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Abstract. Bellare, Hoang, and Keelveedhi (CRYPTO’13) introduced a security
notion for a family of (hash) functions called universal computational extractor
(UCE), and showed how it can be used to realize various kinds of cryptographic
primitives in the standard model whose (efficient) constructions were only known
in the random oracle model. Although the results of Bellare et al. have shown that
UCEs are quite powerful and useful, the notion of UCE is new, and its potential
power and limitation do not seem to have been clarified well. To further widen
and deepen our understanding of UCE, in this paper we study the construction of
chosen ciphertext secure (CCA secure) public key encryption (PKE), one of the
most important primitives in the area of cryptography to which (in)applicability
of UCEs was not covered by the work of Bellare et al.

We concretely consider the setting in which other than a UCE, we only use
chosen plaintext secure (CPA secure) PKE as an additional building block, and
obtain several negative and positive results. As our negative results, we show
difficulties of instantiating the random oracle in the Fujisaki-Okamoto (FO) con-
struction (PKC’99) with a UCE, by exhibiting pairs of CPA secure PKE and a
UCE for which the FO construction instantiated with these pairs becomes inse-
cure (assuming that CPA secure PKE and a UCE exist at all). Then, as our main
positive result, we show how to construct a CCA secure PKE scheme using only
CPA secure PKE and a UCE as building blocks. Furthermore, we also show how
to extend this result to a CCA secure deterministic PKE scheme for block sources
(with some constraint on the running time of the sources). Our positive results em-
ploy the ideas and techniques from the Dolev-Dwork-Naor (DDN) construction
(STOC’91), and for convenience we abstract and formalize the “core” structure
of the DDN construction as a stand-alone primitive that we call puncturable tag-
based encryption, which might be of independent interest.

1 Introduction

Background and Motivation. For the constructions of cryptographic primitives in which
we use a hash function as a building block, if we can view the hash function as a
random oracle [8], then in most cases we can obtain simple and practical constructions.
Moreover, there are some cryptographic primitives whose (efficient) constructions are
known only if we use a random oracle. However, random oracles do not exist in the real
world, and there are several problems for security proofs in the random oracle model
(e.g. [13,23,31]). Therefore, it is in general desirable to consider the constructions of
cryptographic primitives without using random oracles.
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In CRYPTO 2013, Bellare, Hoang, and Keelveedhi [4] introduced a new security
notion for a family of (hash) functions called universal computational extractor (UCE),
whose main purpose is to “instantiate” and “replace” random oracles used in a wide
class of the constructions of cryptographic primitives with UCEs. The UCE security
is intended to capture the security satisfied by a hash function that “behaves like a
random oracle” as close as possible, and roughly guarantees that outputs of a hash
function (in the family) look random, as long as the inputs to the hash function are
hard-to-find even given the related information (called leakage) of the inputs, and as
long as the inputs are independent of a function index that specifies the function from
the family.1 Bellare et al. [4] showed how UCEs can be used to realize various kinds
of cryptographic primitives in the standard model whose (efficient) constructions were
only known in the random oracle model (such as deterministic public key encryption
[3] and message-locked encryption [7]).

Although the results of Bellare et al. have shown that a UCE is quite powerful and
useful, the notion of UCE is new, and its potential power and limitation do not seem
to have been clarified well. To further widen and deepen our understanding of UCE,
in this paper we study the construction of chosen ciphertext secure (CCA secure) pub-
lic key encryption (PKE) [33,36,19], one of the most important primitives in the area
of cryptography for which we have witnessed the great success in the literature (e.g.
[9,20,21,1,34]) and yet to which (in)applicability of UCE was not covered by the work
of Bellare et al. (In fact, Bellare et al. showed the instantiability of the random oracle in
the OAEP scheme [9], but they only showed the chosen plaintext (CPA) security.) As a
first step towards clarifying the usefulness of UCEs in the context of constructing CCA
secure PKE, in this paper we concretely consider the setting where, other than a UCE,
we only use CPA secure PKE as an additional (and seemingly minimal) building block,
and obtain several negative and positive results.

Our Contributions. In this paper, we investigate the usefulness and (in)applicability
of UCEs in the context of constructing CCA secure PKE. As mentioned above, we
concretely study the setting in which other than a UCE, we only use CPA secure PKE
as an additional building block, and obtain several negative and positive results.

Our starting point is the Fujisaki-Okamoto (FO) construction [20] which constructs
CCA secure PKE from a random oracle and a CPA secure PKE scheme (satisfying
some property on cardinality of ciphertexts). As our negative results, in Section 3, we
show the difficulties of instantiating the random oracle in the FO construction with a
UCE if we simply put a function index of a UCE into a public key. Specifically, we
first show that (assuming that CPA secure PKE and a UCE exist) there exists a pair of
CPA secure PKE and a UCE for which the FO construction instantiated with this pair
is not even CPA secure. This result is shown by designing a pair of a CPA secure PKE

1 Actually, “UCE” is not a single security notion, but a family of security notions for a function
family, from which a particular notion is specified when we specify what class of “sources”
we will consider. For more details, see the explanation and the formal definition in Section 2.1.
For convenience, in the introduction, when we just write “UCE” (resp. “UCE security”), we
mean a function family that satisfies some version of UCE security notions (resp. one of UCE
security notions), and exactly which notion is used will be specified in the formal statements
given in Sections 3 and 5.
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scheme having a “weak randomness” and a UCE having a function-index-dependent
“weak input” so that when this pair is used as building blocks in the FO construction,
the resulting PKE scheme has a public-key-dependent “weak plaintext,” which is weak
in the sense that a ciphertext leaks the information of whether or not this weak plaintext
is encrypted. We then further investigate whether the FO construction can be secure
for “public-key-independent” messages, which could be still useful for example in the
setting where the FO construction is used as a key encapsulation mechanism (KEM) by
encrypting a random message and using it as a session-key (for SKE). We show another
negative result for this case by exhibiting yet another pair of CPA secure PKE and a
UCE such that when used as building blocks, the FO construction is not CCA1 secure
even if we restrict an adversary to choose two uniformly random (and hence public-key-
independent) plaintexts as its challenge plaintexts and allow the adversary to make only
one decryption query. This result is obtained by designing a pair of CPA secure PKE
and a UCE which have a public-key-dependent “critical ciphertext” whose decryption
result reveals the (essential part of) secret key. For more details, see Section 3.

Given the above negative results, we depart from the original FO construction [20].
By employing the ideas and techniques from the classical Dolev-Dwork-Naor (DDN)
construction [19] together with a UCE, we obtain several positive results. Specifically,
in Section 5, as our main positive result we show how to construct a CCA secure PKE
scheme using only a CPA secure PKE scheme and a UCE. We actually construct a CCA
secure key encapsulation mechanism (KEM), but by combining it with a CCA secure
SKE scheme, we obtain a full-fledged CCA secure PKE scheme [17]. Furthermore, we
show how this KEM can be extended to obtain a deterministic PKE (DPKE) scheme that
is CCA secure for block sources (with some additional constraint on the running time
of the sources), using the same building blocks as above. To the best of our knowledge,
our DPKE scheme is the first scheme which achieves CCA security for block sources in
the standard model without using lossy trapdoor functions (TDFs) [35] or related prim-
itives (though we have some non-standard restriction on the running time of sources).
By noting that a CCA secure DPKE scheme (for block sources with bounded running
time) is as it is an injective TDF which satisfies adaptively one-wayness [26], this result
immediately yields an adaptively one-way TDF as well. We also show how to weaken
the assumption on the UCE security if the underlying PKE scheme is additionally a
lossy encryption scheme [6]. The ideas and techniques for our proposed constructions
are explained in more details in “Overview of Techniques” paragraph below.

Our positive results clarify not only a new and important primitive for which UCEs
are useful, but also insights for the “gap” between CPA and CCA security for PKE.
Specifically, our results imply that if there exists a CPA secure PKE scheme and a UCE,
then there exist a CCA secure PKE scheme and a CCA secure DPKE for block sources
(with some constraint on the running time). This could be contrasted with the current
state-of-the-art attempts for constructing PKE schemes that satisfy security which is as
close as CCA security, using only a CPA secure PKE scheme as a building block. The
current best security is bounded CCA security [16] (more precisely, non-malleability
under bounded-CCA [15] and its slightly stronger variant [30]). Therefore, our results
serve as a concrete evidence that a UCE is quite a strong primitive, and has the power
to “jump” the currently known gap between CPA and CCA security for PKE schemes.
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As explained in details below, in our proposed constructions, we employ the ideas
and techniques from the DDN construction [19]. For ease of notation and reducing the
description complexity, we abstract the “core” structure of the DDN construction as
tag-based encryption (TBE) [28,25] with some special property, and formalize it as a
stand-alone primitive which we call puncturable TBE (PTBE). This formalization may
be useful for understanding the security proof of the DDN construction, and future
works that use the ideas and the techniques of the DDN construction in a similar way
to ours, and may be of independent interest. For more details, see Section 4.

Due to space limitation, most of the proofs of the theorems and lemmas in this paper
are omitted and will be given in the full version, and we only give proof sketches or
intuitive explanations.

Overview of Techniques. Our proposed CCA secure KEM is based on the DDN con-
struction [19], which originally constructs a CCA secure PKE scheme using a CPA
secure PKE scheme, a non-interactive zero-knowledge (NIZK) proof, and a one-time
signature scheme. In the original DDN construction, the NIZK proof roughly ensures
that each “component”-ciphertext from the underlying CPA secure PKE scheme is in
a valid form, i.e. it is in the range of the encryption algorithm and encrypts the same
value. Here, if there is another mechanism that ensures the “validity” of component-
ciphertexts, then we can remove the NIZK proof from this construction. This is the
place where a UCE comes into play. Specifically, by relying on the power of UCE,
for the DDN construction we realize the mechanism of the “randomness-recovering
decryption” (also called “witness-recovering decryption”) [20,21,35,10,37,32,24,29],
where (a part of) randomness used to generate a ciphertext is recovered in the decryption
process, and this recovered randomness is used to check the validity of the component-
ciphertexts by re-encryption. This “decrypt-then-re-encrypt”-style validity check works
as an alternative of the NIZK proof in the original DDN construction. Actually, such a
mechanism of recovering randomness in the decryption process usually causes a circu-
larity between a plaintext and a randomness (used to generate the ciphertext itself), but
in our construction this circularity can be overcome by the security of a UCE.

Then, our proposed CCA secure KEM is obtained by applying one more enhance-
ment to this “DDN without NIZK” construction. Specifically, we implement the mech-
anism of preventing the “re-use” of component-ciphertexts in the DDN construction,
which is originally realized by a one-time signature (i.e. the technique of using a verifi-
cation key of the one-time signature as a kind of “non-reusable tag” in each
ciphertext), with a commitment scheme. This change not only leads to smaller ci-
phertexts, but also (by appropriately combining it with a UCE) to a scheme with “full
randomness-recovering,” namely, in the decryption process an entire randomness is re-
covered. Hence, with a similar observation in [10], we also obtain a CCA secure DPKE
scheme for block sources. (However, we need to put some additional constraint on the
sources, due to the requirement on UCE security notions that we use.) For more details
about our constructions, see Section 5.

Related Work. The notion of CCA security for PKE was formalized by Naor and Yung
[33] and Rackoff and Simon [36]. Since the introduction of the notion, CCA secure
PKE schemes have been studied in a number of papers, and thus we only briefly review
constructions from general cryptographic assumptions. Dolev, Dwork, and Naor [19]
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showed the first construction of a CCA secure PKE scheme, from a CPA secure scheme
and a NIZK proof system, based on the construction by Naor and Yung [33] that achieves
weaker non-adaptive CCA (CCA1) security. Canetti, Halevi, and Katz [14] showed how
to transform an identity-based encryption scheme into a CCA secure PKE scheme. Kiltz
[25] showed that the transform of [14] is applicable to a weaker primitive of tag-based
encryption (TBE). Peikert and Waters [35] showed how to construct a CCA secure PKE
scheme from a lossy trapdoor function (TDF). Subsequent works showed that TDFs with
weaker security/functionality properties are sufficient for obtaining CCA secure PKE
schemes [37,26,39]. Myers and Shelat [32] showed that a CCA secure PKE scheme
for 1-bit plaintexts can be turned into one for arbitrarily long plaintexts. Hohenberger,
Lewko, and Waters [24] showed that CCA secure PKE can be constructed from a PKE
scheme with a weaker security notion called detectable CCA security. Lin and Tessaro
[27] showed how to amplify weak CCA security into strong (ordinary) CCA secure one.
Recently, Sahai and Waters [38] showed how (among other primitives) CCA secure
PKE can be constructed using indistinguishability obfuscation [2,22]. Very recently,
Matsuda and Hanaoka [29] showed how to construct CCA secure PKE using obfus-
cation for point functions (with multi-bit output), and Dachman-Soled [18] showed a
construction from PKE satisfying (the standard model) plaintext-awareness as well as
some additional “simulatability” property. We note that our proposed constructions and
these two constructions [29,18] have the properties that they all rely on the ideas and
techniques of the DDN construction [19].

2 Preliminaries

In this section, we review the basic notation and the definitions of primitives.

Basic Notation. N denotes the set of all natural numbers. For m,n ∈ N, we define
[n] := {1, . . . , n}, and “Funcm→n” denotes the set of all functions F of the form
F : {0, 1}m → {0, 1}n. “x ← y” denotes that x is chosen uniformly at random from y
if y is a finite set, x is output from y if y is a function or an algorithm, or y is assigned
to x otherwise. If x and y are strings, then “|x|” denotes the bit-length of x, “x‖y”

denotes the concatenation x and y, and “(x
?
= y)” is defined to be 1 if x = y and 0

otherwise. “(P)PTA” stands for a (probabilistic) polynomial time algorithm. For a finite
set S, “|S|” denotes its size. If A is a probabilistic algorithm, then “y ← A(x; r)”
denotes that A computes y as output by taking x as input and using r as randomness.
AO denotes an algorithm A with oracle access to O. A function ε(k) : N → [0, 1] is
said to be negligible if for all positive polynomials p(k) and all sufficiently large k ∈ N,
we have ε(k) < 1/p(k). Throughout the paper, we use the character “k” for the security
parameter. For an algorithm M, we denote by tM = tM(k) the maximum (worst-case)
running time of M when M is run with security parameter k.

2.1 Universal Computational Extractor (UCE)

Here, we recall the definition of UCE (universal computational extractor) [4], which is
a family of security notions for a (hash) function family. We first recall the syntax of a
function family, and then the definitions of UCE security. We also introduce a property
that we call smoothness which is used in our negative results in Section 3.
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Syntax. Let m,n : N → N be functions of k. A family of functions (function family)
F with input length m and output length n consists of the following two deterministic
PTAs (FKG,F): FKG is the key generation algorithm which takes 1k as input, and
outputs a function index κ.; F is the evaluation algorithm that takes a function index
κ and a string x ∈ {0, 1}m as input, and outputs a string y ∈ {0, 1}n. For notational
convenience, we write Fκ(·) to mean F(κ, ·).

UCE Security. Before giving the formal definitions, we give some overview. As men-
tioned earlier, the UCE security is a family of security notions, from which a particular
notion is specified when we specify a class S of “sources” S. A source is a part of an
adversary’s algorithm that is responsible for computing the inputs to the function Fκ(·)
(that are chosen independently of the function index κ) together with some relevant in-
formation called leakage L, where the independence of the inputs from κ is captured by
allowing S only oracle access to the function. The UCE security for the class S (UCE[S]
security, for short), states that for any PPTA adversary, called distinguisher, who re-
ceives the function index κ and the leakage L, cannot tell whether L is computed by a
source S ∈ S using the function Fκ(·) or using a random function, better than a random
guess. How strong/weak, and how useful UCE[S] security is depends on what restrictions
we put on the class S of sources. The wider the class S is, the stronger UCE[S] security
becomes. In other words, for classes S and S′ of sources, if S ⊆ S′, then UCE[S′] security
implies UCE[S] security.

In the proceedings version [4], Bellare et al. considered a class of computationally
unpredictable sources (which we denote by Scup), which roughly requires that given a
leakage L computed by a source S in the class under the situation S has oracle access
to a random function, it is hard to find any query to the oracle made by S. Bellare
et al. used UCE[Scup] secure function families to achieve a number of positive results.
Unfortunately, however, Brzuska, Farshim, and Mittelbach [12] later showed that if in-
distinguishability obfuscation [2,22] is possible, then UCE[Scup] security is unachievable
(see also [5]). Since Garg et al. [22] recently showed a candidate construction of it, as
mentioned in [5], currently it seems more likely that indistinguishability obfuscation is
possible than UCE[Scup] secure function families exist. To avoid the attack by Brzuska
et al. [12], Bellare et al. [5] suggested several approaches for weakening the UCE[Scup]
security by putting several restrictions on the sources so that the indistinguishability
obfuscation-based attack is not possible (and they re-achieved their results of [4] by us-
ing appropriately weakened versions of UCE security notions). In this paper, we adopt
the two approaches suggested in [5] for weakening UCE[Scup] security: to consider sta-
tistical unpredictability, and to put the restrictions on the running time and the number
of queries of sources.

Now we proceed to the formal definitions. Let F = (FKG,F) be a function family
with input length m = m(k) and output length n = n(k). A source S (for F ) is an
oracle PPTA that takes 1k as input, expects to have access to an oracle O ∈ Funcm→n,
and outputs some value L ∈ {0, 1}∗ (called leakage). For a pair of a source S and an
adversary A (called “distinguisher”), consider the UCE experiment ExptUCEF ,(S,A)(k) that
is defined as in Fig. 1 (leftmost).
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ExptUCEF,(S,A)(k) :

κ ← FKG(1k)
O1(·) ← Fκ(·)
O0(·) ← Funcm→n

b ← {0, 1}
L ← SOb(1k)

b′ ← A(1k, κ, L)

Return (b′ ?
= b).

ExptUNPS,P(k) :
O(·) ← Funcm→n

L ← SO(1k)
Let Q be S’s queries

submitted to O.
x′ ← P(1k, L)
Return 1 iff x′ ∈ Q.

ExptCPAΠ,A(k) :

(pk, sk) ← PKG(1k)
(m0, m1, st)

← A1(pk)
b ← {0, 1}
c∗ ← Enc(pk,mb)
b′ ← A2(st, c

∗)

Return (b′ ?
= b).

ExptCCAΓ,A(k) :

(pk, sk) ← KKG(1k)
(c∗,K∗

1 )
← Encap(pk)

K∗
0 ← {0, 1}k

b ← {0, 1}
b′ ← AO(pk, c∗,K∗

b )

Return (b′ ?
= b).

Fig. 1. The experiments for defining security. The UCE experiment for a function family F (left-
most), the UNP experiment for a source S (second-left), the CPA security experiment for a PKE
scheme Π (second-right), and the CCA security experiment for a KEM Γ (rightmost).

Definition 1. We say that a function family F is UCE[S]-secure if for all sources S ∈
S and for all PPTAs A, AdvUCEF ,(S,A)(k) := 2 · |Pr[ExptUCEF ,(S,A)(k) = 1] − 1/2| is
negligible.

We next define the classes of the sources that we treat in this paper. For a source S and
a PPTA P (called “predictor”), consider the unpredictability experiment ExptUNPS,P(k)

defined as in Fig. 1 (second-left).2

Definition 2. For polynomials t, q > 0, we say that a source S is (t, q)-computationally
(resp. statistically) unpredictable, denoted by S ∈ S

cup
t,q (resp. S ∈ S

sup
t,q ), if (1) S’s run-

ning time is at most t and S makes at most q queries, and (2) for all PPTAs (resp. all
computationally unbounded algorithms) P , AdvUNPS,P(k) := Pr[ExptUNPS,P(k) = 1] is neg-
ligible. Furthermore, we just say that a source S is computationally (resp. statistically)
unpredictable, denoted by S ∈ Scup (resp. S ∈ Ssup), if S is (t, q)-computationally
(resp. statistically) unpredictable for some positive polynomials t, q.

We remark that our definition of (t, q)-computationally/statistically unpredictable
source is simpler than the “parallel sources” introduced in [5], which also considers
some restrictions on the running time, the number of queries (and the output length), and
additionally on how the source is run “parallelly.” We choose not to use the definition of
the parallel sources in [5] as it is, because in this paper we do not need to consider the
“parallel run” of the sources, in which case we believe our definitions are more straight-
forward and simpler. We note that any (t, q)-computationally/statistically unpredictable
sources that we defined above can always be cast as computationally/statistically un-
predictable parallel sources of [5] with appropriate parameters.3

We also remark that we could also consider the restriction on the output length of the
sources (i.e. the length of leakage). In this paper we choose not to do so for simplicity.
However, we note that in each of our results for which we use a UCE security notion as
an assumption, the output length of the sources used in the security proofs will be clear.

2 Bellare et al. [4] introduced two kinds of definitions for unpredictability, (ordinary) “unpre-
dictability” and “simple unpredictability,” and showed their equivalence. The unpredictability
in our paper is the simple unpredictability in [4], which is simpler and easier to work with.

3 More precisely, our definition of the class S
cup
t,q (resp. Ssupt,q ) is strictly contained by the class

Scup ∩ Sprl
t,0,q (resp. Ssup ∩ Sprl

t,0,q) in [5].
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Smoothness. To show our negative results in Section 3, it is useful to introduce the
following property of a function family.

Definition 3. Let F = (FKG,F) be a function family with input length m = m(k)
and output length n = n(k). We define the smoothness of F , denoted by SmthF(k), as
SmthF(k) := Eκ←FKG(1k)

[
maxy∈{0,1}n Prx←{0,1}m [Fκ(x) = y]

]
.

The following lemma states a simple fact that a function family satisfying a very
weak form of UCE security has negligible smoothness.

Lemma 1. Let F be a function family with input length m = m(k) and output length
n = n(k) satisfying m,n ∈ ω(log k). If F is UCE[SsupO(m+n+k),1] secure, then SmthF(k)

is negligible.

2.2 Basic Primitives

Public Key Encryption. A public key encryption (PKE) scheme Π consists of the three
PPTAs (PKG,Enc,Dec) with the following interface:

Key Generation: Encryption: Decryption:
(pk, sk) ← PKG(1k) c ← Enc(pk,m) m (or ⊥) ← Dec(sk, c)

where Dec is a deterministic algorithm, (pk, sk) is a public/secret key pair, and c is a
ciphertext of a plaintext m under pk. We require for all k ∈ N, all (pk, sk) output by
PKG(1k), and all m, it holds that Dec(sk,Enc(pk,m)) = m.

For ATK ∈ {CPA, CCA1}, we say that a PKE scheme Π is ATK secure if for all PPTAs
A = (A1,A2), Adv

ATK
Π,A(k) := 2 · |Pr[ExptATKΠ,A(k) = 1] − 1/2| is negligible, where

the experiment ExptCPAΠ,A(k) is defined as in Fig. 1 (second-right), and the experiment
ExptCCA1Π,A(k) is defined as in ExptCPAΠ,A(k), except that A1 has access to the decryption
oracle Dec(sk, ·). In both of the experiments, it is required that |m0| = |m1|.

Here, we recall one of the requirements for the building block PKE scheme for the
original FO construction [20]. We say that a PKE scheme Π = (PKG,Enc,Dec) has
the large ciphertext cardinality property if for all pk output by PKG(1k), it holds that
minm |{Enc(pk,m; r)|r ∈ {0, 1}∗}| ∈ kω(1). (Not all PKE schemes have this property,
but any CPA secure PKE scheme can be turned into one satisfying it [20].)

Key Encapsulation Mechanism. A key encapsulation mechanism (KEM) Γ consists of
the three PPTAs (KKG,Encap,Decap) with the following interface:

Key Generation: Encapsulation: Decapsulation:
(pk, sk) ← KKG(1k) (c,K) ← Encap(pk) K (or ⊥) ← Decap(sk, c)

where Decap is a deterministic algorithm, (pk, sk) is a public/secret key pair, and c
is a ciphertext of a session-key K ∈ {0, 1}k under pk. We require for all k ∈ N,
all (pk, sk) output by KKG(1k), and all (c,K) output by Encap(pk), it holds that
Decap(sk, c) = K .

Wesay thataKEMΓ isCCAsecure if for allPPTAsA,AdvCCAΓ,A(k) :=2·|Pr[ExptCCAΓ,A(k)

= 1]− 1/2| is negligible, where the experimentExptCCAΓ,A(k) is defined as in Fig. 1 (right-
most). In the experiment, the oracle O is the decapsulation oracleDecap(sk, ·), and A is
not allowed to query c∗.
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Commitment Scheme. (We only define a non-interactive commitment scheme that has
a setup procedure, which is sufficient for our purpose.) A commitment scheme C con-
sists of the following two PPTAs (CKG,Com): CKG takes 1k as input, and outputs a
commitment key ck.; Com takes ck and a message m, and outputs a commitment c.

For security of a commitment scheme, we require the standard hiding and binding
properties. We in fact need weaker properties for both: hiding for messages chosen
independently of a commitment key, and binding in which one of the messages needs
to be chosen before a commitment key is given, which we call target-binding. (The
difference between (ordinary) binding and target-binding is similar to the difference
between collision resistance and target collision resistance of a hash function.) Due to
space limitation, we omit the formal definitions. See the full version for them.

We also require the size of a commitment to be k when generated using a com-
mitment key ck output by CKG(1k). This is not a strong requirement if we only con-
sider computational security notions. In particular, a commitment scheme satisfying the
above functionality/security requirements can be constructed from any CPA secure PKE.

3 Uninstantiability of the Fujisaki-Okamoto Construction

In this section, we show our negative results: uninstantiability of the random oracle in
the Fujisaki-Okamoto (FO) construction [20] with a UCE secure function family.

This section is organized as follows: In Section 3.1, we review the FO construction
[20] in which the random oracle is replaced with a function family. In Section 3.2,
we show a pair of a CPA secure PKE scheme (with large ciphertext cardinality) and
a UCE[S] secure function family (for some class S of sources) which, when used as
building blocks, makes the FO construction CPA insecure. This attack is demonstrated
by using a public-key-dependent plaintext. Then in Section 3.3, we show a pair of a
CPA secure PKE scheme (with large ciphertext cardinality) a UCE[S′] secure function
family (for another class S′ of sources) which, when used as building blocks, makes the
FO construction CCA1 insecure. This attack is possible even if an adversary has to use
public-key-independent plaintexts as its challenge plaintexts, and is allowed to make
only one decryption query.

Important Remarks. We would like to emphasize that our results are not showing that
the FO construction is in general insecure in the standard model. Rather, we show that
there are particular pairs of a CPA secure PKE scheme and a function family satisfying
some UCE security notions that make the FO construction insecure. Furthermore, our
result is only about the FO construction [20] in which we instantiate the random oracle
by putting a function index of the used function family into a public key. It would be
interesting and worth clarifying the (im)possibility of instantiating the random oracle in
[20] in a way different from ours, and the random oracles in the “hybrid-encryption”-
style FO construction [21], with UCE secure function families.
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PKGFO(1
k) :

(pk, sk) ← PKG(1k)
κ ← FKG(1k)
PKFO ← (pk, κ)
SKFO ← (sk, pk, κ)
Return (PKFO, SKFO).

EncFO(PKFO,m; r) :
(pk, κ) ← PKFO

α ← (r‖m)
R ← Fκ(α)
CFO ← Enc(pk, α;R)
Return CFO.

DecFO(SKFO, CFO) :
(sk, pk, κ) ← SKFO

α ← Dec(sk, CFO)
If α = ⊥ then return ⊥.
R ← Fκ(α)

Parse α as (r,m) ∈ {0, 1}k+k.
If Enc(pk, α;R) = CFO

then return m else return ⊥.

Fig. 2. The FO construction ΠFO[Π,F ] based on a PKE scheme Π and a function family F

3.1 The Fujisaki-Okamoto Construction Using a Function Family

Firstly, for ease of notation, we introduce the following conditions for a pair of a PKE
scheme and a function family that can be used as building blocks of the FO construction.

Definition 4. Let Π = (PKG,Enc,Dec) be a PKE scheme and F be a function family.
We say that the pair (Π,F) is FO-compatible if (1) the plaintext space of Π is {0, 1}2k,
(2) the randomness space of Enc is {0, 1}k, (3) Π has the large ciphertext cardinality
property4, and (4) the input length and output length of F are 2k and k, respectively.

Now, using a FO-compatible pair (Π,F) as building blocks, we define the PKE
scheme ΠFO[Π,F ] = (PKGFO,EncFO,DecFO) (with plaintext space {0, 1}k), which we
call the FO construction, as in Fig. 2.

As mentioned earlier, this PKE scheme can be seen as the original FO construction
[20] in which the random oracle is instantiated with the function family F by putting
a function index for F into a public key. There would be several other ways for in-
stantiating the random oracle with a function family. However, since the original FO
construction [20] uses just one random oracle, we believe that the construction in Fig. 2
is the most natural and straightforward instantiation of the random oracle for the origi-
nal FO construction [20].

3.2 Counterexample for Public-Key-Dependent Plaintexts

This subsection is devoted to proving the following result.

Theorem 1. Assume that there exists a FO-compatible pair of a CPA secure PKE scheme
and a UCE[S] secure function family with S

sup

O(k),1 ⊆ S ⊆ Scup. Then, there exists a FO-

compatible pair of a CPA secure PKE scheme Π̃ and a UCE[S] secure function family F̃
such that the FO construction ΠFO[Π̃, F̃ ] is not CPA secure.

Proof of Theorem 1. Let (Π = (PKG,Enc,Dec),F = (FKG,F)) be a FO-compatible
pair of a CPA secure PKE scheme Π and a UCE[S] secure function family guaranteed
to exist by the assumption of the theorem. Then, we construct another PKE scheme
Π̃ = (P̃KG, Ẽnc, D̃ec) based on Π , and another function family F̃ = (F̃KG, F̃) based
on F , as in Fig. 3 (left-top and left-bottom, respectively). It is straightforward to see

4 This is the property required for the building PKE scheme in the original FO construction [20].
We recall the definition of this property in Section 2.2.
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P̃KG(1k) :
Return (pk, sk) ← PKG(1k).
˜Enc(pk,m; r) :

γ ← (r
?
= 0k)

c ← Enc(pk,m; r)
Return C ← (γ, c).
˜Dec(sk, C) :
(γ, c) ← C
Return m ← Dec(sk, c).

˜FKG(1k) :
κ ← FKG(1k); v� ← {0, 1}k
Return κ̃ ← (κ, v�).
˜Fκ̃(x) :
(κ, v�) ← κ̃
Parse x as (x1, x2) ∈ {0, 1}k+k.

y ←
{

0k if v� ∈ {x1, x2}
Fκ(x) otherwise

Return y.

P̂KG(1k) :
r� ← {0, 1}k
(pk, sk) ← PKG(1k; r�)
(pk′, sk′) ← PKG′(1k)
κ′ ← FKG′(1k)
r′ ← F′

κ′(r�)
c� ← Enc′(pk′, r�; r′)
PK ← (pk, pk′, κ′, c�)
SK ← (sk, sk′)
Return (PK,SK).

̂Enc(PK,m; r) :
(pk, pk′, κ′, c�) ← PK

If r = 0k then
Parse m as (m1,m2)

∈ {0, 1}k+k.
r′′ ← F′

κ′(m2)
c2 ← Enc′(pk′,m2; r

′′)
Return C ← (1‖m1‖c2).

Else
c ← Enc(pk,m; r)
Return C ← (0‖c).

End if
̂Dec(SK,C) :
(sk, sk′) ← SK
Parse C as (γ, c) s.t. |γ| = 1.
If γ = 0 then return m ← Dec(sk, c).
Parse c as (m1, c2) ∈ {0, 1}k × {0, 1}∗.
m2 ← Dec′(sk′, c2)
Return m ← (m1‖m2).

Fig. 3. The building blocks for the FO construction used for showing the uninstantiability: The
PKE scheme ˜Π (left-top), the PKE scheme ̂Π (right), and the function family ˜F (left-bottom)

that the pair (Π̃, F̃) is FO-compatible if so is the pair (Π,F). In particular, Π̃ satisfies
correctness, and preserves the large ciphertext cardinality property of Π .

Note that Π̃ is designed to have a “weak randomness” r = 0k, and F̃ is designed
to have a “weak input” v� which appears in the function index. We can exploit these
“weaknesses” from each building block for attacking the CPA security of ΠFO[Π̃, F̃ ].

The following lemmas, together with Lemma 1, imply Theorem 1.

Lemma 2. If the PKE scheme Π is CPA secure, then so is the PKE scheme Π̃ con-
structed as in Fig. 3 (left-top).

Lemma 3. For any S such that S ⊆ Scup, if the function family F is UCE[S] secure, then
so is the function family F̃ constructed as in Fig. 3 (left-bottom).

Lemma 4. If Smth
˜F (k) is negligible, then the FO construction ΠFO[Π̃, F̃ ] is not CPA

secure.

Lemma 2 is trivial to see, because in the CPA experiment, the probability that the “weak
randomness” r = 0k is chosen is exponentially small. A high level intuition for the
proof of Lemma 3 is that the “weak input” v� is only in a function index κ̃, chosen
uniformly at random and hidden information-theoretically from a source in the unpre-
dictability experiment, and thus it does not do any harm to the UCE[S] security of the
underlying function family F .

Finally, we provide a sketch for the proof of Lemma 4. Recall that a public key
PKFO of the FO construction ΠFO[Π̃, F̃ ] is of the form PKFO = (pk, κ̃ = (κ, v�)),
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where v� is the “weak input” of F̃ . Now, let us observe what happens when we encrypt
the “weak input” v� by EncFO(PKFO, ·). By the design of Π̃ , F̃ , and ΠFO[Π̃, F̃ ], for
any randomness r ∈ {0, 1}k used in EncFO(PKFO, ·), we have

EncFO(PKFO, v
�; r) = Ẽnc(pk, (r‖v�);Fκ̃(r‖v�)) = Ẽnc(pk, (r‖v�); 0k) = (1‖c′),

where c′ = Enc(pk, (r‖v�); 0k), and hence the first bit of EncFO(PKFO, v
�) is always

1. On the other hand, if we encrypt a random plaintext m, then by the smoothness of F̃
(which is guaranteed to be negligible by the UCE[S] security of F̃ , which is in turn based
on the UCE[SsupO(k),1] security of F and Lemmas 1 and 3), the probability that the first bit
of EncFO(PKFO,m) becomes 1 is negligible. This difference can be used to break the
CPA security of ΠFO[Π̃, F̃ ]. �	

3.3 Counterexample for Public-Key-Independent Plaintexts

Here, we consider whether the FO construction can provide security for public-key-
independent plaintexts (such as uniform random values). If this is possible, then the
FO construction may be still used as a secure KEM by encrypting a random message
and using it as a session-key. Unfortunately, however, we show that this is not the case.
Specifically, this subsection is devoted to proving the following theorem.

Theorem 2. Assume that there exists a FO-compatible pair of a CPA secure PKE scheme
(PKG,Enc,Dec) and a UCE[S] secure function family with S

cup

O(tPKG+tEnc),1
⊆ S ⊆ Scup.

Then, there exists a FO-compatible pair of a CPA secure PKE scheme Π̂ and a UCE[S]

secure function family F̂ such that the FO construction ΠFO[Π̂, F̂ ] is not CCA1 secure.
Furthermore, the CCA1 attack for ΠFO[Π̂, F̂ ] succeeds even if an adversary uses two
uniformly random plaintexts as its challenge plaintexts and makes only one decryption
query.

Proof of Theorem 2. Let (Π = (PKG,Enc,Dec),F = (FKG,F)) be a FO-compatible
pair as before. Without loss of generality, we assume that the randomness space of PKG
in Π is {0, 1}k. (This can be freely adjusted by using an appropriate pseudorandom
generator.) To simplify the notation, let us write Π ′ = (PKG′,Enc′,Dec′) to mean Π
in which the plaintext space is restricted to {0, 1}k (say, by defining Enc′(pk,m; r) :=
Enc(pk, (m‖0k); r)). Similarly, let us write F ′ = (FKG′,F′) to mean F in which the
input length is restricted to k-bit (say, as above, by defining5 F′

κ(x) := Fκ(x‖0k)).
Using Π , Π ′, and F ′ as building blocks, we construct the PKE scheme Π̂ =

(P̂KG, Ênc, D̂ec) as in Fig. 3 (right). Furthermore, we will again use F̃ (constructed
based on F as in Fig. 3 (left-bottom)) as the function family F̂ for the proof of this
theorem. It is not hard to see that the pair (Π̂, F̃) is FO-compatible if so is the pair
(Π,F). In particular, Π̂ satisfies correctness, and preserves the large ciphertext cardi-
nality property of Π .

5 Padding inputs by some default value does not destroy the UCE[S] security for S considered
here. Namely, if F is UCE[S] secure, then so is F ′.
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The following lemmas, together with Lemmas 1 and 3, imply Theorem 2.

Lemma 5. Assume that the PKE schemes Π and Π ′ are CPA secure, and the function
family F ′ is UCE[S

cup

O(tPKG+tEnc),1
] secure. Then the PKE scheme Π̂ constructed as in

Fig. 3 (right) is CPA secure.

Lemma 6. If Smth
˜F (k) is negligible, then the FO construction ΠFO[Π̂, F̃ ] is not CCA1

secure. Furthermore, the CCA1 attack succeeds even if an adversary uses two uniformly
random plaintexts as its challenge plaintexts and makes only one decryption query.

We give intuitive explanations for the proofs of the above lemmas. Regarding Lemma 5,
note that in the PKE scheme Π̂ , an encryption c� of the randomness r� used to gen-
erate the “main” public key pk is publicized as part of a public key of Π̂. Further-
more, the randomness r′ for generating c� is computed also from r� by using the
function family F ′. However, the correlation among r�, pk, and c� is dealt with by
the UCE[S

cup

O(tPKG+tEnc),1
] security of the function family F ′ and the CPA security of Π ′,

and then the CPA security of Π̂ follows from the CPA security of Π .
Regarding Lemma 6, recall that a public keyPKFO of the FO constructionΠFO[Π̂, F̃ ]

is of the form PKFO = (PK = (pk, pk′, κ′, c�), κ̃ = (κ, v�)). Here, observe that
if we decrypt the following “critical ciphertext” C�

FO = (1‖v�‖c�) which can be con-
structed once PKFO is given, then the decryption result is r� (which is the last k-bit
of D̂ec(SK,C�

FO) and is the randomness used to generate sk). This follows from the
properties of Π̂, F̃ , and ΠFO[Π̂, F̃ ] such that

(1) D̂ec(SK,C�
FO) = D̂ec(SK, (1‖v�‖c�)) = (v�‖Dec′(sk′, c�)) = (v�‖r�),

(2) F̃κ̃(v
�‖r�) = 0k, and

(3) Ênc(PK, (v�‖r�); F̃κ̃(v
�‖r�)) = Ênc(PK, (v�‖r�); 0k)

= (1‖v�‖Enc′(pk′, r�;F′
κ′(r�))) = (1‖v�‖c�) = C�

FO.

Then, from r� we can recover sk, which is the “main” secret key. This means that a
CCA1 adversary can submit the “critical ciphertext” C�

FO as its decryption query, and
obtain sk. Since with overwhelming probability the challenge ciphertext C∗

FO is of the
form C∗

FO = (0‖Enc(pk, (r∗‖mb);Fκ(r
∗‖mb))) due to the negligible smoothness of F̃ ,

knowing sk allows the adversary to decrypt and tell the challenge bit, no matter what
plaintexts are used (and thus even if they are public-key-independent). �	

4 Puncturable Tag-Based Encryption

In our proposed constructions in Section 5, we will use the “core” structure that appears
in the DDN construction [19]. To ease the notation and reduce the description complex-
ity of our proposed constructions, here we introduce and formalize an abstraction of the
structure in the DDN construction as a special type of TBE [28,25], which we call punc-
turable tag-based encryption (PTBE).6 We remark that there would be several possible

6 The name “puncturable” is borrowed from the name of the primitive “puncturable” pseudo-
random function [38].
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ways to formalize the “core” structure of the DDN construction, and our formalization
here is one which is convenient for our purpose.

Intuitively, a PTBE scheme is a TBE scheme that has two modes for decryption: The
normal mode and the punctured mode. The normal mode is just the normal decryption
process of a TBE scheme. In the punctured mode, we can generate a “punctured” secret
key ŝktag∗ which can be used to decrypt all ciphertexts that are generated under tags
tag that are different from tag∗, while the information of plaintexts does not leak from
ciphertexts that are generated under the “punctured point” tag tag∗, even given the
punctured secret key ŝktag∗ . (This is as if we can “puncture” the tag space, and hence
the name of the primitive.)

More formally, a PTBE scheme consists of the five PPTAs (TKG,TEnc,TDec,

Punc, T̂Dec) among which the latter three algorithms are deterministic, with the fol-
lowing interface:

Key Generation: Encryption: Decryption:
(pk, sk) ← TKG(1k) c ← TEnc(pk, tag,m) m (or ⊥) ← TDec(sk, tag, c)

Puncturing: Punctured Decryption:

ŝktag∗ ← Punc(sk, tag∗) m (or ⊥) ← T̂Dec(ŝktag∗ , tag, c)

where (pk, sk) is a public/secret key pair, c is a ciphertext of a plaintext m under pk
and a tag tag ∈ {0, 1}k, and ŝktag∗ is a “punctured” secret key corresponding to a tag
tag∗ ∈ {0, 1}k.

Correctness. We require for all k ∈ N, all tags tag∗, tag ∈ {0, 1}k such that tag∗ 
=
tag, all (pk, sk) output by TKG(1k), all m, and all c output by TEnc(pk, tag,m), it

holds that TDec(sk, tag, c) = T̂Dec(Punc(sk, tag∗), tag, c) = m.
We stress that the above correctness is only guaranteed for the case in which a cipher-

text c is generated from TEnc(pk, tag, ·) and tag 
= tag∗. We do not specify anything
when these conditions are not guaranteed.

Extended CPA Security: CPA Security in the Presence of a Punctured Secret Key. As
a security requirement for a PTBE scheme, we define extended CPA security (eCPA
security, for short) which requires that CPA security hold even in the presence of a
punctured secret key.

Definition 5. We say that a PTBE scheme T is eCPA secure if for all PPTAs A =
(A0,A1,A2), Adv

eCPA
T ,A(k) := 2 · |Pr[ExpteCPAT ,A(k) = 1]− 1/2| is negligible, where the

experiment ExpteCPAT ,A(k) is defined as follows:

ExpteCPAT ,A(k) : [ (tag
∗, st) ← A0(1

k); (pk, sk) ← TKG(1k);

ŝktag∗ ← Punc(sk, tag∗); (m0,m1, st
′) ← A1(st, pk, ŝktag∗); b ← {0, 1};

c∗ ← TEnc(pk, tag∗,mb); b
′ ← A2(st

′, c∗); Return (b′
?
= b). ],

where in the experiment it is required that |m0| = |m1|.



70 T. Matsuda and G. Hanaoka

TKG(1k) :
∀(i, j) ∈ [k]× {0, 1} :

(pk
(j)
i , sk

(j)
i ) ← PKG(1k)

pk ← (pk
(j)
i )i∈[k],j∈{0,1}

sk ← (sk
(j)
i )i∈[k],j∈{0,1}

Return (pk, sk).
TEnc(pk, tag,m) :

(pk
(j)
i )i∈[k],j∈{0,1} ← pk

Let ti be the i-th bit of tag.
∀i ∈ [k] : ci ← Enc(pk

(ti)
i ,m)

Return c ← (ci)i∈[k].

TDec(sk, tag, c) :

(sk
(j)
i )i∈[k],j∈{0,1} ← sk

(ci)i∈[k] ← c
Let t1 be the first bit of tag.
m ← Dec(sk

(t1)
1 , c1)

Return m.
Punc(sk, tag∗)
(sk

(j)
i )i∈[k],j∈{0,1} ← sk

Let t∗i be the i-th bit of tag∗.
̂sktag∗ ← (t∗i , sk

(1−t∗i )
i )i∈[k]

Return ̂sktag∗ .

T̂Dec(̂sktag∗ , tag, c) :

(t∗i , sk
(1−t∗i )
i )i∈[k]

← ̂sktag∗

Let ti be the i-th bit of tag.
If ∀i : ti = t∗i then

return ⊥.
(ci)i∈[k] ← c
� ← min{ i |ti �= t∗i }
m ← Dec(sk

(1−t∗� )
� , c�)

Return m.

Fig. 4. A concrete instantiation of a PTBE scheme T based on a CPA secure PKE Π

Concrete Instantiation of PTBE. Since PTBE is intended to abstract the structure that
appears in the DDN construction [19], the concrete instantiation of PTBE is exactly one
that is used in [19], which is constructed from any CPA secure PKE scheme. Specifically,
given a CPA secure PKE scheme Π = (PKG,Enc,Dec), we construct a PTBE scheme

T = (TKG,TEnc,TDec,Punc, T̂Dec) as in Fig. 4. In the full version of our paper, we
will give the proof for the eCPA security of T .

One of the merits of considering PTBE as a stand-alone primitive would be that it
can be instantiated from other primitives, such as broadcast encryption and a multi-
user PKE scheme/KEM. A potential advantage of instantiations with these alternative
building blocks is that the public key and/or ciphertext size could be much shorter than
the simplest construction from a CPA secure PKE scheme. For example, if we use a
broadcast encryption scheme by Boneh, Gentry, and Waters [11] to instantiate a PTBE
scheme, then a ciphertext consists of a constant number of group elements (in bilinear
groups), regardless of the security parameter k.

5 Chosen Ciphertext Security via UCE

In this section, we show our positive results: Specifically, in Section 5.1, we show the
proposed CCA secure KEM based on a PTBE scheme, a commitment scheme, and a
UCE secure function family (for which we will specify the class of sources shortly).
Since the first two building blocks can be constructed from CPA secure PKE, our KEM
can be constructed only from CPA secure PKE and a UCE secure function family.

Due to space limitations, our result on a DPKE scheme is not included in this pro-
ceedings version, and we refer the reader to the full version. In Section 5.2, we instead
give brief overview of the result, as well as several extensions of our positive results.

5.1 CCA Secure KEM

Let T = (TKG,TEnc,TDec,Punc, T̂Dec) be a PTBE scheme and C = (CKG,Com)
be a commitment scheme. We assume the plaintext/message space of both T and C to
be {0, 1}k, and the randomness space of TEnc in T and Com in C to be {0, 1}� and
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KKG(1k) :
(pk, sk) ← TKG(1k)
ck ← CKG(1k)
κ ← FKG(1k)
PK ← (pk, ck, κ)
SK ← (sk,PK)
Return (PK,SK).

Encap(PK) :
(pk, ck, κ) ← PK
α ← {0, 1}k
β ← Fκ(α)
Parse β as (r, r′, K)

∈ {0, 1}�+�′+k.
tag ← Com(ck, α; r′)
c ← TEnc(pk, tag, α; r)
C ← (tag, c)
Return (C,K).

Decap(SK,C) :
(sk, PK) ← SK; (pk, ck, κ) ← PK
(tag, c) ← C
α ← TDec(sk, tag, c)
If α = ⊥ then return ⊥.
β ← Fκ(α)

Parse β as (r, r′, K) ∈ {0, 1}�+�′+k.
If TEnc(pk, tag, α; r) = c
and Com(ck, α; r′) = tag

then return K else return ⊥.

Fig. 5. The proposed CCA secure KEM Γ

{0, 1}�′, respectively, for some positive polynomials � = �(k) and �′ = �′(k). Let F =
(FKG,F) be a function family with input length k and output length �(k) + �′(k) + k.
Then, our proposed KEM Γ = (KKG,Encap,Decap) is constructed as in Fig. 5.

Alternative Decapsulation Algorithm. To show the CCA security of the proposed KEM
Γ , it is useful to consider the following alternative decapsulation algorithm AltDecap.
For a k-bit string tag∗ ∈ {0, 1}k and a key pair (PK, SK) output by KKG(1k), where
PK = (pk, ck, κ) and SK = (sk, PK), we define an “alternative” secret key ŜKtag∗

associated with tag∗ ∈ {0, 1}k by ŜKtag∗ = (tag∗, ŝktag∗ , PK), where ŝktag∗ =

Punc(sk, tag∗). AltDecap takes an “alternative” secret key ŜKtag∗ defined as above
and a ciphertext C = (tag, c) as input, and runs as follows:

AltDecap(ŜKtag∗ , C): If tag∗ = tag, then return ⊥. Otherwise, run in exactly the

same way as Decap(SK,C), except that “α ← T̂Dec(ŝktag∗ , tag, c)” is executed
instead of “α ← TDec(sk, tag, c).”

The following lemma is easy to see due to the correctness of the underlying PTBE
scheme T and the validity check of c by re-encryption performed at the last step.

Lemma 7. Let tag∗ ∈ {0, 1}k be a string and let (PK, SK) be a key pair output by
KKG(1k). Furthermore, let ŜKtag∗ be an alternative secret key as defined above. Then,
for any ciphertext C = (tag, c) (which could be outside the range of Encap(PK))
satisfying tag 
= tag∗, it holds that Decap(SK,C) = AltDecap(ŜKtag∗ , C).

Security of Γ . The security of Γ is guaranteed by the following theorem.

Theorem 3. Assume that the PTBE scheme T is eCPA secure, the commitment scheme
C is hiding and target-binding, and the function family F is UCE[Scupt,1 ] secure with t =
O(tTKG + tTEnc + tPunc + tCKG + tCom). Then, the KEM Γ constructed as in Fig. 5 is
CCA secure.

Proof Sketch of Theorem 3. Let A be any PPTA adversary that attacks the KEM Γ in
the sense of CCA security. Consider the following sequence of games: (Here, the values
with asterisk (*) represent those related to the challenge ciphertext for A.)
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Game 1: This is the experiment ExptCCAΓ,A(k) itself.
Game 2: Same as Game 1, except that all decapsulation queries C = (tag, c) satisfy-

ing tag = tag∗ are answered with ⊥.
Game 3: Same as Game 2, except that all decapsulation queries C are answered with

AltDecap(ŜKtag∗ , C), where ŜKtag∗ is the alternative secret key corresponding to
(PK, SK) and tag∗.

Game 4: Same as Game 3, except that r∗, r′∗,K∗
1 are picked uniformly at random,

independently of β∗ = Fκ(α
∗). That is, the steps “β∗ ← Fκ(α

∗); Parse β∗ as
(r∗, r′∗,K∗

1 ) ∈ {0, 1}�+�′+k” in Game 3 are replaced with the step “(r∗, r′∗,K∗
1 )

← {0, 1}�+�′+k,” and we do not compute β∗ anymore.

For i ∈ [4], let Si denote the event that A succeeds in guessing the challenge bit
(i.e. b′ = b occurs) in Game i. Note that AdvCCAΓ,A(k) = 2 · |Pr[S1] − 1/2| ≤ 2 ·∑

i∈[3] |Pr[Si]−Pr[Si+1]|+2 · |Pr[S4]− 1/2|. We will show that |Pr[Si]−Pr[Si+1]|
is negligible for each i ∈ [3] and that Pr[S4] = 1/2, which proves the theorem.

Firstly, notice that |Pr[S1] − Pr[S2]| can be upperbounded by the probability of
A making a decapsulation query C = (tag, c) satisfying tag = tag∗, c 
= c∗, and
Decap(SK,C) 
= ⊥. In the full proof, we will show that such a query can be used
to break the target-binding property of the commitment scheme C, and hence A will
submit a query of this type only with negligible probability, due to the target-binding
property of the commitment scheme C.

It is easy to see that Pr[S2] = Pr[S3] holds, because the behavior of the oracle in
Game 2 and that in Game 3 are identical due to Lemma 7.

To show the upperbound of |Pr[S3]−Pr[S4]|, we need to use the UCE[Scupt,1 ] security
of the function family F . Define the source S that takes 1k as input, expects to have
access to an oracle O ∈ Funck→(�+�′+k), and computes an output (leakage) L = (pk,

ck, tag∗, ŝktag∗ , c
∗,K∗) in the following way:

SO(1k) : [ (pk, sk) ← TKG(1k); ck ← CKG(1k); α∗ ← {0, 1}k; β∗ ← O(α∗);

Parse β∗ as (r∗, r′∗,K∗).; tag∗ ← Com(ck, α∗; r′∗); ŝktag∗ ← Punc(sk, tag∗);

c∗ ← TEnc(pk, tag∗, α∗; r∗); Return L ← (pk, ck, tag∗, ŝktag∗ , c
∗,K∗). ].

Defined as above, it is obvious that S satisfies the restrictions on the running time and
the number of queries. Furthermore, due to the hiding property of the commitment
scheme C and the eCPA security of the PTBE scheme T , it is straightforward to see that
S is computationally unpredictable, and thus it holds that S ∈ S

cup
t,1 . Then, in the full

proof, we will show that there exists a PPTA Bu that takes as input a function index κ,
a leakage L = (pk, ck, tag∗, ŝktag∗ , c

∗,K∗) ← SO(1k), where O ∈ Funck→(�+�′+k)

is either Fκ(·) or a random function, simulates Game 3 or Game 4 perfectly for A de-
pending on Bu’s challenge bit, and has the UCE advantage AdvUCEF ,(S,Bu)(k) = |Pr[S3]−
Pr[S4]|. Hence, |Pr[S3]− Pr[S4]| is negligible by the UCE[Scupt,1 ] security of F .

Finally, in Game 4, the “real” session-key K∗
1 is independent of the challenge cipher-

text C∗ and is a uniformly random value, and thus the challenge bit b is information-
theoretically hidden from A’s view. This implies Pr[S4] = 1/2. �	
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5.2 Further Results and Extensions

CCA Secure DPKE for Block Sources with Bounded Running Time. Note that our pro-
posed KEM has the property that a randomness used to generate a ciphertext is entirely
recovered in the decryption process. Here, by deriving the randomness r and r′ (used
for generating c and tag) from a plaintext m (instead of deriving them from the “seed”
α picked randomly) by the UCE secure function family F , we obtain a DPKE scheme.
We can show that this DPKE scheme is CCA secure for block sources [10] (i.e. each
plaintext sampled from the source has high min-entropy, even conditioned on all the
previous plaintexts), as long as the sources satisfy an additional constraint that their
running time is bounded by some predetermined polynomial t′ = t′(k) (we call such a
block source t′-bounded block source). This additional constraint on the running time
of the sources is due to our security proof in which the source for a UCE secure function
family has to execute a t′-bounded block source for DPKE (that chooses the challenge
plaintexts), and thus we have to rely on UCE[S

cup
t,1 ] security where t must be large enough

to allow the execution of the t′-bounded block source for DPKE (and other algorithms
that need to be run for the security proof).

Although CCA security for block sources with bounded running time is clearly weaker
than that for ordinary block sources, the constraint on the running time of the sources
would not be a severe limitation in practice, because in most cases messages that are
going to be encrypted will be chosen by honest parties and we do not expect picking
messages to be computationally expensive.7 We stress that we do not put any restriction
on the running time of the “main” adversary who may perform decryption queries and
any computationally heavy operations, as long as it runs in polynomial time.

Function Families with Short Output Length. For our proposed KEM, we use a function
family F with output length �+ �′ + k, which could be long (the actual length depends
on how the PTBE scheme is instantiated). However, by employing a pseudorandom
generator G : {0, 1}k → {0, 1}�+�′+k, we can replace F with a function family with
output length k. This extension is however at the cost of using slightly stronger UCE
security. Specifically, now we have to rely on the UCE[Scupt′,1] security where t′ = t+ tG
and t is as stated in Theorem 3. This extension is also applicable to our DPKE scheme.

Weakening the UCE Assumption Using Lossy Encryption. We notice that in the security
proof of our proposed KEM, if the underlying PTBE scheme is instantiated using a lossy
encryption scheme [6] and the underlying commitment scheme is statistically hiding
(which can be constructed from any lossy encryption scheme), then the source S used
in the proof of Theorem 3 can be modified to show that it is statistically unpredictable.
Specifically, this can be shown by considering an additional game between Game 3 and
Game 4 in which we use lossy public keys for public keys corresponding to tag∗ when
generating a challenge ciphertext. (For this, in the full version of our paper we will also
introduce a lossy-encryption-analogue of PTBE.)

Therefore, at the cost of employing a stronger assumption on the underlying PKE
scheme, we can weaken the assumption on F to be UCE[S

sup
t′,1] security where t′ is

7 This observation is due to one of the anonymous reviewers.
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dependent on the underlying lossy encryption scheme (and other building blocks). (We
will specify t′ in the full version.)

We note that similar tradeoffs about the assumptions among building blocks for con-
structing CCA secure PKE/KEM were shown in [29].
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