and
plan to integrate such a model into our future holistic enforcement mechanism
spanning JS, the DOM and other browser components.

3 Background

We provide a brief overview of basic concepts in dynamic enforcement of infor-
mation flow control (IFC). In dynamic IFC, a language runtime is instrumented
to carry a security label or taint with every value. The taint is an element of a
pre-determined lattice and is an upper bound on the security levels of all entities
that have influenced the computation that led to the value. For simplicity of ex-
position, we use throughout this paper a three-point lattice {L, H,x} (L = low
or public, H = high or secret, x = partially leaked secret), with L C H C * [13].
For now, readers may ignore . Our instrumentation works over a more general
powerset lattice, whose individual elements are Web domains. We write ¢ for a
value r tagged with label £.

Information flows can be categorized as explicit and implicit [27]. Explicit
flows arise as a result of variables being assigned to others, or through primitive
operations. For instance, the statement x = y + z causes an explicit flow from
values in both z and y to x. Explicit flows are handled in the runtime by updating
the label of the computed value (x in our example) with the least upper bound
of the labels of the operands in the computation (y, z in our example).

Implicit flows arise from control dependencies. For example, in the program
1 =0; if (h) {1 = 1;}, there is an implicit flow from h to the final value
of 1 (that value is 1 iff h is 1). To handle implicit flows, dynamic IFC systems
maintain the so-called pc label (program-context label), which is an upper bound
on the labels of values that have influenced the control flow thus far. In our last
example, if the value in h has label H, then pc will be H within the if branch.
After 1 = 1 is executed, the final value of 1 inherits not only the label of 1
(which is L), but also of the pc; hence, that label is also H. This alone does not
prevent information leaks: When h = 0, 1 ends with 0”; when h = 1, 1 ends
with 1. Since 0% and 1 can be distinguished by a public attacker, this program
leaks the value of h despite correct propagation of implicit taints. Formally, the
instrumented semantics so far fail the standard property of non-interference [8].

This problem can be resolved through the well-known no-sensitive-upgrade
(NSU) check [22,21], which prohibits assignment to a low-labeled variable when
pcis high. This recovers non-interference if the adversary cannot observe program
termination (termination-insensitive non-interference). In our example, when
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h = 0, the program terminates with 1 = 0%. When h = 1, the instruction 1 =
1 gets stuck due to NSU. These two outcomes are deemed observationally equiv-
alent for the low adversary, who cannot determine whether or not the program
has terminated in the second case. Hence, the program is deemed secure.

Roughly, a program is termination-insensitive non-interferent if any two ter-
minating runs of the program starting from low-equivalent heaps (i.e., heaps
that look equivalent to the adversary) end in low-equivalent heaps. Like all
sound dynamic IFC approaches, our instrumentation renders any JS program
termination-insensitive non-interferent, at the cost of modifying semantics of
programs that leak information.

4 Design, Challenges, Insights and Solutions

We implement dynamic IFC for JS in the widely used WebKit engine by instru-
menting WebKit’s bytecode interpreter. In WebKit, bytecode is generated by a
source-code compiler. Our goal is to not modify the compiler, but we are forced
to make slight changes to it to make it compliant with our instrumentation. The
modification is explained in Section 6. Nonetheless, almost all our work is limited
to the bytecode interpreter.

WebKit’s bytecode interpreter is a rather standard stack machine, with sev-
eral additional data structures for JS-specific features like scope chains, variable
environments, prototype chains and function objects. Local variables are held in
registers on the call stack. Our instrumentation adds a label to all data struc-
tures, including registers, object properties and scope chain pointers, adds code
to propagate explicit and implicit taints and implements a more permissive vari-
ant of the NSU check. Our label is a word size bit-set (currently 64 bits); each
bit in the bit-set represents taint from a distinct domain (like google.com). Join
on labels is simply bitwise or.

Unlike the ECMAScript specification of JS semantics, the actual implementa-
tion does not treat scope chains or variable environments like ordinary objects.
Consequently, we model and instrument taint propagation on all these data
structures separately. Working at the low-level of the bytecode also leads to sev-
eral interesting conceptual and implementation issues in taint propagation as
well as interesting questions about the threat model, all of which we explain
in this section. Some of the issues are quite general and apply beyond JS. For
example, we combine our dynamic analysis with a bit of static analysis to handle
unstructured control flow and exceptions.

Threat model and compiler assumptions. We explain our high-level threat model.
Following standard practice, our adversary may observe all low-labeled values
in the heap (more generally, an adversary at level £ in a lattice can observe
all heap values with labels < ¢). However, we do not allow the adversary to
directly observe internal data structures like the call stack or scope chains. This
is consistent with actual interfaces in a browser that third-party scripts can
access. In our non-interference proofs we must also show low-equivalence of these
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internal data structures across two runs to get the right induction invariants,
but assuming that they are inaccessible to the adversary allows more permissive
program execution, which we explain in Section 4.1.

The bytecode interpreter executes in a shared space with other browser com-
ponents, so we assume that those components do not leak information over side
channels, e.g., they do not copy heap data from secret to public locations. This
also applies to the compiler, but we do not assume that the compiler is func-
tionally correct. Trivial errors in the compiler, e.g., omitting a bytecode could
result in a leaky program even when the source code has no information leaks.
Because our IFC works on the compiler’s output, such compiler errors are not a
concern. Formally, we assume that the compiler is an unspecified deterministic
function of the program to compile and of the call stack, but not of the heap.
This assumption also matches how the compiler works within WebKit: It needs
access to the call stack and scope chain to optimize generated bytecode. How-
ever, the compiler never needs access to the heap. We ignore information leaks
due to other side channels like timing.

4.1 Challenges and Solutions

IFC for JS is known to be difficult due to JS’s highly dynamic nature. Working
with bytecode instead of source code makes IFC harder. Nonetheless, solutions
to many JS-specific IFC concerns proposed in earlier work [4] also apply to
our instrumentation, sometimes in slightly modified form. For example, in JS,
every object has a fixed parent, called a prototype, which is looked up when a
property does not exist in the child. This can lead to implicit flows: If an object
is created in a high context (when the pc is high) and a field missing from it,
but present in the prototype, is accessed later in a low context, then there is
an implicit leak from the high pe. This problem is avoided in both source- and
bytecode-level analysis in the same way: The “prototype” pointer from the child
to the parent is labeled with the pc where the child is created, and the label
of any value read from the parent after traversing the pointer is joined with
this label. Other potential information flow problems whose solutions remain
unchanged between source- and bytecode-level analysis include implicit leaks
through function pointers and handling of eval [124].

Working with bytecode both leads to some interesting insights, which are, in
some cases, even applicable to source code analysis and other languages, and
poses new challenges. We discuss some of these challenges and insights.

Unstructured control flow and CFGs. To avoid overtainting pc labels, an impor-
tant goal in implicit flow tracking is to determine when the influence of a control
construct has ended. For block-structured control flow limited to if and while
commands, this is straightforward: The effect of a control construct ends with
its lexical scope, e.g., in (if (h) {1 = 1;}; 1 = 2), h influences the control
flow at 1 = 1 but not at 1 = 2. This leads to a straightforward pc upgrading
and downgrading strategy: One maintains a stack of pc labels [22]; the effective
pc is the top one. When entering a control flow construct like if or while, a new
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pc label, equal to the join of labels of all values on which the construct’s guard
depends with the previous effective pc, is pushed. When exiting the construct,
the label is popped.

Unfortunately, it is unclear how to extend this simple strategy to non-block-
structured control flow constructs such as exceptions, break, continue and
return-in-the-middle for functions, all of which occur in JS. For example, con-
sider the program 1 = 1; while(1) {... if (h) {break;}; 1 = 0; break;} with
h labeled H. This program leaks the value of h into 1, but no assignment to 1 ap-
pears in a block-scope guarded by h. Indeed, the pc upgrading and downgrading
strategy just described is ineffective for this program. Prior work on source code
IFC either omits some of these constructs [4,28], or introduces additional classes
of labels to address these problems — a label for exceptions [4], a label for each
loop containing break or continue and a label for each function [5]. These labels
are more restrictive than needed, e.g., the code indicated by dots in the example
above is executed irrespective of the condition h in the first iteration, and thus
there is no need to raise the pc before checking that condition. Further, these la-
bels are programmer annotations, which we cannot support as we do not wish to
modify the compiler.

Importantly, unstructured control flow is a very serious concern for us, be-
cause WebKit’s bytecode has completely unstructured branches like jump-if-
false. In fact, all control flow, except function calls, is unstructured in bytecode.

To solve this problem, we adopt a solution based on static analysis of generated
bytecode [29,12]. We maintain a control flow graph (CFG) of known bytecodes
and for each branch node, compute its immediate post-dominator (IPD). The
IPD of a node is the first instruction that will definitely be executed, no matter
which branch is taken. Our pc upgrading and downgrading strategy now extends
to arbitrary control flow: When executing a branch node, we push a new pc label
on the stack along with the node’s IPD. When we actually reach the IPD, we
pop the pc label. In [30,31], the authors prove that the IPD marks the end of
the scope of an operation and hence the security context of the operation, so
our strategy is sound. In our earlier example, the IPD of if (h) ... is the end
of the while loop because of the first break statement, so when h == 0, the
assignment 1 = 1 fails due to the NSU check and the program is termination-
insensitive non-interference secure.

JS requires dynamic code compilation. We are forced to extend the CFG and to
compute IPDs whenever code for either a function or an eval is compiled. Fortu-
nately, the IPD of a node in the CFG lies either in the same function as the node or
some function earlier in the call-chain (the latter may happen due to exceptions),
so extending the CFG does not affect computation of IPDs of earlier nodes. This
also relies on the fact that code generated from eval cannot alter the CFG of ear-
lier functions in the call stack [12]. In the actual implementation, we optimize the
calculation of IPDs further by working only intra-procedurally, as explained be-
low. At the end, our IPD-based solution works for all forms of unstructured control
flow, including unstructured branches in the bytecode, and semi-structured break,
continue, return-in-the-middle and exceptions in the source code.
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Ezxceptions and synthetic exit nodes. Maintaining a CFG in the presence of
exceptions is expensive. An exception-throwing node in a function that does
not catch that exception should have an outgoing control flow edge to the next
exception handler in the call-stack. This means that (a) the CFG is, in general,
inter-procedural, and (b) edges going out of a function depend on its calling
context, so IPDs of nodes in the function must be computed every time the
function is called. Moreover, in the case of recursive functions, the nodes must
be replicated for every call. This is rather expensive. Ideally, we would like to
build the function’s CFG once when the function is compiled and work intra-
procedurally (as we would had there been no exceptions). We explain how we
attain this goal in the sequel.?

In our design, every function that may throw an unhandled exception has
a special, synthetic exit node (SEN), which is placed after the regular return
node(s) of the function. Every exception-throwing node, whose exception will
not be caught within the function, has an outgoing edge to the SEN, which is
traversed when the exception is thrown. The semantics of SEN (described below)
correctly transfer control to the appropriate exception handler. By doing this, we
eliminate all cross-function edges and our CFGs become intra-procedural. The
CFG of a function can be computed when the function is compiled and is never
updated. (In our implementation, we build two variants of the CFG, depending
on whether or not there is an exception handler in the call stack. This improves
efficiency, as we explain later.)

Control flows to the SEN when the function returns normally or when an
exception is thrown but not handled within the function. If no unhandled excep-
tion occurred within the function, then the SEN transfers control to the caller
(we record whether or not an unhandled exception occurred). If an unhandled
exception occurred, then the SEN triggers a special mechanism that searches
the call stack backward for the first appropriate exception handler and transfers
control to it. (In JS, exceptions are indistinguishable, so we need to find only the
first exception handler.) Importantly, we pop the call-stack up to the frame that
contains the first exception handler but do not pop the pc-stack, which ensures
that all code up to the exception handler’s IPD executes with the same pc as
the SEN, which is indeed the semantics one would expect if we had a CFG with
cross-function edges for exceptions. This prevents information leaks.

If a function does not handle a possible exception but there is an exception
handler on the call stack, then all bytecodes that could potentially throw an
exception have the SEN as one successor in the CFG. Any branching bytecode
will thus need to push to the pc-stack according to the security label of its
condition. However, we do not push a new pc-stack entry if the IPD of the
current node is the same as the IPD on the top of the pc-stack (this is just
an optimization) or if the IPD of the current node is the SEN, as in this case
the real IPD, which is outside of this method, is already on the pc-stack. These
semantics emulate the effect of having cross-function exception edges.

2 This problem and our solution are not particular to JS; they apply to dynamic IFC
analysis in all languages with exceptions and functions.
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For illustration, consider the following two functions £ and g. The ¢ at the
end of g denotes its SEN. Note that there is an edge from throw 9 to ¢ because
throw 9 is not handled within g. [0 denotes the IPD of the handler catch(e)
{1=1; }

function £() = { function g() = {

1 =0; if (h) {throw 9;}
try { gO0; } catch(e) { 1 =1; } return 7;

O return 1; }o

}

It should be clear that in the absence of instrumentation, when £ is invoked
with pc = L, the two functions together leak the value of h (which is assumed to
have label H) into the return value of £. We show how our SEN mechanism pre-
vents this leak. When invoking g() we do not know if there will be an exception
in this function. Depending on the outcome of this method call, we will either
jump to the exception handler or continue at (1. Based on that branch, we push
the current pc and IPD (L,O) on the pc-stack. When executing the condition
if (h) we do not push again, but merely update the top element to (H,O). If h
== 0, control reaches ¢ without an exception but with pc = H because the IPD
of if (h) is ¢. At this point, ¢ returns control to £, thus pc = H, but at O, pc
is lowered to L, so £ ends with the return value 0. If h == 1, control reaches ¢
with an unhandled exception. At this point, following the semantics of SEN, we
find the exception handler catch(e) { 1 = 1; } and invoke it with the same
pc as the point of exception, i.e., H. Consequently, NSU prevents the assignment
1 = 1, which makes the program termination-insensitive non-interferent.

Because we do not wish to replicate the CFG of a function every time it is
called recursively, we need a method to distinguish the same node corresponding
to two different recursive calls on the pc-stack. For this, when pushing an IPD
onto the pc-stack, we pair it with a pointer to the current call-frame. Since the
call-frame pointer is unique for each recursive call, the CFG node paired with
the call-frame identifies a unique merge point in the real control flow graph.

In practice, even the intra-procedural CFG is quite dense because many JS
bytecodes can potentially throw exceptions and, hence, have edges to the SEN.
To avoid overtainting, we perform a crucial common-case optimization: When
there is no exception handler on the call stack we do not create the SEN and
the corresponding edges from potentially exception-throwing bytecodes at all.
This is safe as a potentially thrown exception can only terminate the program
instantly, which satisfies termination-insensitive non-interference if we ensure
that the exception message is not visible to the attacker. Whether or not an
exception handler exists is easily tracked using a stack of Booleans that mirrors
the call-stack; in our design we overlay this stack on the pc-stack by adding an
extra Boolean field to each entry of the pc-stack. In summary, each entry of our
pe-stack is a quadruple containing a security label, a node in the intraprocedural
CFG, a call-frame pointer and a Boolean value. In combination with SENs, this
design allows us to work only with intraprocedural CFGs that are computed
when a function is compiled. This improves efficiency.
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Permissive-upgrade check, with changes. The standard NSU check halts program
execution whenever an attempt is made to assign a variable with a low-labeled
value in a high pc. In our earlier example, 1 = 0; if (h) {1 = 1;}, assuming
that h stores a H-labeled value, program execution is halted at the command
1 = 1. As Austin and Flanagan (AF in the sequel) observe [13], this may be
overly restrictive when 1 will not, in fact, have observable effects (e.g., 1 may
be overwritten by a constant immediately after if (h) {1 = 1;3}). So, they
propose propagating a special taint called x into 1 at the instruction 1 = 1 and
halting a program when it tries to use a value labeled x in a way that will be
observable (AF call this special taint P for “partially leaked”). This idea, called
the permissive-upgrade check, allows more program execution than NSU would,
so we adopt it. In fact, this additional permissiveness is absolutely essential for us
because the WebKit compiler often generates dead assignments within branches,
so execution would pointlessly halt if standard NSU were used.

We differ from AF in what constitutes a use of a value labeled x. As expected,
AF treat occurrence of x in the guard of a branch as a use. Thus, the program 1
=0; if (h) {1 = 1;}; if (1) {1’ = 2} is halted at the command if (1)
when h == 1 because 1 obtains taint x at the assignment 1 = 1 (if the program
is not halted, it leaks h through 1’). However, they allow *-tainted values to
flow into the heap. Consider the program 1 = 0; if (h) {1 = 1;}; obj.a =
1. This program is insecure in our model: The heap location obj.a, which is
accessible to the adversary, ends with 0% when h == 0 and with 1* when h
== 1. AF deem the program secure by assuming that any value with label x is
low-equivalent to any other value (in particular, 0X and 1* are low-equivalent).
However, this definition of low-equivalence for dynamic analysis is virtually im-
possible to enforce if the adversary has access to the heap outside the language:
After writing 0F to obj.a (for h == 0), a dynamic analysis cannot determine
that the alternate execution of the program (for h == 1) would have written a
x-labeled value and, hence, cannot prevent the adversary from seeing 0%.

Consequently, in our design, we use a modified permissive-upgrade check,
which we call the deferred NSU check, wherein a program is halted at any con-
struct that may potentially flow a x-labeled value into the heap. This includes
all branches whose guard contains a x-labeled value and any assignments whose
target is a heap location and whose source is x-labeled. However, we do not
constrain flow of x-labeled values in data structures that are invisible to the ad-
versary in our model, e.g., local registers and variable environments. This design
critically relies on treating internal data structures differently from ordinary JS
objects, which is not the case, for instance, in the ECMAScript specification.

5 Formal Model and IFC

We formally model WebKit’s JS bytecode and the semantics of its bytecode
interpreter with our instrumentation of dynamic IFC. We prove termination-
insensitive non-interference for programs executed through our instrumented
interpreter. We do not model the construction of the CFG or computation of
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ins := prim-ins | obj-ins obj-ins := new-object dst:r
| func-ins | scope-ins | exc-ins | get-by-id dst:r base:r prop:id

prim-ins := prim dst:r srcl:r src2:r | put-by-id base:r prop:id value:r direct:b
| mov dst:r src:r | del-by-id dst:r base:r prop:id
| jfalse cond:r target:offset | get-pnames dst:r base:r i:n size:n breaktarget:offset
| loop-if-less srcl:r sre2:r target:offset | next-pname dst:r base:r i:n size:n iter:n target:offset
| typeof dst:r sre:r | put-getter-setter base:r prop:id getter:r setter:r
| instanceof dst:r value:r cProt:r scope-ins := resolve dst:r prop:id

func-ins := enter | resolve-skip dst:r prop:id skip:n
| ret result:r | resolve-global dst:r prop:id
| end result:r | resolve-base dst:r prop:id isStrict:bool
| call func:r args:n | resolve-with-base bDst:r pDst:r prop:id
| call-put-result res:r | get-scoped-var dst:r index:n skip:n
| call-eval func:r argsm | put-scoped-var index:n skip:n value:r
| create-arguments dst:r | push-scope scope:r
| new-func dst:r func:f | pop-scope
| create-activation dst:r | jmp-scope count:n target:offset
| construct func:r args:n exc-ins := throw exr
| create-this dst:r | catch ex:r

Fig. 1. Instructions

IPDs; these are standard. To keep presentation accessible, we present our for-
mal model at a somewhat high-level of abstraction. Details are resolved in our
technical appendix.

5.1 Bytecode and Data Structures

The version of WebKit we model uses a total of 147 bytecodes or instructions,
of which we model 69. The remaining 78 bytecodes are redundant from the
perspective of formal modeling because they are specializations or wrappers on
other bytecodes to improve efficiency. The syntax of the 69 bytecodes we model
is shown in Fig. 1. The bytecode prim abstractly represents 34 primitive binary
and unary (with just the first two arguments) operations, all of which behave
similarly. For convenience, we divide the bytecodes into primitive instructions
(prim-ins), instructions related to objects and prototype chains (obj-ins), in-
structions related to functions (func-ins), instructions related to scope chains
(scope-ins) and instructions related to exceptions (exc-ins). A bytecode has the
form (inst_name list__of _args). The arguments to the instruction are of the
form (var):(type), where var is the variable name and type is one of the following:
r, n, bool, id, prop and offset for register, constant integer, constant Boolean,
identifier, property name and jump offset value, respectively.

In WebKit, bytecode is organized into code blocks. Each code block is a se-
quence of bytecodes with line numbers and corresponds to the instructions for
a function or an eval statement. A code block is generated when a function
is created or an eval is executed. In our instrumentation, we perform control
flow analysis on a code block when it is created and in our formal model we
abstractly represent a code block as a CFG, written . Formally, a CFG is a
directed graph, whose nodes are bytecodes and whose edges represent possible
control flows. There are no cross-function edges. A CFG also records the IPD of
each node. IPDs are computed using an algorithm by Lengauer and Tarjan [32]
when the CFG is created. If the CFG contains uncaught exceptions, we also cre-
ate a SEN. For a CFG ¢ and a non-branching node ¢ € ¢, Succ(¢,t) denotes ¢’s
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unique successor. For a conditional branching node ¢, Left(¢,¢) and Right((,¢)
denote successors when the condition is true and false, respectively.

The bytecode interpreter is a standard stack machine, with support for JS
features like scope chains and prototype chains. The state of the machine (with
our instrumentation) is a quadruple (¢, 6,0, p), where ¢ represents the current
node that is being executed, 6 represents the heap, o represents the call-stack
and p is the pc-stack.

We assume an abstract, countable set A = {a,b, ...} of heap locations, which
are references to objects. The heap 6 is a partial map from locations to objects.
An object O may be:

— An ordinary JS object N = ({p; — v}y, proto  — a’», ), con-

taining properties named po, . .., p, that map to labeled values vy, ..., vy, a
prototype field that points to a parent at heap location a, and two labels /£,
and /5. ¢, records the pc where the object was created. ¢, is the so-called
structure label, which is an upper bound on all pcs that have influenced
which fields exist in the object.?

— A function object F' = (N, (,XY), where N is an ordinary object, ¢ is a CFG,
which corresponds to the the function stored in the object, and X is the
scope chain (closing context) of the function.

A labeled value v = r* is a value 7 paired with a security label £. A value r in

our model may be a heap location a or a JS primitive value n, which includes
integers, Booleans, regular expressions, arrays, strings and the special JS values
undefined and null.

The call-stack o contains one call-frame for each incomplete function call. A
call-frame p contains an array of registers for local variables, a CFG ( for the
function represented by the call-frame, the return address (a node in the CFG of
the previous frame), and a pointer to a scope-chain that allows access to variables
in outer scopes. Additionally, each call-frame has an exception table which maps
each potentially exception-throwing bytecode in the function to the exception
handler within the function that surrounds the bytecode; when no such exception
handler exists, it points to the SEN of the function (we conservatively assume
that any unknown code may throw an exception, so bytecodes call and eval
are exception-throwing for this purpose). |o| denotes the size of the call-stack
and lo its top frame. Each register contains a labeled value.

A scope chain, X, is a sequence of scope chain nodes (SCNs), denoted S,
paired with labels. In WebKit, a scope chain node S may either be an object
or a variable environment V', which is an array of labeled values. Thus, X =
(S1,01):...: (Snylp)and S == O | VandV == v :...: 0.

Each entry of the pc-stack p is a triple (¢,¢,p), where £ is a security label,
¢t is a node in a CFG, and p is a pointer to some call-frame on the call stack

3 The  proto  field is the parent of the object; it is not the same as the prototype
field of a function object, which is an ordinary property. Also, in our actual model,
fields p; map to more general property descriptors that also contain attributes along
with labeled values. We elide attributes here to keep the presentation simple.



172 A. Bichhawat et al.

o. (For simplicity, we ignore a fourth Boolean field described in Section 4.1 in
this presentation.) When we enter a new control context, we push the new pc ¢
together with the IPD ¢ of the entry point of the control context and a pointer
p to current call-frame. The pair (¢, p) uniquely identifies where the control of
the context ends; p is necessary to distinguish the same branch point in different
recursive calls of the function [12]. In our semantics, we use the meta-function
1sIPD to pop the stack. It takes the current instruction, the current pe-stack and
the call stack o, and returns a new pc-stack.

isIPD(i, p,0) 1= {p.pop() iflp= .(*’ blo)
p otherwise

As explained in Section 4.1, as an optimization, we push a new node (¢, t,0)
onto p only when (¢, 0) (the IPD) differs from the corresponding pair on the top
of the stack and, to handle exceptions correctly, we also require that ¢ not be
the SEN. Otherwise, we just join ¢ with the label on the top of the stack. This
is formalized in the function p.push(¢, ¢, o), whose obvious definition we elide.

If x is a pair of any syntactic entity and a security label, we write 7'(x) for the
entity and I'(x) for the label. In particular, for v = r‘, Y (v) = r and I'(v) = £.

5.2 Semantics and IFC with Intra-procedural CFGs

We now present the semantics, which faithfully models our implementation us-
ing intra-procedural CFGs with SENs. The semantics is defined as a set of state
transition rules that define the judgment: (¢, 0, o, p) ~ (', ', 0, p'). Fig. 2 shows
rules for selected bytecodes. For reasons of space we omit rules for other byte-
codes and formal descriptions of some meta-function like opCall that are used
in the rules. C' = A ¢ B is shorthand for a meta-level (if (C) then A else B).

prim reads the values from two registers srcl and src2, performs a binary
operation generically denoted by @ on the values and writes the result into the
register dst. dst is assigned the join of the labels in srci, src2 and the head of
the pe-stack (1p). To implement deferred NSU (Section 4.1), the existing label
in dst is compared with the current pc. If the label is lower than the pc, then
the label of dst is joined with x. Note that the premise p’ = isIPD(//, p, o) pops
an entry from the pe-stack if its IPD matches the new program node /. This
premise occurs in all semantic rules.

jfalse is a conditional jump. It skips offset number of successive nodes in
the CFG if the register cond contains false, else it falls-through to the next
node. Formally, the node it branches to is either Right((,t) or Left(C,t), where ¢
is the CFG in !o. In accordance with deferred NSU, the operation is performed
only if cond is not labeled x. jfalse also starts a new control context, so a new
node is pushed on the top of the pc-stack with a label that is the join of I'(cond)
and the current label on the top of the stack (unless the IPD of the branch point
is already on top of the stack or it is the SEN, in which case we join the new
label with the previous). Traversed from bottom to top, the pc-stack always has
monotonically non-decreasing labels.
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t = “op-prim dst:r srcl:r src2:r”,
L:=TI(lo(srel)) U (lo(sre2)) U I (1p),

, = “op-push-scope scope:r”,
V:=T(lo(srcl)) & T(lo(sre2)) [ Oppussops scopeir

o’ := pushScope(I'(!p), o, scope),

(Ito(dst)) = I'(1p)) = (L:=L)o(L:= %) J i= Suce(lo’ .CFG, 1), p' := isIPD(!/,p,0")
o = U[T(lﬂ(dﬂ))izv}_ push-scope: , ;.
r(lo(dst)):=L]> 1,0,0,p ~ ., 0,0, p
prim: V := Suce(lo’.CFG, 1), p' :=isIPD(!/,p,0")
n0,0,p ~ V\0,0% 0 1 = “op-call func:r args:n”,
I(func) # *, (¢ 0’ ly) := opCall(o, 1, func, args),
1 = “op-jfalse cond:r target:offset”, L=ty UI(lo(func)) U I (!p),
I'(lo(cond)) # %, L:=I'(lo(cond)) L I'(1p), call: p" = p.push(L, IPD(1), CF(1)), p' := isIPD(/, p",0")
T(lo(cond)) = false = ' := Left(lo.CFG,1) o 1,0,0,p ~ 0,0, p
ot/ := Right(l0.CFG, 1),
" N ’o
falsos p" = p.push(L, IPD(v), CF(L),)‘ P = isIPD(!, p",0) ., = “op-ret resit”,
t0,0,p = i0,0,p (t/,0",7) := opRet(o, res), p' :=isIPD(, p,0")
ret: 1,0,0,p ~ V0,0, p
1 = “op-put-by-id base:r prop:id value:r direct:b”,
I'(lo(value)) # *, direct = true — . N |
0" := putDirect(I'(!p), o, 0, base, prop, value) o , ",: op-throw exir’, exc V”’l“’f = T(O(”,)) ,
0" := putindirect(I'(!p), 0,0, base, prop, value), throw: (0",0) = th"mETCBPMU”(”r/L)‘ l’, ::/ isIPD(V, p, 0’)
put-by-id: J i= Suce(lo.CFG, 1), p' = isIPD(!/, p,0) t,0,0,p ~ 0,0, p

1,0,0,p ~ .0 0,0

Fig. 2. Semantics, selected rules

put-by-id updates the property prop in the object pointed to by register
base. As explained in Section 4.1, we allow this only if the value to be written is
not labeled x. The flag direct states whether or not to traverse the prototype
chain in finding the property; it is set by the compiler as an optimization. If the
flag is true, then the chain is not traversed (meta-function putDirect handles this
case). If direct is false, then the chain is traversed (meta-function putIndirect).
Importantly, when the chain is traversed, the resulting value is labeled with the
join of prototype labels £, and structure labels ¢, of all traversed objects. This
is standard and necessary to prevent implicit leaks through the _ proto_
pointers and structure changes to objects.

push-scope, which corresponds to the start of the JS construct with(obj),
pushes the object pointed to by the register scope into the scope chain. Because
pushing an object into the scope chain can implicitly leak information from the
program context later, we also label all nodes in the scope-chain with the pc’s at
which they were added to the chain. Further, deferred NSU applies to the scope
chain pointer in the call-frame as it does to all other registers.

call invokes a function of the target object stored in the register func. Due to
deferred NSU, the call proceeds only if I'(func) is not . The call creates a new
call-frame and initializes arguments, the scope chain pointer (initialized with the
function object’s X field), CFG and the return node in the new frame. The CFG
in the call-frame is copied from the function object pointed to by func. All this
is formalized in the meta-function opCall, whose details we omit here. Call is a
branch instruction and it pushes a new label on the pc-stack which is the join of
the current pc, I'(func) and the structure label ¢; of the function object (unless
the IPD of the current node is the SEN or already on the top of the pc-stack, in
which case we join the new pc-label with the previous). call also initializes the
new registers’ labels to the new pc. A separate bytecode, not shown here and
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executed first in the called function, sets register values to undefined. eval is
similar to call but the code to be executed is also compiled.

ret exits a function. It returns control to the caller, as formalized in the
meta-function opRet. The return value is written to an interpreter variable (7).

throw throws an exception, passing the value in register ex as argument to
the exception handler. Our pc-stack push semantics ensure that the exception
handler, if any, is present in the call-frame pointed to by the top of the pc-stack.
The meta-function throwEzception pops the call-stack up to this call-frame and
transfers control to the exception handler, by looking it up in the exception
table of the call-frame. The exception value in the register ex is transferred to
the handler through an interpreter variable.

Correctness of IFC. We prove that our IFC analysis guarantees termination-
insensitive non-interference [11]. Intuitively, this means that if a program is run
twice from two states that are observationally equivalent for the adversary and
both executions terminate, then the two final states are also equivalent for the
adversary. To state the theorem formally, we formalize equivalence for various
data structures in our model. The only nonstandard data structure we use is the
CFG, but graph equality suffices for it. A well-known complication is that low
heap locations allocated in the two runs need not be identical. We adopt the
standard solution of parametrizing our definitions of equivalence with a partial
bijection 8 between heap locations. The idea is that two heap locations are
related in the partial bijection if they were created by corresponding allocations
in the two runs. We then define a rather standard relation (t1,61,01,p1) Nf
(t2,02,09, p2), which means that the states on the left and right are equivalent
to an observer at level £, up to the bijection 8 on heap locations. We defer details
to the appendix.

Theorem 1 (Termination-insensitive non-interference) Suppose:
(1) <L1,91,01,p1> Nf <L2,92,U2,P2>, (2) <L1a91,013P1> T <€"da9/1a[]aﬂ>, and
(3) (12,02, 09, p2) ~* (end, 05,[],[]). Then, 36" 2 B such that 0] N? 05

6 Implementation

We instrumented WebKit’s JS engine (JavaScriptCore) to implement the IFC
semantics of the previous section. Before a function starts executing, we generate
its CFG and calculate IPDs of its nodes by static analysis of its bytecode. We
modify the source-to-bytecode compiler to emit a slightly different, but function-
ally equivalent bytecode sequence for finally blocks; this is needed for accurate
computation of IPDs. For evaluation purposes, we label each source script with
the script’s domain of origin; each seen domain is dynamically allocated a bit in
our bit-set label. In general, our instrumentation terminates a script that violates
IFC. However, for the purpose of evaluating overhead of our instrumentation,
we ignore IFC violations in all experiments described here.

We also implement and evaluate a variant of sparse labeling [21] which opti-
mizes the common case of computations that mostly use local variables (registers
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Fig. 3. Overheads of basic and optimized IFC in SunSpider benchmarks

in the bytecode). Until a function reads a value from the heap with a label differ-
ent from the pc, we propagate taints only on heap-writes, but not on in-register
computations. Until that point, all registers are assumed to be implicitly tainted
with pe. This simple optimization reduces the overhead incurred by taint track-
ing significantly in microbenchmarks. For both the basic and optimized version,
our instrumentation adds approximately 4,500 lines of code to WebKit.

Our baseline for evaluation is the uninstrumented interpreter with JIT dis-
abled. For comparison, we also include measurements with JIT enabled. Our
experiments are based on WebKit build #r122160 running in Safari 6.0. The
machine has a 3.2GHz Quad-core Intel Xeon processor with 8GB RAM and
runs Mac OS X version 10.7.4.

Microbenchmark. We executed the standard SunSpider 1.0.1 JS benchmark suite
on the uninstrumented interpreter with JIT disabled and JIT enabled, and on
the basic and the optimized IFC instrumentations with JIT disabled. Results are
shown in Figure 3. The x-axis ranges over SunSpider tests and the y-axis shows
the average execution time, normalized to our baseline (uninstrumented inter-
preter with JIT disabled) and averaged across 100 runs. Error bars are standard
deviations. Although the overheads of IFC vary from test to test, the average
overheads over our baseline are 121% and 45% for basic IFC and optimized
IFC, respectively. The test regerp has almost zero overhead because it spends
most time in native code, which we have not yet instrumented. We also note
that, as expected, the JIT-enabled configuration performs extremely well on the
SunSpider benchmarks.

Macrobenchmarks. We measured the execution time of the intial JS on 9 popu-
lar English language Websites. We load each Website in Safari and measure the
total time taken to ezxecute the JS code without user interaction. This excludes
time for network communication and internal browser events and establishes a
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Fig. 4. Overheads of basic and optimized IFC in real websites

very conservative baseline. The results, normalized to our baseline, are shown in
Fig. 4. Our overheads are all less than 42% (with an average of around 29% in
both instrumentations). Interestingly, we observe that our optimization is less
effective on real websites indicating that real JS accesses the heap more often
than the SunSpider tests. When compared to the amount of time it takes to
fetch a page over the network and to render it, these overheads are negligible.
Enabling JIT worsens performance compared to our baseline indicating that,
for the code executed here, JIT is not useful. We also experimented with JS-
Bench [33], a sophisticated benchmark derived from JS code in the wild. The
average overhead on all JSBench tests (a total 23 iterations) is approximately
38% for both instrumentations. Details are present in our technical appendix.

7 Conclusion and Future Work

We have explored dynamic information flow control for JS bytecode in WebKit,
a production JS engine. We formally model the bytecode, its semantics, our
instrumentation and prove the latter correct. We identify challenges, largely
arising from pervasive use of unstructured control flow in bytecode, and resolve
them using very limited static analysis. Our evaluation indicates only moderate
overheads in practice.

In ongoing work, we are instrumenting the DOM and other native JS methods.
We also plan to generalize our model and non-interference theorem to take into
account the reactive nature of Web browsers. Going beyond non-interference,
the design and implementation of a policy language for representing allowed
information flows looks necessary.
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