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Abstract. Only recently have approaches to quantitative information
flow started to challenge the presumption that all leaks involving a given
number of bits are equally harmful. This paper proposes a framework to
capture the semantics of information, making quantification of leakage
independent of the syntactic representation of secrets. Secrets are defined
in terms of fields, which are combined to form structures; and a worth as-
signment is introduced to associate each structure with a worth (perhaps
in proportion to the harm that would result from disclosure). We show
how worth assignments can capture inter-dependence among structures
within a secret, modeling: (i) secret sharing, (ii) information-theoretic
predictors, and (iii) computational (as opposed to information-theoretic)
guarantees for security. Using non-trivial worth assignments, we general-
ize Shannon entropy, guessing entropy, and probability of guessing. For
deterministic systems, we give a lattice of information to provide an un-
derlying algebraic structure for the composition of attacks. Finally, we
outline a design technique to capture into worth assignments relevant
aspects of a scenario of interest.

1 Introduction

Quantitative information flow (QIF) is concerned with measuring how much
secret information leaks to an adversary through a system. The adversary is
presumed to have a priori information about the secrets before execution starts
and to access public observables as execution proceeds. By combining a priori
information and public observables, the adversary achieves a posteriori informa-
tion about the secrets. The leakage from an execution is the difference between
a posteriori and a priori information.

This definition of leakage depends on how information is measured. Cachin [1]
advocates that information measures not only include a way to calculate some
numeric value but also offer an operational interpretation, which describes what
aspect of interest is being quantified. Popular information measures include:
Shannon entropy [2-8], which measures how much information is leaked per
guess; guessing entropy [9, 10], which measures how many tries are required
before the secret is correctly guessed; and probability of guessing [11,12], which
measures how likely it is that a secret is correctly inferred in a certain number
of tries.
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These measures are best suited to sets of monolithic and equally valuable
secrets, so researchers have recently begun to consider richer scenarios. The g-
leakage framework [13] of Alvim et al. makes use of gain functions to quantify
the benefit of different guesses for the secret. However, identifying sufficiently
expressive yet not over-complicated gain-functions is often a challenge. Moreover,
that framework generalizes probability of guessing, but not Shannon entropy or
guessing entropy. Finally, it is not suitable to infinitely risk-averse adversaries.
In this paper we propose an approach that addresses these limitations; a detailed
comparison with g-leakage is given in Section 6.

We model a secret as being partitioned into fields, which are combined to form
structures. Since disclosure of different structures might cause different harms,
a worth assignment is introduced to associate a worth with each structure. For
instance, the secret corresponding to a client’s bank account might comprise two
10-digit structures: a pincode and a telephone number. Leaking the pincode has
the potential to cause considerable harm, so that structure would be assigned
high worth; the telephone number is public information, so this structure would
be assigned low worth.

Assuming that all structures have equal worth can lead to misleading compar-
isons between systems that leak structures with different worths but the same
numbers of bits. Conversely, ignoring the structure of secrets may lead to a
deceptive estimate of the harm from leaking different numbers of bits. Consider
two systems that differ in the way they represent a house address. In system C1,
standard postal addresses are used (i.e., a number, street name, and zip-code);
system Co uses GPS coordinates (i.e., a latitude and a longtitude, each a signed
10-digit number). Under Shannon entropy with plausible sizes! for address fields,
C1 requires 129 bits to represent a location that Cs represents using 69 bits. Yet
the same content is revealed whether Cy leaks its 129 bits or Cs leaks its 69 bits.
(The a priori information for addresses in Cj is not zero, since certain values
for a house number, street name, and zip-code can be ruled out. And a similar
argument can be made for Cs, given knowledge of habitable terrain. Accounting
for idiosyncrasies in the syntactic representation of secrets, however, can be a
complicated task, hence an opportunity for error. Worth assignments avoid some
of that complexity.)

When secrets are not modeled as monolithic, distinct structures within a
given secret may be correlated. A clever adversary, thus, might infer information
about a structure with more worth (and presumably better protected) by attack-
ing a correlated structure with less worth (and presumably less well protected).
For instance, the location of a neighborhood is often correlated to the polit-
ical preferences of its residents, so an adversary may target a person’s house
address to infer information about what political party they support. Worth
assignments can model such correlations and adjust the relative worth of struc-
tures. Moreover, they can capture the computational complexity of inferring one
structure from the other, which is a common limitation of information theoretical

! Specifically, assume a 5-digit house number, a 20-character alphabetic street name,
and a 5-digit zip-code.
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approaches to QIF. As an example, a public RSA key is a perfect predictor, in
an information theoretical sense, for the corresponding private key. In practice,
however, the public key should not be assigned the same worth as the private
key because a realistic adversary is not expected to retrieve the latter from the
former in viable time.

In this paper, we propose measures of information worth that incorporate the
structure and worth of secrets. As in other QIF literature, we assume the adver-
sary performs attacks, controlling the low input to a probabilistic system execu-
tion and observing the low outputs. An attack induces a probability distribution
on the space of secrets according to what the adversary observes. This charac-
terization admits measures of information worth for the information contained
in each distribution; leakage is then defined as the difference in information be-
tween distributions. Our approach generalizes probability of guessing, guessing
entropy, and Shannon entropy to admit non-trivial worth assignments. Yet our
work remains consistent with the Lattice of Information [14] for deterministic
systems, which is an underlying algebraic structure for sets of system executions.

The main contributions of this paper are:

— We propose a framework of structures and worth assignments to capture the
semantics of information, making the quantification of leakage independent
of the particular representation chosen for secrets.

— We show how to use worth assignments to model the inter-dependence among
structures within a given secret, capturing practical scenarios including: (i)
secret sharing, (ii) information-theoretic predictors, and (iii) computational
(as opposed to information-theoretic) guarantees for security.

— We generalize Shannon entropy and guessing entropy to incorporate worth
explicitly, and we introduce other measures without traditional equivalents.
We show that our theory of measures of information worth and the g-leakage
framework are not comparable in general, although they do overlap.

— We prove that our measures of information worth are consistent with the
Lattice of Information for deterministic systems, which allows sound reason-
ing about the composition of attacks in such systems.

— We outline a design technique for worth assignments that capture the follow-
ing aspects of the scenario of interest: (i) secrecy requirements that determine
what structures are intrinsically sensitive, and by how much, (ii) consistency
requirements that ensure the adequacy of the worth assignment, and (iii) the
adversarial knowledge that may be of help in attacks.

The paper is organized as follows. Section 2 describes our model for the struc-
ture and worth of secrets in probabilistic systems. Section 3 uses worth as-
signments to propose measures of information worth. Section 4 shows that the
proposed measures are consistent with respect to the Lattice of Information for
deterministic systems under composite attacks. Section 5 outlines a technique
for designing adequate worth assignments for a scenario of interest. Finally, Sec-
tion 6 discusses related work, and Section 7 concludes the paper. Full proofs can
be found in the Appendix of the corresponding technical report [15].
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2 Modeling the Structure and Worth of Secrets

We decompose secrets into elementary units called fields, each a piece of infor-
mation with a domain. Let F = {fi,..., fmn} denote the (finite) set of fields in
some scenario of interest, and for 1 < ¢ < m, let domain(f;) be the domain of
values for field f;. A structure is a subset f C F, and if f = {fi,,---, fi. }, its
domain is given by domain(f) = domain(fi;) X --- x domain(f;,). The set of
all possible structures is the power set P(F) of fields, and the structure f = F
containing all fields is called the mazimal structure.

A secret s is a mapping from the maximal structure to values, i.e., s =
(s[f1],---,s[fm]), where s[f;] € domain(f;) is the value assumed by field f;.
Hence the set S of possible secrets is S = domain(F). Given a secret s and a
(not necessarily maximal) structure f C F, we call a sub-secret s[f] the projection
of s on the domain of f, and the set of all possible sub-secrets associated with
that structure is S[f] = domain(¥).

Structures may carry some valuable piece of information on their own. A worth
assignment attributes to each structure a non-negative, real number. Worth may
be seen as the utility obtained by an adversary who learns the contents of the
structure, or it may be seen as the damage suffered should the contents of the
structure become known to that adversary.

Definition 1 (Worth assignment). A worth assignment is a function w :
P(F) = R from the set of structures to reals, satisfying for all §,§ € P(F): (i)
non-negativity: w(f) > 0, and (ii) monotonicity: f C f = w(f) < w(f').

We require non-negativity of w because the knowledge of the contents of a struc-
ture should not carry a negative amount of information, and we require mono-
tonicity because every structure should be at least as sensitive as any of its parts.
Note that monotonicity implies that the worth of the maximal structure, w(F),
is an upper bound for the worth of every structure.

Expressiveness of Worth Assignments. The worth of a structure should
appropriately represent the sensitivity of that structure in a scenario of inter-
est. Consider a medical database where a secret is a patient’s entire record,
and structures are sub-sets of that record (e.g., a patient’s name, age, smoking
habits). The worth assigned to an individual’s smoking habits should reflect:
(i) how much the protector (i.e., the party interested in keeping the secret con-
cealed) cares about hiding whether an individual is a smoker, (ii) how much an
adversary would benefit from learning whether an individual is a smoker, and,
more subtly, (iii) how effective (information-theoretically and/or computation-
ally) a predictor an individual’s smoking habits are for other sensitive structures
(for instance, heavy smokers are more likely to develop lung cancer, and insur-
ance companies may deny them coverage based on that). Worth assignments can
capture these aspects, modeling also:

a) Semantic-based leakage. Worth assignments provide a natural means to
abstract from syntactic idiosyncrasies and treat structures according to mean-
ing. In the bank system of Section 1, for instance, we would assign higher
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worth to the 10-digit pincode than to the 10-digit telephone number, thus
distinguishing among eventual 10-digit leaks according to relevance:

w({pin-code}) > w({telephone number}).

Conversely, structures with equivalent meanings should be assigned the same
worth, regardless of representation. For instance, the worth of all structures
corresponding to an address should be the same, whether it is represented in
GPS coordinates or in the standard postal address format:

w({GPS address}) = w({postal address}).

Secret sharing. The combination of two structures may convey more worth
than the sum of their individual worths. In secret sharing, for instance, dif-
ferent persons retain distinct partial secrets (i.e., structures) that in isolation
give no information about the secret as a whole (i.e., the maximal struc-
ture), but that reveal the entire secret when combined. As another example,
a decryption key without any accompanying ciphertext is of little worth, so
each corresponding structure should have, in isolation, a worth close to zero.
When combined, however, the benefit to the adversary exceeds the sum of
their individual worths:

w({ciphertext, decryption key}) > w({ciphertext}) 4+ w({decryption key}).

Correlation of structures. Knowledge of a particular structure may imply
knowledge of another (e.g., if the adversary has access to tax files, learning
someone’s tax identification number implies learning their name as well), or
it may increase the probability of learning another structure (recall the corre-
lation between smoking habits and lung cancer). An adversary might exploit
correlations between different structures within a given secret to obtain infor-
mation about a more important (and presumably better protected) structure
through a less important (and presumably less well protected) structure. By
considering the distribution on secrets and the capabilities of the adversary,
we can adjust the relative worth of one structure with respect to any other,
thus avoiding potentially harmful loopholes. In particular, worth assignments
can model:

(i) Information-theoretic predictors. The worth of a structure should
reflect the worth it carries, via correlation, from other structures. For
instance, when an individual’s identity can be recovered with 60% prob-
ability from the combination of the zip-code, date of birth, and gen-
der [16], we might enforce w({zip-code, date of birth, gender}) to be at
least as great as 60% of the worth w({identity}). More generally, given
any two structures f,§ € P(F), the requirement

w(f) > correlation(f,{) - w(f")

might be imposed on a worth assignment w. Here correlation(f,§') is a
function representing how well § predicts §'.
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(ii) Computational effort. Even perfect information-theoretic correla-
tions among structures may not be of practical use for the adversary
(e.g., the correlation of public and private RSA keys). Worth assign-
ments can reflect this. We can impose, on any two structures f,{ €
P(F), the requirement

w(f) > w(f’)/cost(},1),

where cost(f,§') is a function of the computational effort needed to ob-
tain § from f.

2.1 A Worth-Based Approach to QIF

We adopt a probabilistic version of the model .

of deterministic systems and attacks proposed by = =" c o
Kopf and Basin [17]. Let S be a finite set of secrets, a (System) | (observable)

A be a finite set of adversary-controlled inputs or  (attack)
attacks, and O be a finite set of observables. A Fig.1. A system with one
(probabilistic computational) system is a family high input, one low input, and
C = {(S,0,Cu)}aca of (information-theoretic) one low output

channels parametrized by the adversary-chosen

input a € A. Each (S,0,C,) is a channel in which § is the channel input,
O is the channel output, and C, is a |S| x |O] matrix of conditional probability
distributions called the channel matriz. Each entry Cy(s,0) in the matrix repre-
sents the probability of the system producing observable o when the secret is s
and the adversary-chosen low input is a. Given a probability distribution pg on
S, the behavior of the system under attack a is described by the joint distribution
Pa(s,0) = ps(s) - Ca(s,0), with marginal p,(0) = >, pa(s,0), and conditional
distribution pg(s|o) = pa(s,0)/pa(0) whenever p,(0) > 0 (and similarly for p,(s)
and p,(0]s)).

As is usual in QIF, assume that the adversary knows the probability distri-
bution pg on the set of secrets and the family of channel matrices C' describing
the system’s behavior. By controlling the low input, the adversary can launch
an attack as follows: pick a € A so the channel matrix is set to C,, thereby ma-
nipulating the behavior of the system. The adversary’s goal is to infer as much
information as possible from the secret, given knowledge about how the system
works, the attack fed to the system, and the observations made as the system
executes.

Let {2 be the set of all possible worth assignments for the structures of S,
Pr(S) be the set of all probability distributions on S, and C 4 be the set of channel
matrices induced by attacks a € A. A measure of information worth is a function
v: 2 x Pr(S) xCa — RY. The quantity v(w, ps, C,) represents the a posterior:
information with respect to S revealed by attack C, € C4, given probability
distribution ps € Pr(S) on secrets and worth assignment w € (2. Before any
attack is performed, the adversary has some a priori information about the
secret due to knowledge of ps and w only, and we represent this information by
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v(w,ps). Because the attack is expected to disclose secret information to the
adversary, the leakage from an attack C, is defined as the difference?, between
the a posteriori and a priori information associated with C,,.

Before discussing measures of information, we will fix some additional no-
tation. For any &’ C S we denote by pg(:|S’) the normalization of pg with
respect to &', ie., for every s € S, ps(s|S’) = ps(s)/ps(S’) if s € S, and
ps(s|S’) = 0 otherwise. The support of a distribution pg is denoted supp(psg).
A set P = {S1,...,8,} is a partition on S iff: (1) Ug,cpSi = S, and (ii) for
1 <i#j<n &NS; =0. Each S; € P is called a block in the par-
tition. We denote the set of all partitions in S by LoI(S) 3. Following [10],
any partition P, = {So,,...,Ss,} on S induced by the attack a can be seen
as a random variable with carrier {S,,,...,S,, } and probability distribution

ps(So;) = Zsesoi ps(s)-

3 Measures of Information Worth

3.1 Operational Interpretation of Measures Revisited

One of Shannon’s greatest insights, which ultimately led to the creation of the
field of information theory, can be formulated as: information is describable in
terms of answers to questions. The more information the adversary has about
a random variable, the fewer questions of a certain type that must be asked in
order to infer its value, and the smaller the Shannon entropy of this random
variable.

Formally, the Shannon entropy of a probability distribution pg is defined as
SE(ps) = —>_,ps(s)logps(s), and the conditional Shannon entropy of ps given
a channel C, is defined as SE(ps,Ca) = Y ,coPa(0)SE(pa(-|0)). A possible
operational interpretation of this measure is: The adversary can pose questions
Does S € 8'?, for some 8’ C S, to an oracle, and Shannon entropy quantifies
the expected minimum number of guesses needed to infer the entire secret with
certainty. A decrease in the Shannon entropy of the secret space caused by a
system can be seen as the leakage from the system. This question-and-answer
interpretation has an algorithmic equivalent: S is seen as a search space, and by
repeatedly asking questions Does S € 8’ ?, the adversary is performing a binary
search on the space of secrets. Now, Shannon entropy corresponds to the average
height of the optimal binary search tree.

However, Shannon entropy is not the unique meaningful measure of informa-
tion. Guessing entropy allows the adversary to pose a different type of question;
whereas probability of guessing quantifies a different aspect of the scenario of

? Braun et al. [12] make a distinction between this definition of leakage, called additive
leakage, and multiplicative leakage, where the ratio (rather than the difference) of the
a posteriori and a priori information is taken. Divisions by zero avoided, the results
of this paper apply to both definitions. For simplicity, we adopt the first.

3 LoI stands for Lattice of Information. The reason for this nomenclature is clarified
in Section 4.1.
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Table 1. Operational interpretation for three traditional information-flow measures,
and a new measure. The question mark indicates the value of measure.

d1l: Type of d2: Num. d3: Prob.
Measure question questions of attack
in attack successful

Shannon entropy S is inferred

r9 ?
SE(ps) Does 5 € &7 ’ with prob. 1
Guessing entropy Is S — 2 9 S.IS inferred
NG(ps) with prob. 1
Prob. of guessing Is G — gp T guesses 9
PGr(ps) allowed
Prob. of guessing under € 1, T guesses °
PGE(ps) Does S € §'¢ allowed !

interest. Yet, the operational interpretation of these measures also can be de-
scribed in terms of questions and answers as follows.

For simplicity, assume that elements of S are ordered by decreasing probabil-
ities, ie., if 1 <4 < j < |S| then ps(s;) > ps(s;j). The guessing entropy of pg
is defined as NG(pg) = Zﬁ‘1 i-ps(si), and the conditional guessing entropy of
ps given a channel C, is defined as NG(ps, Ca) = > co Pa(0) NG (pa(-0)). An
operational interpretation of guessing entropy is: The adversary can pose ques-
tions Is S = s?, for some s € S, to an oracle, and guessing entropy quantifies the
expected number of guesses needed to learn the entire secret. Algorithmically,
guessing entropy is the expected number of steps needed for the adversary to
find the secret using linear search on the space of secrets.

Still assuming that the elements of S are in decreasing order of probabili-
ties, the probability of guessing the secret in n tries is defined as PG, (ps) =
St ps(si). The conditional probability of guessing of ps in n tries given a
channel C, is defined as PG,(ps,Ca) = D coPa(0)PGr(pa(-lo)). An opera-
tional interpretation of probability of guessing in n tries is: The adversary can
pose questions Is S = s?, for some s € S, and the measure quantifies the proba-
bility of guessing the entire secret in n tries. Algorithmically, the probability of
guessing is the chance of success by an adversary performing a linear search on
the space of secrets, after n steps.

Note that the landscape of these measures is covered by varying three dimen-
sions of their operational interpretation:
d1: the type of question the adversary is allowed to pose;
d2: the number of questions (quesses) the adversary is allowed to pose;
d3: the probability of success, i.e., that of the adversary inferring the secret.

Table 1 summarizes the operational interpretation of Shannon entropy, guess-
ing entropy and probability of guessing in terms of dimensions d1, d2, and d3.
The type of question is fixed for each measure; the other two dimensions have a
dual behavior: one is fixed and the other one is quantified. In particular, Shannon
entropy and guessing entropy fix the probability of guessing the secret to be 1
and quantify the number of questions necessary to do so; probability of guessing
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fixes the number of guesses to be n and quantifies the probability of the secret
being guessed.

We add a fourth row to Table 1 for a measure whose operational interpreta-
tion is: The adversary can pose questions Does S € S’ %, for some &’ C S, to an
oracle, and the measure quantifies the probability of guessing the entire secret in
n tries. Algorithmically, this measure is analogous to the probability of guessing
but allowing the adversary to perform a binary (rather than linear) search on
the space of secrets. The probability of guessing under €, in n tries, of a distri-
bution ps is defined as PG (ps) = maxperor(s),|p|<2n 2_srep,|s7|=1 Ps([S'). The
conditional probability of guessing under €, in n tries, of pg given a channel C,
is defined as PG (ps, Ca) = Y oco Pa(0) PG (pa(-]0))-

Worth as a New Dimension. The traditional measures in Table 1 presume
secrets are monolithic and equally sensitive. We relax this restriction by intro-
ducing a new dimension to the operational interpretation of measures:

d4: the worth the adversary extracts from a guess.

We can enrich the landscape of measures of information with new definitions
that exploit the extra freedom allowed by the new dimension d4. As with the
traditional case, for each measure we fix the type of question the adversary is
allowed to pose and vary the role played by the other three dimensions. Hence
we classify the measures into three groups:

— W-measures quantify the worth extracted from an attack when the follow-
ing dimensiouns are fixed: (i) the number of questions that can be posed, and
(ii) the required probability of success.

— N-measures quantify the number of guesses the adversary needs in order
to succeed when the following dimensions are fixed: (i) the required proba-
bility of success, and (ii) a minimum worth-threshold to extract as measured
according to a W-measure v modeling the adversary’s preferences.

— P-measures quantify the probability of an attack being successful when
the following dimensions are fixed: (i) the number of questions that can be
posed, and (ii) a minimum worth-threshold to extract as measured according
to a W-measure v modeling the adversary’s preferences.

According to this classification, Shannon entropy and guessing entropy are
N-measures, and probability of guessing is a P-measure (all of them implicitly
using a trivial worth assignment). Table 2 organizes the measures of information
worth we propose in this paper. The new table subsumes Table 1 of traditional
measures.

W -measures are used to specify the fixed worth-threshold necessary to fully
define P-measures and N-measures, and hence we will start our discussion with
them. First we introduce a few conventions.

Assume that the set S of secrets follows a probability distribution pg, and that
its fields are given by set F. Assume also that an appropriate worth assignment
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Table 2. Operational interpretation for measures of information worth. The question
mark indicates the value of the measure.

W-measures: dl: Type of d2: Num. d3: Prob. d4: Worth of
quantifying worth question questions of attack payoff to attacker
in attack successful

Worth of certainty 1o 1 guess success with N
WCER(w,ps) Does S € &7 allowed prob. 1 )
W-vulnerability 1o 1 guess ?
WV (w,ps) Does 5'€ 5 allowed (product prob. x worth)
Worth of exp. = Is§—gp T 8uesses success with ?
WEXP, ,(w,ps) T allowed prob. 1  (using W-measure v)
N-measures: dl: Type of d2: Num. d3: Prob. d4: Worth of
quantifying number question questions of attack payoff to attacker
of guesses in attack successful
W-guessing entropy Is S —s? 5 success with extracted worth w
WNGw,(w, ps) - ' prob. 1  (using W-measure v)
W-Shannon entropy Does S € S'? 2 success with e)litracted worth w
WSEw,.(w,ps) prob. 1  (using W-measure v)
P-measures: dl: Type of d2: Num. d3: Prob. d4: Worth of
quantifying prob. of question questions of attack payoff to attacker
success in attack successful
W-prob. of guessing /o T guesses N extracted worth w
WPGS, .. (w,ps) Does 5'€ 5 allowed ' (using W-measure v)

w is provided. For an attack C, producing observables in a set O, the infor-
mation conveyed by each o € O is the information contained in the probability
distribution p,(:|o) that o induces on secrets. A measure of information worth is
composable if the value of an attack can be calculated as a function of informa-
tion conveyed by each observable: v(w,ps,Ca) = >, co Pa(0)v(w, ps(-lo)). All
measures we propose in this paper are composable, but they easily extend to
worst-case versions. Finally, define the worth of a secret s € S to be the worth
of learning all of its fields, i.e., w(s) = w(F).

3.2 W-measures

Worth of Certainty. Consider a risk-averse adversary who is allowed to guess
any part of the secret—as opposed to the secret as a whole—but who will do so
only when absolutely certain the guess will succeed. To model this scenario, we
note that a field is deducible with certainty from pg if its contents is the same in
every secret in the support of the distribution. Formally, the deducible fields from
ps are defined as ded(ps) = F\{f € F | 3¢',s" € supp(ps) : s'[f] # s"[f]}.
For an attack C, producing observables in a set O, the deducible fields from
each o € O are those that can be inferred from the probability distribution
ded(pa(+]0)) that o induces on secrets. The information contained in a probability
distribution is defined as the worth of its deducible fields.



130 M.S. Alvim, A. Scedrov, and F.B. Schneider

Definition 2 (Worth of certainty). The worth of certainty of ps is defined
as WCER(w,ps) = w(ded(pg)). The worth of certainty of an attack C, is a
W-measure defined as WCER(w,ps,Ca) = Y co Pa(0) WCER(w, pa(+|0)).

W -vulnerability. Consider an adversary who can guess a less likely struc-
ture, provided that this structure is worth enough to yield a higher overall
expected gain. Formally, for every structure f C F, we define pg(f) to be the
probability that f can be deduced by an adversary knowing the distribution pg:
ps(f) = maxzesyy) D es, s(fj=s PS(5)- A rational adversary maximizes the product
of probability and worth, so we define W-vulnerability as follows.

Definition 3 (W-vulnerability). The W-vulnerability of ps is defined as
WV (w,ps) = maxscr (ps(f)w(f)). The W-vulnerability of an attack C, is a
W -measure defined as WV (w,ps,Ca) = Y co Pa(0) WV (w,pa(:|0)).

Worth of expectation under =. Consider an adversary who can explore the
space of secrets using brute force, i.e., by guessing the possible values of the
secret, one by one. Assume that this adversary is allowed n > 0 tries. The aim is
to extract as much worth as possible according to some W-measure ¥ modeling
the adversary’s preferences. This leads to the following measure.

Definition 4 (Worth of expectation under =). Let n > 0 be the mazimum
number of tries allowed for the adversary. The worth of expectation under = of
ps is WEXP;,(w,ps) = maxsics,js/<n (ps(Sw(F) + ps(SIw(w,ps(1S)),
where 8’ = S\S'. The worth of expectation under = of an attack C, is a W-
measure defined as WEXP (w,ps,Ca) = D co Pa(0) WEXP (W, pa(:|0)).

3.3 N-measures

W -guessing entropy. Consider an adversary who can ask questions Is S = s?
but who, instead of having to guess the secret as a whole, can fix a minimum
worth 0 < w < w(F) to obtain according to some W-measure v modeling the
adversary’s preferences. A generalized version of guessing entropy quantifies the
expected number of questions to obtain a minimum worth w from such attacks.

Definition 5 (W-guessing entropy). Let 0 < w < w(F) be a worth thresh-
old quantified according to a W-measure v. The W-guessing entropy of pg is
WNGW,_V(WapS) :minS’gS,u(w,ps(-|3’))2w (pS(S/)NG(pS(|S_l))+pS(S/)(|S_/‘+ 1))7
where 8" = S\S'. The W-guessing entropy of an attack C, is a N-measure de-
fined as WNG\, ,(w,ps,Ca) = > c0 Pa(0) WNGy (W, pa(-]0)).

W-Shannon entropy. Consider an adversary who is allowed to ask questions
of the type Does S € §'? but who, instead of having to guess the entire secret,
can fix a minimum worth-threshold 0 < w < w(F) to extract according to a
W-measure v. A generalized version of Shannon entropy quantifies the expected
number of questions necessary to obtain worth w from the attacks.



When Not All Bits Are Equal: Worth-Based Information Flow 131

Definition 6 (W-Shannon entropy). Let 0 < w < w(F) be a worth threshold
quantified according to a W-measure v. The W-Shannon entropy of ps is defined
asWSE\,,(w,ps) = Milperor(s)vs'eP v(w,ps(-|s))>w SE(pp). The W-Shannon
entropy of the distribution pg, given an attack Cgy, is a N-measure defined as
WSEw,v(w, ps; Ca) = 3 peo Pa(0) WSEw»(w, pa(-]0))-

3.4 P-measures

W -Probability of Guessing. Consider an adversary allowed to pose n ques-
tions of the type Does S € 8’ ?. The following measure quantifies the chances of
extracting worth 0 < w < w(F), as measured by some W-measure v, from an
attack. Given n questions, at most 2" blocks can be inspected, which leads to
the following mathematical definition.

Definition 7 (W-probability of Guessing). Let 0 < w < w(F) be a worth
threshold quantified according to a W-measure v, and n > 0 be the maximum
number of tries allowed for the adversary. The W-probability of guessing of
ps is WPGY,,, ,(w,ps) = maxperors),pj<2n 25/ ePw(wps(18)>w Ps(S"). The
W -probability of guessing of an attack C, is a P-measure defined as follows:
WPGvev,n,u(w’pSa Ca) = ZoEOpa(O) WPGve\l,n,u(wapa("O))'

3.5 Mathematical Properties of Measures of Information Worth

The proposed measures of information worth by definition always yield non-
negative values. It is a subtler matter, however, to show that they also always
yield non-negative values for leakage. Theorem 1 below shows that non-negativity
of leakage holds for our measures of information worth under certain conditions.
Because N-measures and P-measures have a W-measure as an input parame-
ter to model the preferences of the adversary, we restrict consideration to W-
measures presenting a consistent behavior with respect to the number of possible
values for the secret. Intuitively, whenever some secret value is ruled out from
the search space, the adversary’s information about the secret, according to the
measure, does not decrease. Formally:

Definition 8 (Monotonicity with respect to blocks). Given a set S of
secrets, a W-measure v is said to be monotonic with respect to blocks if, for
every worth assignment w, every probability distribution ps on S, and all subsets
(i.e., blocks) §',S" of S such that 8" C S”, it is the case that v(w,ps(-|S")) >
v(w,ps(-|S8")). When v quantifies uncertainty, the inequality is reversed.

At first it might seem that monotonicity with respect to blocks would hold for
every W-measure. But this is not the case. It does hold for worth of certainty,
for instance, but it does not hold for W-vulnerability, as shown in the following
example.

Example 1. The vulnerability of a probability distribution pg is calculated as
V(ps) = maxs p(s). Consider the block S’ = {s1, s2, 3,54} of secrets, where
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p(s1) =1/2 and p(s2) = p(s3) = p(s4) = 1/6. Then V(S’) = 1/2. Suppose that
S’ is split into blocks S” = {s1} and S" = {s2, s3,54}. Hence, even if "' C 5’
we have V(S") = 1/3 < V(5’). Since traditional vulnerability is a particular
case of W-vulnerability (Theorem 2), the example is also valid for the former.

In probabilistic systems, the adversary’s knowledge is not tied to blocks of
secrets but to probability distributions induced by observations. The concept of
monotonicity is generalized accordingly.

Definition 9 (Monotonicity with respect to observations). Given a set S
of secrets, a measure of information worth v is said to be monotonic with respect
to observations if for every worth assignment w, every probability distribution ps
on S, and all observables o € O: v(w,ps(-|0)) > v(w,ps(:)). When v quantifies
uncertainty, then the inequality is reversed.

From Example 1 it follows that W-vulnerability is not monotonic with respect
to observations. It is easy to see, however, that worth of uncertainty is.

The following theorem establishes the non-negativity of leakage by showing
that the adversary’s information after an attack is never smaller than the a priori
information.

Theorem 1. Let S be a set of secrets composed by the fields in F and let C,, be
an attack. Let v be a W -measure that is monotonic with respect to observations,
n > 0 be the number of guesses allowed for the adversary, and 0 < w < w(F).
For every distribution pg on S and every worth assignment w:

WCER(w,ps,C,) > WCER(w, ps) (1)
WV (w,ps,Ca) =WV (w,ps) (2)
WEXP,, ,(w,ps,Co) 2WEXP, ,(w,ps) (3)
WNGw,(w,ps,Ca) <WNGw,(w,ps) (4)
WSE\w,,(w,ps,Ca) <WSEw,(w,ps) (5)
WPG,, ., (w,ps,Co) 2WPGY, ,, (W, ps) (6)

3.6 Relation with Traditional Measures

We now substantiate our claim that Shannon entropy, guessing entropy, and
probability of guessing (and, in particular, vulnerability) are measures of infor-
mation that ignore the worth of structures. Define the binary worth assignment
wpin, that attributes zero worth to any proper structure, i.e., wpi, (f) = 1if f = F
wpin(f) = 0 if f C F. Theorem 2 asserts that the traditional measures implicitly
use wp;, as a worth assignment, which means that only the maximal structure is
deemed to be conveying relevant information. For instance, the theorem states
that Shannon entropy is the particular case of W-Shannon entropy in which the
adversary must perform a binary search to the maximum level of granularity,
i.e., until the secret is unequivocally identified.
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Theorem 2. Let S be a set of secrets distributed according to ps, and let C, be
an attack. Then the following hold:

SE(ps,Ca) =WSE1 worr(Whin, Ps, Ca) (7)
NG(ps,Ca) =WNG1, weer(Whin, Ps, Ca) (8)
PGy (ps,Ca) =WEXP, ,  (Whin,Ps;Ca) (Vn > 0) 9)
V(ps|Ca) =WV (whin, ps, Ca) (10)

where Vpyy s a W-measure such that Vpyu(w,ps) = 0 for every w and pg.

4 Algebraic Structure for Measures of Information Worth
in Deterministic Systems

4.1 Deterministic Systems and Attack Sequences

In a deterministic system C, for each pair of high input s € S and and low
input a € A, a single output o € O is produced with probability 1. Therefore
each attack a € A induces a partition P, on the set of secrets, where each
block S,,, € P, contains all secrets mapped to o when the low input to the
system is a, i.e., Sg,0 = {s € S|C(s,a) = 0o}. When the attack is clear from the
context, we write S, for S, .. An attack step can be described mathematically as
C(s,a) € P,, which is a two-phase process: (i) the adversary chooses a partition
P, on S, corresponding to attack a € A, and (ii) the system responds with the
block S, € P, that contains the secret.

The adversary may perform multiple attack steps for the same secret. The
adversary combines information acquired in an attack sequence @ = ay,, ..., as,
of k steps by intersecting the partitions corresponding to each step in the se-
quence, thereby obtaining a refined partition* P; = Nuca Pa- Hence an attack
sequence a can be modeled as a single attack where the adversary chooses the
partition P; as the low input to the system and obtains as an observable the
block to which the secret s belongs. Formally, C(s,a) € P4 holds.

4.2 The Lattice of Information and the Leakage from Attack
Sequences

The set of all partitions on a finite set S forms a complete lattice called the Lattice
of Information (LoI) [14]. The order on lattice elements is the refinement order
C on partitions: P T P’ iff for every S; € P’ there exists S; € P such that
S; € S;. The relation C is a partial order on the set of all partitions on S. The
join U of two elements in the Lol is the intersection of partitions, and their meet
M is the transitive closure union of partitions. Given two partitions P and P’,
both P LI P" and P M P’ are partitions as well. We fix the deterministic system
and let the elements in the LoI model possible executions. By controlling the

4 The intersection of partitions is defined as P NP’ = Usaep s, epr So NSy
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low input to the system, the adversary chooses among executions, so the Lol
serves as an algebraic representation of the partial order on the attack sequences
the adversary can perform. Each attack sequence a corresponds to one element
Ps;—i.e., the partition it induces—in the LoI for S.

An attack sequence can be seen as a path in the LoI. Each attack sequence
is mapped to an element in the lattice, and by performing an attack step the
adversary may obtain a finer partition on the space of secrets, therefore moving
up in the lattice to a state with more information. The leakage of information
from an attack sequence is, thus, the difference in the measures of information
worth between the initial and final partition in the path. This definition of
leakage encompasses the traditional definitions for Shannon entropy, guessing
entropy, and probability of guessing.

4.3 Consistency with Respect to the Lol

The Lattice of Information has been used as an underlying algebraic structure
for deterministic systems, and it provides an elegant way to reason about leakage
under composition of attacks. Yasuoka and Terauchi [18] showed that orderings
based on probability of guessing, guessing entropy, and Shannon entropy are all
equivalent, and Malacaria [10] showed that they coincide with the refinement
order in the LoI. These results establish that the traditional measures behave
well with respect to the LoI: the finer a partition is, the more information (or
the less uncertainty) the measures attribute to it.

All measures of information worth proposed in Section 3 behave in a simi-
lar way. That is, they are consistent with respect to the LoI. This is formally
established in the following theorem.

Theorem 3. Let S be a set of secrets composed by the fields in F. For all P
and P’ in the Lol for S, the following are equivalent:

P CP’ (11)

Vw Vps WCER(w,ps,P) <WCER(w,ps, P’) (12)

Vw Vps WV (w, ps, P) < WV (w,ps, P') (13)

Vn Vv Yw Vpg WEXPiy(w,ps, <WEXP, (w, ps, P)) (14)

Yw Vv Yw Ypg  WNG . ( > WNGW v(w,ps, P) (15)

( >WSEw,,(w,ps, P’) (16)

( <W. Gvevnu(w,ps,P’) (17)

P) <
P)
w,ps, P)
Yw Vv Yw Vps  WSEy ,(w,ps, P)

)

Yw Vn Vv Yw Vpg WPGW nv(W,ps, P)

where n > 0; 0 < w < w(f), and v ranges over all composable W -measures
that are consistent with respect to the Lol plus the worth of certainty measure
WCER. In (15) and (16) v is restricted to be monotonic with respect to blocks.

5 A Design Technique for Worth Assignments

We now outline a general technique to capture into worth assignments relevant
aspects of some given scenario of interest.
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The domain of worth assignments is the . .
adversarial secrecy COHSISteHCy
PO(VlVer set ;D((i )) of t}?ehset F of 1ﬁelds. By knowledge | |requirements | | requirements
endowing with the set-inclusion or-
dering, we obtain a (complete) lattice of ‘ ‘ ‘
structures Lr. For every structure f € ‘
P(F) there is a partition Py, belonging ‘
to the LoI, distinguishing structure f. For-
mally, P; = {Sy5=s | © € SI[f|]} where
to every x € SJ[f] corresponds the block
Ssljj=z = {5 € S | s[f] = z}. Proposition 1
shows that the set-inclusion ordering on structures coincides with the refinement
relation on the corresponding partitions, thereby establishing that the space of
structures is a sub-lattice of the LoTI.

design procedure |

Fig. 2. Scheme of a design technique
for worth assignments

Proposition 1. For every f,§ € P(F): f C§ iff Ps C Py.

Hence, the space of structures Lx is isomorphic to the complete lattice formed
by all partitions P;s for f C F, ordered by the refinement relation C.

Figure 2 depicts our design technique, which constructs a worth assignment
having as input the following three parameters describing a scenario of interest.

a) Adversarial knowledge is any relevant information the adversary knows
from sources external to the system (e.g., newspapers, common-sense, other
systems). As usual in QIF and privacy, adversarial knowledge is modeled as
a probability distribution on the space of secrets [19-21].

b) Secrecy requirements reflect the protector’s (i.e., the party interested in
hiding the secret) interests, specifying which structures are intrinsically sen-
sitive and which are only contingently sensitive, that is, sensitive only to
the extent they possibly reveal information about other intrinsically sensitive
structures. (E.g., a patient’s lung cancer status may be considered intrinsi-
cally sensitive, whereas smoking habits may be considered sensitive only to
the extent that they reveal information about the patient’s cancer status.)
Secrecy requirements are represented as a partial function from the space of
structures to non-negative reals that associates every intrinsically sensitive
structures with an appropriate, a priori, worth.

c) Consistency requirements are mathematical properties imposed on worth
assignments. Non-negativity and monotonicity are considered syntactic con-
sistency requirements—they depend only on the representation of secrets,
not on their meaning. Syntactic requirements alone are not sufficient to guar-
antee the consistency of worth assignments. Often semantic requirements
also need to be considered, such as the adjustments for information-theoretic
predictors and computational cost from Section 2. Other examples are (i)
inclusion-exclusion consistency: the worth of the composition of two struc-
tures is equal to the sum of their individual worths, minus the worth they
share: w(fUT) = w(f) + w(f') —w(F M), and (ii) independence: statistically
independent structures add their worth; so if Py and Py are independent
then w(FU ) = w(f) +w(F).
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Once the inputs are provided, a design proceeds as follows:

1. Construct the complete lattice Lz of structures.

2. Use secrecy requirements to annotate each element Py in L, where f € P(F)
is a intrinsically sensitive structure, with the appropriate a priori worth in
accordance to the protector’s interests.

3. Using the adversarial knowledge, derive a probability distribution pg. Par-
titions in the LoI can be seen as random variables, so use pg to derive the
probability distribution in the elements of L.

4. Take some well established measure of information v (e.g., guessing en-
tropy), and for every structure f € P(F), update its worth according to
w(f') = maxsep(r) V(Py |Ps). Repeat until all structures respect the consis-
tency requirements.

This design technique captures the adversarial knowledge into the worth as-
signment, and the worth of structures will inherit the operational interpretation
of the measure v chosen in step 4. However, because the procedure depends on
the probability distribution on the elements of L 7, certain semantic requirements
only can be approximated. An example is the inclusion-exclusion principle: if it
were to be preserved for all probability distributions pg, then it would be a
valuation on the lattice, which is known not to exist [22].

6 Related Work

Relation with g-leakage. We start by reviewing g-leakage [13]. Given a
set S of possible secrets and a finite, nonempty set Z of allowable guesses,
a gain function is a function g : Z x § — [0,1]. Given a gain function g,
the prior g-vulnerability of a probability distribution pg is defined as Vy(pg) =
max.cz ) csPs(5)g(z, s). Given also a channel C, from secrets in S to observ-
ables in O, the posterior g-vulnerability is Vy(ps, Ca) = > ,co P(0)Vy(pa(:]0))-
The g-vulnerability is converted into g-entropy by taking its logarithm: Hy(pg) =
—log Vy(ps) and Hy(ps, Ca) = —log Vy(ps, Cq). Finally, g-leakage is the differ-
ence between prior and posterior g-entropies: L4 (ps, Cyo) = Hyg(ps)—Hg(ps, Ca).
Comparing our work with g-leakage, two main points are noteworthy:

(i) g-leakage as defined in [13] cannot capture scenarios where the worth of
a structure depends on the probability of that structure. Hence worth of
certainty and W-Shannon entropy cannot be modeled using g-leakage.

Proposition 2. Given a set of secrets S and a set of guesses Z, there
is mo gain function g : £ x & — R* such that, for all priors ps on S,
and all partitions P on the Lol for S, it is the case that: (i) V4(ps) =
WCER(w,ps), or (i) Vy(ps) = SE(ps), or (iii) Hy(ps) = SE(ps).

(ii) g-leakage and measures of information worth coincide in some scenarios,
and when it happens, our approach can give practical operational inter-
pretations to gain functions—in fact, a common criticism of the g-leakage
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framework concerns the challenge of identifying adequate functions for a
scenario of interest. Take guessing entropy, as an example. Take an al-
lowable guess z to be an ordered list A(S’) of the secret elements of a
subset 8" C S of secrets. A guess A(S’) means that the adversary believes
that the secret belongs to the set S’. Moreover, in a brute-force attack
the adversary would guess secrets in that same order they appear in that
list. Then, for the binary worth assignment wp;,?, define a gain function
G (A(S),8) = —A(S)(s) if 5 € ', and g, (A(S),5) = (S| + 1)
otherwise. It can be shown that the W-guessing entropy captures the g-
vulnerability of an adversary guided by the gain function g,,,,, , i.e., that
WNG1, weer(Whin, Ps) = Ve, (ps). However, g.,, ranges over negative
values, which is not allowed by the original g-vulnerability framework.%
Fortunately we do not run into the same type of problem when using W-
vulnerability, worth of expectation under =, and W-probability of guessing
to provide operational interpretations for g-functions.

Other Related Work. Kopf and Basin [17] proposed the model for determin-
istic systems we extended in this paper. Shannon [23] points out the indepen-
dence of the information contents with respect to its representation, and gives
the first steps in trying to understand how Shannon entropy would behave in
a lattice of partitions. The Lattice of Information is introduced by Landauer
and Redmond [14]. Yasuoka and Terauchi [18] show the equivalence of the or-
dering on traditional measures, and Malacaria [10] uses the LoI as an algegraic
foundation to unify all these orderings. Backes, Kopf and Rybalchenko [24],
and Heusser and Malacaria [25] use model checkers and sat-solvers to deter-
mine the partitions induced by deterministic programs. Adao et al. [26] relax
the assumption of perfect cryptography by allowing the adversary to infer a key
at some (possibly computational) cost, and introduce a quantitative extension
of the usual Dolev-Yao intruder model to analyze implementations of security
protocols. Their work focuses on cryptography, whereas ours is applied to QIF.
Askarov et al. [27] show that the possibly unbouded leakage of termination-
insensitive noninterference can be mitigated by making the secret sufficiently
random and large. Demange and Sands [28] point out that secrets can not al-
ways be chosen to fulfill such requirements, and they develop a framework in
which “small” secrets are handled more carefully than “big” ones. They focus on
preventing leakage, whereas we aim at providing rigorous information-theoretic
measures for quantifying leakage.

7 Conclusion and Future Work

This paper proposed a framework to incorporate the worth of structures—
possibly representing their sensitivity—into information-flow measures. We

5 The procedure can be generalized to worth assignments other than wpi,.
5 If we try to capture W-guessing entropy using g-entropy instead of g-vulnerability,
the situation becomes even worse: no gain function exists, even with negative values.
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generalized Shannon entropy, guessing entropy and probability of guessing, and
we proved that the generalizations are consistent with respect to the Lattice of
Information for deterministic systems. We also outlined a design technique for
worth assignments that captures important aspects of a scenario of interest.

We are currently refining the design technique for worth assignments to make
it fully automated. We are also investigating scenarios where every attack incurs
some cost. The resulting theory would enable the study of the trade-off between
the information yielded by an attack versus cost.
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