
Lattice-Based Group Signature Scheme

with Verifier-Local Revocation

Adeline Langlois1, San Ling2, Khoa Nguyen2, and Huaxiong Wang2
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Abstract. Support of membership revocation is a desirable functional-
ity for any group signature scheme. Among the known revocation ap-
proaches, verifier-local revocation (VLR) seems to be the most flexible
one, because it only requires the verifiers to possess some up-to-date re-
vocation information, but not the signers. All of the contemporary VLR
group signatures operate in the bilinear map setting, and all of them
will be insecure once quantum computers become a reality. In this work,
we introduce the first lattice-based VLR group signature, and thus, the
first such scheme that is believed to be quantum-resistant. In compari-
son with existing lattice-based group signatures, our scheme has several
noticeable advantages: support of membership revocation, logarithmic-
size signatures, and weaker security assumption. In the random oracle
model, our scheme is proved to be secure based on the hardness of the
SIVP

˜O(n1.5) problem in general lattices - an assumption that is as weak
as those of state-of-the-art lattice-based standard signatures. Moreover,
our construction works without relying on encryption schemes, which is
an intriguing feature for group signatures.

Keywords: group signature, verifier-local revocation, lattice-based
cryptography.

1 Introduction

Group Signatures. Group signatures have been an important research topic in
public-key cryptography since their introduction by Chaum and van Heyst [15].
In these schemes, all the potential signers form a group, where each signer can
anonymously issue a signature on behalf of the whole group (anonymity). On
the other hand, in cases of disputes, there is a tracing mechanism which can
link a given signature to the identity of the misbehaving member (traceability).
These two attractive features allow group signatures to find applications in var-
ious real-life scenarios, such as anonymous online communications, digital right
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management, e-commerce systems, and much more. Over the last two decades,
many group signature schemes with different security models, different levels of
efficiency and functionality have been proposed ([16,4,5,8,9,6,20,25], ...).

One desirable functionality of group signatures is the support for membership
revocation. For example, misbehaving members who issue signatures for docu-
ments, which they are not allowed to sign, should be revoked from the group.
In these cases, if a group signature scheme does not support revocation, then
the whole system has to be re-initialized, which is obviously an unsuitable solu-
tion in practice. Currently there are two main revocation approaches for group
signatures. The first approach requires all the unrevoked members to update
their signing keys after each revocation ([4,12,8,11],...). At the same time, all the
signature verifiers need to download the up-to-date group public key. As a conse-
quence, it is sometimes inconvenient to practically implement such schemes. The
second approach, that is group signatures with verifier-local revocation (VLR),
only requires the verifiers to possess some up-to-date revocation information,
but not the signers. Since in most of real-life scenarios, the number of signature
verifiers is much smaller than the number of signers, this revocation approach
is more flexible and more practical. Moreover, it is akin to that of the tradi-
tional Public Key Infrastructures, where the verifiers use the latest Certificate
Revocation List to check the public key of the signer. The notion of VLR group
signatures was considered by Brickell [10] and Kiayias et al. [22], then formalized
by Boneh and Shacham [9], further investigated and extended by Nakanishi and
Funabiki [33,34], Libert and Vergnaud [26], and Bichsel et al. [7]. It is worth men-
tioning that all the existing VLR group signatures scheme operate in the bilinear
map setting. Furthermore, all these schemes will be insecure once quantum com-
puters become a reality [39]. Thus, constructing a VLR group signature schemes
which is secure against quantum computers, or even outside of the bilinear map
setting, is a challenging open question.

Lattice-Based Group Signatures. Lattice-based cryptography is currently
considered as the most promising candidate for post-quantum cryptography. As
opposed to classical cryptography (i.e., based on the hardness of factoring or dis-
crete log problems), lattice-based cryptography is widely believed to be resistant
against quantum computers, moreover, it enjoys provable security under worst-
case hardness assumptions ([1,37,18,31]). Designing secure and efficient lattice-
based cryptographic constructions (and group signatures, in particular) becomes
an intriguing challenge for the research community looking forward to the future.
To the best of our knowledge, three lattice-based group signature schemes have
been proposed, but none of them supports membership revocation. The first one
was introduced by Gordon et al. [19] in 2010. While their scheme is of great the-
oretical interest, its signatures have size O(N), where N is the number of group
users. In terms of efficiency, this is a noticeable disadvantage if the group is large,
e.g., group of all employees of a big company. Camenisch et al. [13] later proposed
lattice-based anonymous attribute tokens system, a primitive that can be consid-
ered as a generalization of group signature. However, in their construction, the
signatures size is still linear in N . Recently, Laguillaumie et al. [23] designed a
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scheme featuring signature size ˜O(logN), which is the first lattice-based group
signature that overcomes the linear-size barrier. We remark that all the above
mentioned schemes follow the traditional sign-and-encrypt-and-prove paradigm:
to enable the tracing mechanism, these schemes require the signer to encrypt some
private information via certain type of encryption based on the LearningWith Er-
rors (LWE) problem, and then generate a sophisticated proof to prove particularly
that the ciphertext is well-formed. Relying on encryption to construct group sig-
natures may imply two troublesome issues: firstly, it makes the construction less
efficient; secondly, since the whole system is secure only if the underlying encryp-
tion scheme is secure, it usually leads to a relatively strong security assumption. In
particular, the recent scheme by Laguillaumie et al. [23] is only provably secure if
there is no quantum algorithm to approximate the Shortest Independent Vectors
Problem (SIVPγ) on lattices of dimension n to within certain γ = ˜O(n8.5). This
yields several interesting open questions in this direction: Is it possible to construct
a scheme that supports membership revocation? Can lattice-based group signa-
ture schemes be free of LWE-based encryptions? How to design a more efficient
scheme based on weaker security assumption?

Our Contributions. In the present work, we reply to all the above open ques-
tions positively. In particular, we introduce the first group signature with verifier-
local revocation from lattice assumptions, and thus, the first such scheme that is
believed to be quantum-resistant. In comparison with known lattice-based group
signatures, while the schemes from [19], [13] and [23] follow the CPA-anonymity
and CCA-anonymity notions from [8,5], our construction satisfies the (weaker)
notion of selfless-anonymity for VLR group signatures from [9]. Nevertheless, our
scheme has several remarkable advantages over the contemporary counterparts:

1. Functionality: Our scheme is the first lattice-based group signature that sup-
ports membership revocation. As discussed above, this is a desirable func-
tionality for any group signature scheme.

2. Simplicity: Our scheme is conceptually very simple. The signature is basically
an all-in-one proof of knowledge, made non-interactive using Fiat-Shamir
paradigm [17]. Moreover, the scheme departs from the traditional paradigm,
and is free of LWE-based encryptions.

3. Efficiency: For a security parameter n and for a group of N members, the
group public key and the signature have bit-sizes ˜O(n2) · logN and ˜O(n) ·
logN , respectively. This result is comparable to that of [23], and is a notice-
able improvement over those of [19] and [13].

4. Security assumption: Our scheme is proved to be secure (in the random ora-
cle model) based on the worst-case hardness of approximating the Shortest
Independent Vectors Problem, for general lattices of dimension n, to within
a factor γ = ˜O(n1.5). Surprisingly, this security assumption is as weak as
those of state-of-the-art lattice-based standard signatures, such as [18], [14],
and [29]. This is a non-trivial feature, as group signatures are more elaborate
primitive than standard signatures, one would expect to rely on a stronger
security assumption.
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Overview of Our Techniques. The main building block of our VLR group
signature scheme is an interactive protocol allowing a prover to convince the
verifier that he is a certified group member (i.e., he possesses a valid secret
signing key), and that he has not been revoked (i.e., his “revocation token” is
not in the verifier’s blacklist). The protocol is repeated many times to make the
soundness error negligibly small, and then is converted to a signature scheme
via Fiat-Shamir heuristic. Roughly speaking, in the random oracle model, the
traceability and anonymity of the resulting group signature are based on the facts
that the underlying protocol is a proof of knowledge, and it can be simulated.

We consider a group of N = 2� users, where each user is identified by a string
d ∈ {0, 1}� denoting the binary representation of his index in the group. Let
n,m, β, and q ≥ 2 be integers (to be determined later). Our scheme operates
within the structure of a Bonsai tree of hard random lattices [14], i.e., a matrix

A =
[

A0

∣

∣A0
1

∣

∣A1
1

∣

∣ . . .
∣

∣A0
�

∣

∣A1
�

]

∈ Z
n×(2�+1)m
q , and a vector u ∈ Z

n
q . Initially, the

group user with identity d = d[1] . . . d[�] ∈ {0, 1}� is issued a Bonsai signature
of his identity, that is a small vector z ∈ Z

(�+1)m, such that ‖z‖∞ ≤ β and

Ad · z = u mod q, where Ad =
[

A0

∣

∣A
d[1]
1

∣

∣ . . .
∣

∣A
d[�]
�

]

- a subtree defined by d. In
other words, vector z is a solution to the Inhomogeneous Small Integer Solution
(ISIS) instance (Ad,u). To prove that he is a certified group member without
leaking z, the user can perform a proof of knowledge (e.g., [32,28,27]) to convince
the verifier that he knows such a vector z in zero-knowledge.

At this stage, one can obtain a secure identity-based identification scheme (as
shown in [38]), but it is insufficient for our purposes: to achieve anonymity, the
group user also has to hide his identity d, and hence the matrix Ad should not be
explicitly given. This raises an interesting question: If the verifier does not know
Ad, how could he be convinced that Ad · z = u mod q? To address this issue,
we introduce the following extension: we add � suitable zero-blocks of size m to
vector z to obtain an extended vector x =

(

x0‖x0
1‖x1

1‖ . . . ‖x0
�‖x1

�

)

∈ Z
(2�+1)m,

where the added zero-blocks are x
1−d[1]
1 , . . . ,x

1−d[�]
� . We then have ‖x‖∞ ≤ β,

and A · x = u mod q. Namely x is a solution to the ISIS instance given by the
whole Bonsai tree, with an additional condition: for each i = 1, . . . , �, one of
the two blocks x0

i ,x
1
i must be zero, where the arrangement of the zero-blocks is

determined by d. To prove in zero-knowledge the possession of such a vector x,
we adapt the ‘Stern Extension’ proof system from [27], where the user identity d
is hidden by a “one-time pad” technique. This technique is as follows. In each
round of the protocol, the user samples a fresh uniformly random e ∈ {0, 1}� and
permutes the blocks of x to obtain the permuted vector v, whose zero-blocks are
arranged according to d⊕e (where ⊕ denotes the bit XOR operation). Depending
on the verifier’s challenge, the user later will either reveal e, or reveal d⊕ e and
show that v has the correct shape determined by d⊕ e. Since d⊕ e is uniformly
random over {0, 1}�, the user identity d is completely hidden. As a result, the
user can anonymously prove his group membership.

We now briefly review our revocation mechanism. For each group user’s secret
key x, consider the first block x0 that corresponds to the “root”A0 of the Bonsai
tree, and let his revocation token be A0 · x0 mod q ∈ Z

n
q . We choose suitable
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parameters, and sample x0 from a proper distribution, so that the token is
statistically close to uniform over Zn

q . At a high level, our revocation mechanism
works as follows. The user is asked to sample a uniformly random vector r0 ∈ Z

m
q ,

and to compute a commitment c0 using a (lattice-based) statistically hiding
and computationally binding string commitment scheme COM, for which the
value A0 · r0 mod q is part of the committed string. Depending on the verifier’s
challenge, the user will either reveal r0 or reveal x0 + r0. In the former case,
the verifier can check for honest computation of c0, while in the latter case,
he can perform the revocation check using a list of tokens of revoked users
RL =

{

{ui}i
}

⊂ Z
n
q , as follows: For all ui ∈ RL, check that c0 �= COM

(

A0 ·
(x0 + r0) − ui mod q

)

. Assuming that the user has been revoked, i.e., there

exists i such that A0 ·x0 mod q = ui. If he follows the protocol, then COM
(

A0 ·
(x0 + r0) − ui mod q

)

= COM(A0 · r0 mod q) = c0, and thus, he gets rejected.
If there is a false acceptance, then we can use it to break the computational
binding property of COM. On the other hand, the probability of false rejection
is negligibly small, since COM is statistically regular.

Putting everything together, we obtain a lattice-based VLR group signature
that has several nice features, as mentioned earlier. In the process, we exploit the
rich structure of the Bonsai tree [14], and the versatility of the “Stern Extension”
proof system [27]. We also employ a special “one-time pad” technique, and a
novel revocation mechanism.

2 Preliminaries

Notations. Vectors are denoted in bold lower-case letters and matrices in bold
upper-case letters. We assume that all vectors are column vectors. The concate-
nation of vectors x ∈ R

m and y ∈ R
k is denoted by (x‖y). We denote the

column concatenation of matrices A ∈ R
n×m and B ∈ R

n×k by
[

A
∣

∣B
]

. Let
x = (xi)1≤i≤n, we denote by Parse(x, i1, i2) the vector (xi)i1≤i≤i2 for i1, i2 ∈ [n].

If S is a finite set, y
$←− S means that y is chosen uniformly at random from S.

If D1 and D2 are two distributions over the same countable support S, then
their statistical distance is defined as Δ(D1, D2) = 1

2

∑

x∈S |D1(x) − D2(x)|.
Two distributions are statistically close if their statistical distance is negligible.

2.1 VLR Group Signature

The presentation in this section follows [9]. A VLR group signature consists of
3 following algorithms:

• KeyGen(n,N): On input a security parameter n and the number of group
users N , this PPT algorithm outputs a group public key gpk, a vector of
user secret keys gsk = (gsk[0], gsk[1], . . . , gsk[N − 1]), and a vector of user
revocation tokens grt = (grt[0], grt[1], . . . , grt[N − 1]).

• Sign(gpk, gsk[d],M): On input gpk, a user secret key gsk[d], and a message
M ∈ {0, 1}∗, this PPT algorithm outputs a signature Σ.
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• Verify(gpk, RL,Σ,M): On input gpk, a set of revocation tokens RL ⊆
{grt[0], grt[1], . . . , grt[N − 1]}, a signature Σ, and the message M , this al-
gorithm outputs either Valid or Invalid. The output Valid indicates that Σ
is a valid signature on message M under gpk, and the signer has not been
revoked.

Remark 1. Any VLR group signature has an implicit tracing algorithm using grt
as the tracing key. The tracing algorithm works as follows: on input a valid sig-
nature Σ on a messageM , it reveals the signer of Σ by running Verify(gpk, RL =
grt[d], Σ,M), for d = 0, 1, . . ., and outputting the first index d∗ ∈ {0, 1, . . . , N −
1} for which the verification algorithm returns Invalid. The tracing algorithm
fails if and only if the given signature is properly verified for all d.

A secure VLR group signature scheme must satisfy the following 3 requirements:

1. Correctness: For all (gpk, gsk, grt) outputted by KeyGen, M ∈ {0, 1}∗, and
d ∈ {0, 1, . . . , N − 1}:

Verify(gpk, RL, Sign(gpk, gsk[d],M),M) = Valid ⇔ grt[d] �∈ RL.

2. Selfless-anonymity: In the following selfless-anonymity game, the adver-
sary’s goal is to determine which of the two adaptively chosen keys generated
a signature. He is not given access to either key.

3. Traceability: The adversary’s goal in the traceability game is to forge a
signature that cannot be traced to one of the users in his coalition using the
implicit tracing algorithm above.

The formal definitions of the selfless-anonymity and traceability games can be
found at [9, Sec. 2] and in the full version of the present paper [24].

2.2 Some Cryptographic Tools from Lattices

Lattices. Let n,m, and q ≥ 2 be integers. For matrix A ∈ Z
n×m
q , define the

m-dimensional lattice: Λ⊥(A) =
{

x ∈ Z
m : A · x = 0 mod q

}

⊆ Z
m. For any

u in the image of A, define the coset Λ⊥
u (A) =

{

x ∈ Z
m : A · x = u mod q

}

.
We recall the homogeneous and inhomogeneous Small Integer Solution problems
(SIS and ISIS).

Definition 1. The SISpn,m,q,β and ISISp
n,m,q,β problem in the �p norm with pa-

rameters (n,m, q, β) are as follows: Given a uniformly random matrix A ∈
Z
n×m
q , and a uniformly random vector u ∈ Z

n
q ,

• SISpn,m,q,β asks to find a non-zero vector x ∈ Λ⊥(A) such that ‖x‖p ≤ β.

• ISISpn,m,q,β asks to find a vector x ∈ Λ⊥
u (A) such that ‖x‖p ≤ β.

The hardness of the SIS and ISIS problems is given by a worst-case to average-
case reduction from standard lattice problems, such as the Shortest Independent
Vectors Problem (SIVP).
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Theorem 1 ([18]). For any m, β = poly(n), and for any q ≥ β · ω(
√
n logn),

solving a random instance of the SIS2n,m,q,β or ISIS2
n,m,q,β problem with non-

negligible probability is at least as hard as approximating the SIVP2
γ problem on

any lattice of dimension n to within certain γ = β · ˜O(
√
n) factors.

It then follows from the relationship between the �2 and �∞ norms that the
SIS∞n,m,q,β and ISIS∞n,m,q,β problems are at least as hard as SIVP2

γ (in the �2 norm)

for some γ = β · ˜O(n).

Gaussians over Lattices. For any positive real σ, the n-dimensional Gaussian
function is defined as: ∀x ∈ R

n, ρσ(x)= exp(−π‖x‖2/σ2). For any n-dimensional
lattice Λ, define the discrete Gaussian distribution over Λ as: ∀x ∈ Λ, DΛ,σ(x) =
ρσ(x)
ρσ(Λ) . In the following lemma, we review several well-known facts about discrete

Gaussian distribution:

Lemma 1 ([18][36]). Let n and q ≥ 2 be integers. Let m ≥ 2n log q, and
σ ≥ ω(

√
logm).

1. For all but a 2q−n fraction of all A ∈ Z
n×m
q , for x ←↩ DZm,σ, the distribution

of u = A · x mod q is statistically close to uniform over Z
n
q . Moreover, the

conditional distribution of x given u is DΛ⊥
u (A),σ.

2. For β = �σ · logm�, and x ←↩ DZm,σ, Pr
[

‖x‖∞ > β
]

is negligible.
3. The min-entropy of DZm,σ is at least m− 1.

We now recall results about two fundamental tools: the trapdoor generation and
the preimage sampling algorithms. The following algorithms are improvements
of those in the literature [2,18,35,3].

Theorem 2 ([30]). Given integers n ≥ 1, q ≥ 2, and m ≥ 2n log q. There
is a PPT algorithm GenTrap(n,m, q) that outputs a matrix A ∈ Z

n×m
q and

a trapdoor RA, such that the distribution of A is negl(n)-far from uniform.
Moreover, for any vector u in the image of A and σ = ω(

√
n log q logn), there is

a PPT algorithm SampleD(RA,A,u, σ) that outputs x ∈ Z
m sampled from the

distribution DZm,σ, conditioned on the event that A · x = u mod q.

The KTX String Commitment Scheme. Kawachi et al. [21] gave a string
commitment scheme COM : {0, 1}∗ × {0, 1}m/2 → Z

n
q , such that:

• If m > 2n(1 + δ) log q for δ > 0 constant, COM is statistically hiding.
• If the SIS∞n,m,q,1 problem is hard, then COM is computationally binding.

In this paper, we extensively use the KTX commitment scheme. For simplicity,
we omit the randomness of the commitment. Also, we choosem sufficiently large,
e.g., m = 4n log q, to make COM statistically hiding.

3 Preparations

In this section, we will describe the parameters and some specific constructions
that will be used in our VLR group signature scheme.
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3.1 Parameters

Our group signature scheme involves 2 main parameters: a security parameter
n and a desired number of group users N = 2� ∈ poly(n). Given n, we fix the
other scheme parameters as in Table 1.

Table 1. Parameters of our VLR group signature scheme. The sequence β1, β2, . . . , βp

satisfies
∑p

j=1 βj = β, and every integer in the interval [−β, β] can be efficiently
expressed as a subset sum of elements in the set {±β1,±β2, . . . ,±βp}.

Parameter Value or Asymptotic bound

Modulus q ω(n2 log n)

Dimension m ≥ 2n log q

Gaussian parameter σ ω(
√
n log q log n)

Integer norm bound β �σ · logm�
Number of ‘decompositions’ p �log β�+ 1

Sequence of integers β1 = �β/2�; β2 = �(β − β1)/2�
β1, β2, β3, . . . , βp β3 = �(β − β1 − β2)/2�; . . . ;βp = 1

Number of protocol repetitions t ω(logn)

3.2 Some Specific Sets

We now define some specific sets of vectors and permutations that will be exten-
sively used throughout this work. First, we denote by B3m the set of all vectors
in {−1, 0, 1}3m having exactly m coordinates −1; m coordinates 0; and m co-
ordinates 1. Given a binary string d = d[1] . . . d[�] ∈ {0, 1}�, we define two sets:

• Secretβ(d): The set of all x =
(

x0‖x0
1‖x1

1‖ . . . ‖x0
�‖x1

�

)

∈ Z
(2�+1)m consisting

of 2� + 1 blocks of size m, such that ‖x‖∞ ≤ β, and the following � blocks

are zero-blocks 0m: x
1−d[1]
1 , . . . ,x

1−d[�]
� .

• SecretExt(d): The set of all vectors x =
(

x0‖x0
1‖x1

1‖ . . . ‖x0
�‖x1

�

)

∈
{−1, 0, 1}(2�+1)3m consisting of 2�+ 1 blocks of size 3m, such that the �+ 1

blocks x0,x
d[1]
1 , . . . ,x

d[�]
� are elements of B3m, and the remaining � blocks

x
1−d[1]
1 , . . . ,x

1−d[�]
� are zero-blocks 03m.

Given a vector x =
(

x0‖x0
1‖x1

1‖ . . . ‖x0
�‖x1

�

)

∈ Z
(2�+1)3m consisting of 2� + 1

blocks of size 3m, we define two sets of permutations of x:

• The set S of all permutations that keep the arrangement of the blocks:
If π ∈ S, then π(x) =

(

τ0(x0)‖τ01 (x0
1)‖τ11 (x1

1)‖ . . . ‖τ0� (x0
� )‖τ1� (x1

� )
)

, where
τ0, τ

0
1 , τ

1
1 , . . . , τ

0
� , τ

1
� are certain permutations of 3m elements.

• The set T = {Te

∣

∣ e ∈ {0, 1}�}, where for e = e[1] . . . e[�], Te ∈ T rearranges

the blocks as: Te(x) =
(

x0‖xe[1]
1 ‖x1−e[1]

1 ‖ . . . ‖xe[�]
� ‖x1−e[�]

�

)

.
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In particular, given d, e ∈ {0, 1}�, π ∈ S, and x ∈ Z
(2�+1)3m, it can be checked

that:

x ∈ SecretExt(d) ⇔ π(x) ∈ SecretExt(d) ⇔ Te ◦ π(x) ∈ SecretExt(d⊕ e). (1)

3.3 The Decomposition - Extension Technique

Ling et al. [27] proposed a Stern-type zero-knowledge proof of knowledge for
the ISIS∞n,m,q,β problem, which relies on a Decomposition-Extension framework.
Adapting their technique, we construct the following procedures:

Elementary Decomposition. On input a vector v = (v1, v2, . . . , vm) ∈ Z
m

such that ‖v‖∞ ≤ β, the procedure EleDec outputs p = �log β� + 1 vectors
w̃1, . . . , w̃p ∈ {−1, 0, 1}m, such that

∑p
j=1 βj · w̃j = v. This procedure works as

follows:

1. For each i ∈ [m], express vi as vi = β1 · vi,1 + β2 · vi,2 + . . .+ βp · vi,p, where
∀j ∈ [p] : vi,j ∈ {−1, 0, 1}. It was noted in [27] that for β1, β2, . . . , βp given
in Table 1, this step can easily be done.

2. For each j ∈ [p], let w̃j := (v1,j , v2,j , . . . , vm,j) ∈ {−1, 0, 1}m. Output
w̃1, . . . , w̃p.

Elementary Extension. On input a vector w̃ ∈ {−1, 0, 1}m, EleExt extends w̃
to a vector w ∈ B3m. This procedure works as follows:

1. Let λ(−1), λ(0) and λ(1) be the numbers of coordinates of w̃ that equal to
−1, 0, and 1 respectively.

2. Pick a random vector ŵ ∈ {−1, 0, 1}2m that has exactly (m − λ(−1)) coor-
dinates −1, (m− λ(0)) coordinates 0, and (m− λ(1)) coordinates 1. Output
w =

(

w̃‖ŵ
)

∈ B3m.

Witness Decomposition and Extensions. On input x ∈ Secretβ(d) for some
d = d[1] . . . d[�] ∈ {0, 1}�, the procedure WitnessDE outputs p vectors z1, . . . zp ∈
SecretExt(d). This procedure works as follows:

1. Write x as the concatenation of 2� + 1 blocks of size m, namely: x =
(

x0‖x0
1‖x1

1‖ . . . ‖x0
�‖x1

�

)

.

2. Run EleDec on each of the � + 1 blocks x0,x
d[1]
1 , . . . ,x

d[�]
� to obtained

(� + 1)p decomposed vectors. Then run EleExt on each of the decom-
posed vectors to obtain (� + 1)p vectors in B3m, denoted respectively by

{w0,j}pj=1, {w
d[1]
1,j }

p
j=1, . . . , {w

d[�]
�,j }

p
j=1.

3. Create �p zero-vectors of dimension 3m, and denote them by:

{w1−d[1]
1,j }pj=1, . . . , {w

1−d[�]
�,j }pj=1.

4. For each j ∈ [p], let zj =
(

w0,j‖w0
1,j‖w1

1,j‖ . . . ‖w0
�,j‖w1

�,j

)

. Output z1, . . . , zp
∈ SecretExt(d).

Matrix Extension. On input A ∈ Z
n×(2�+1)m
q , the following procedure

MatrixExt outputs A∗ ∈ Z
n×(2�+1)3m
q :
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1. Write A as the concatenation of 2�+ 1 component-matrices in Z
n×m
q .

2. Append 2m zero-columns to each of the component-matrices, then output
the extended matrix A∗.

In particular, let {zj}pj=1 ← WitnessDE(x) and A∗ ← MatrixExt(A) then we

have A · x = A∗ · (
∑p

j=1 βj · zj). We illustrate our technique in Figure 1.

A · x = u (mod q)

x ∈ Secretβ(d)

d = (1 . . . 0) ∈ {0, 1}�

A0 A0
1 A1

1 A0
� A1

� · x0

x0
1 = 0m

x1
1

x0
�

x1
� = 0m

u
=n

m

A0

A∗ =
0 A0

1 0 A1
1 0 A0

� 0 A1
� 0

n

2m

zT1 = ︸ ︷︷ ︸
w0,1

︸ ︷︷ ︸
w0

1,1 = 03m
︸ ︷︷ ︸

w1
1,1

︸ ︷︷ ︸
w0

�,1

︸ ︷︷ ︸
w1

�,1 = 03m

zTp =

......

β
1 ·

+
...

+
β
p ·

=

x1
1

β
1 ·

+
...

+
β
p ·

=

x0
�

β
1 ·

+
...

+
β
p ·

=
x0

Fig. 1. An illustration of our Decomposition-Extension technique, where the first bit
of d is 1 and its last bit is 0. We denote by an element of B3m. After
performing Decomposition-Extension, one has that zj ∈ SecretExt(d) for all j ∈ [p],
and A∗ · (∑p

j=1 βj · zj
)
= A · x = u mod q.

Therefore, in the protocol in Section 4, to prove that x ∈ Secretβ(d) for some
d ∈ {0, 1}�, and A · x = u mod q, one can instead prove that:

{

A∗ · (
∑p

j=1 βj · zj) = u mod q,

∀j ∈ [p], π ∈ S, e ∈ {0, 1}� : Te ◦ π(zj) ∈ SecretExt(d⊕ e),

where the second relation follows from the fact that zj ∈ SecretExt(d) for all
j ∈ [p], and from (1).

4 The Underlying Interactive Protocol

We recall that the main building block of our VLR group signature scheme is an
interactive protocol that allows the prover to convince the verifier that he is a
certified group member (i.e., he has a valid secret key), and that he has not been
revoked (i.e., his revocation token is not in the verifier’s list RL). In Section 5, the
protocol is repeated t = ω(logn) times to make the soundness error negligibly
small, and then is transform to a signature scheme via Fiat-Shamir heuristic.
The interactive protocol is summarized as follows:

• The public parameters are A =
[

A0

∣

∣A0
1

∣

∣A1
1

∣

∣ . . .
∣

∣A0
�

∣

∣A1
�

]

∈ Z
n×(2�+1)m
q and

u ∈ Z
n
q .
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• The prover’s witness is a x =
(

x0‖x0
1‖x1

1‖ . . . ‖x0
�‖x1

�

)

∈ Secretβ(d) for some

d ∈ {0, 1}�. The verifier’s additional input is a set RL =
{

{ui}i
}

⊂ Z
n
q ,

whose cardinality is at most N − 1.
• The prover’s goal is to convince the verifier in that:

1. A · x = u mod q and x ∈ Secretβ(d), while keeping d secret.
2. A0 · x0 mod q �∈ RL.

4.1 Description of the Protocol

Let COM be the KTX commitment scheme [21]. Let A∗ ← MatrixExt(A). Prior
to the interaction, the prover applies the Decomposition-Extension technique
on his witness: Let z1, . . . , zp ← WitnessDE(x). The protocol follows Stern’s
approach for three-pass zero-knowledge identification schemes [40], for which we
employ an additional commitment c0 to enable the revocation mechanism. The
details are as follows:

1. Commitment: The prover samples a string e
$←− {0, 1}�, p permutations

π1, . . . , πp
$←− S, and p vectors r1, . . . , rp

$←− Z
(2�+1)·3m
q . For each j ∈ [p], let

rj,0 = Parse(rj , 1,m). Then it sends the commitment CMT =
(

c0, c1, c2, c3
)

∈ (Zn
q )

4 to the verifier, where

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

c0 = COM
(

e, {πj}pj=1, A0 ·
(∑p

j=1 βj · rj,0
)

mod q
)

,

c1 = COM
(

e, {πj}pj=1, A∗ ·
(
∑p

j=1 βj · rj
)

mod q
)

,

c2 = COM
(

{Te ◦ πj(rj)}pj=1

)

,

c3 = COM
(

{Te ◦ πj(zj + rj)}pj=1

)

.

(2)

2. Challenge: The verifier sends Ch
$←− {1, 2, 3} to the prover.

3. Response: Depending on the challenge, the prover computes the response
RSP differently:

• Case Ch = 1: ∀ j ∈ [p], let vj = Te ◦πj(zj), wj = Te ◦πj(rj), d1 = d⊕e,
and set:

RSP =
(

d1, {vj}pj=1, {wj}pj=1

)

. (3)
• Case Ch = 2: ∀ j ∈ [p], let φj = πj , sj = zj + rj , d2 = e, and set:

RSP =
(

d2, {φj}pj=1, {sj}
p
j=1

)

. (4)

• Case Ch = 3: ∀ j ∈ [p], let ψj = πj , hj = rj , d3 = e, and set:

RSP =
(

d3, {ψj}pj=1, {hj}pj=1

)

. (5)

Verification: Receiving RSP, the verifier proceeds as follows:

• Case Ch = 1: Parse RSP as in (3). Check that ∀j ∈ [p] : vj ∈ SecretExt(d1),
and that:

c2 = COM
(

{wj}pj=1

)

and c3 = COM
(

{vj +wj}pj=1

)

.
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• Case Ch = 2: Parse RSP as in (4). ∀j ∈ [p], let sj,0 = Parse(sj , 1,m). Check
that:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∀ui ∈ RL : c0 �= COM
(

d2, {φj}pj=1,A0 ·
(
∑p

j=1 βj · sj,0
)

− ui mod q
)

c1 = COM
(

d2, {φj}pj=1,A
∗ ·

(
∑p

j=1 βj · sj
)

− u mod q
)

;

c3 = COM
(

{Td2 ◦ φj(sj)}pj=1

)

.

• Case Ch = 3: Parse RSP as in (5). ∀j ∈ [p], let hj,0 = Parse(hj , 1,m). Check
that: ⎧

⎪

⎪

⎨

⎪

⎪

⎩

c0 = COM(d3, {ψj}pj=1, A0 ·
(
∑p

j=1 βj · hj,0) mod q
)

c1 = COM
(

d3, {ψj}pj=1, A
∗ · (

∑p
j=1 βj · hj) mod q

)

;

c2 = COM
(

{Td3 ◦ ψj(hj)}pj=1

)

.

The verifier outputs Valid if and only if all the conditions hold. Otherwise, he
outputs Invalid.

4.2 Witness Extraction

The following lemma says that in our protocol, one can extract a satisfying
witness under specific conditions. The proof of the lemma is given in the full
version [24, Appendix A].

Lemma 2. Assume that for a given commitment CMT, there exist 3 valid re-
sponses RSP(1), RSP(2), and RSP(3) corresponding to all 3 possible values of the
challenge Ch. If COM is a computationally binding commitment scheme, then
one can efficiently extract a vector y such that y =

(

y0‖y0
1‖y1

1‖ . . . ‖y0
�‖y1

�

)

∈
Z
(2�+1)m satisfying A · y = u mod q, y ∈ Secretβ(d) for some d ∈ {0, 1}�, and

A0 · y0 mod q �∈ RL.

5 The VLR Group Signature Scheme

In this Section we will describe and analyze our lattice-based VLR group signa-
ture scheme. The scheme uses the protocol in Section 4 as its building block.

5.1 Description of the Scheme

Keys Generation. The algorithm KeyGen(n,N), works as follows:

1. Run GenTrap(n,m, q) to get A0 ∈ Z
n×m
q and trapdoor R.

2. Sample u
$←− Z

n
q , and Ab

i
$←− Z

n×m
q for all b ∈ {0, 1} and i ∈ [�]. Then define

the matrix A =
[

A0

∣

∣A0
1

∣

∣A1
1

∣

∣ . . .
∣

∣A0
�

∣

∣A1
�

]

∈ Z
n×(2�+1)m
q .

3. For group user with index d ∈ {0, 1, . . . , N − 1}, let d[1] . . . d[�] ∈ {0, 1}�
denote the binary representation of d, and do the following:
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(a) Sample vectors x
d[1]
1 , . . . ,x

d[�]
� ←↩ DZm,σ. Compute z =

∑�
i=1 A

d[i]
i ·

x
d[i]
i mod q, and sample x0 ∈ Z

m with x0 ←↩ SampleD
(

R,A0,u −
z, σ

)

. Let x
1−d[1]
1 , . . . ,x

1−d[�]
� be zero-vectors 0m, and define x(d) =

(

x0‖x0
1‖x1

1‖ . . . ‖x0
�‖x1

�

)

∈ Z
(2�+1)m. If ‖x(d)‖∞ ≤ β then go to step (3b);

else, repeat step (3a).
(b) Let the user secret key be gsk[d] = x(d), and the revocation token be

grt[d] = A0 · x0 ∈ Z
n
q .

4. The algorithm outputs (gpk, gsk, grt), where gpk = (A,u); gsk =
(

gsk[0], gsk[1], . . . , gsk[N − 1]
)

; grt =
(

grt[0], grt[1], . . . , grt[N − 1]
)

.

Remark 2. We have some observations on the behaviour of the above key gen-
eration algorithm:

• By Theorem 2, the distribution of A0 generated by GenTrap(n,m, q) is sta-
tistically close to uniform over Zn×m

q . Thus, the distribution of gpk output

by KeyGen(n,N) is statistically close to uniform over Z
n×(2�+1)m
q × Z

n
q . We

note that the pair (A,u) resembles the Bonsai tree structure [14], where A0

is the “root” of the tree.
• In Step (3a), each coordinate of vector x(d) is either 0 or distributed according

to the distribution DZ,σ (see Theorem 2 regarding the output distribution of
algorithm SampleD). By setting β = �σ · logm�, we ensure that ‖x(d)‖∞ ≤ β
with overwhelming probability (see Lemma 1). Thus, the event that Step (3a)
needs to be repeated only occurs with negligible probability.

• The secret key x(d) of group user with index d satisfies A · x(d) = u mod q,
and x(d) ∈ Secretβ(d).

• By Lemma 1, the distribution of each user revocation token grt[d] is statisti-
cally close to uniform over Zn

q . The trivial requirement is that the revocation
tokens of two different group users must be different. In the very rare event
of conflict (i.e., there exist d1, d2 ∈ {0, . . . , N − 1} such that d2 > d1 and
grt[d1] = grt[d2]), the algorithm simply re-samples the key and token for user
with index d2.

Signing Algorithm. Let H : {0, 1}∗ → {1, 2, 3}t be a hash function, modelled
as a random oracle. Given gpk = (A,u), to sign a message M ∈ {0, 1}∗ using
the secret key gsk[d] = x ∈ Secretβ(d), the user runs the randomized algorithm
Sign(gpk, gsk[d],M), which is as follow:

1. Generate a proof that the user is a certified group members and that he has
not been revoked. This is done by repeating t = ω(logn) times the basic
protocol from Section 4 with public parameter (A,u) and prover’s witness
x, and then making it non-interactive with the Fiat-Shamir heuristic as
a triple

(

{CMT(k)}tk=1, CH, {RSP(k)}tk=1

)

, where CH =
(

{Ch(k)}tk=1

)

=

H
(

M, {CMT(k)}tk=1

)

∈ {1, 2, 3}t.
2. Output the group signature:

Σ =
(

M, {CMT(k)}tk=1, {Ch(k)}tk=1, {RSP(k)}tk=1

)

. (6)
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Verification Algorithm. On input gpk = (A,u), a set of tokens RL =
{

{ui}i
}

⊂ Z
n
q whose cardinality is at most N − 1, a message M ∈ {0, 1}∗,

and a purported group signature Σ on M , the verifier runs the deterministic
algorithm Verify(gpk, RL,Σ,M), which performs the following steps:

1. Parse the signature Σ as in (6).

2. Check if
(

Ch(1), . . . , Ch(t)
)

= H
(

M,CMT(1), . . . ,CMT(t)
)

.
3. For k = 1 to t, run the verification of the protocol from Section 4 to check the

validity of RSP(k) with respect to CMT(k) and Ch(k). If any of the conditions
does not hold, then output Invalid and terminate.

4. Output Valid.

5.2 Analysis of the Scheme

We now will analyze the efficiency and security properties of the VLR group
signature described in Section 5.1.

Efficiency. The parameters in Table 1 are set so that all of the algorithms in
Section 5.1 can be implemented in polynomial time. Asymptotically, the group
public key has bit-size � · ˜O(n2) = logN · ˜O(n2), while the group signatures have

bit-size � · ˜O(n) = logN · ˜O(n). The revocation check, i.e., the check against c
(k)
0

in the case Ch(k) = 2, runs in linear time in the number of revoked users, as it
seems unavoidable for secure VLR group signature schemes.

Security. The correctness, selfless-anonymity, and traceability of our VLR group
signature scheme are stated in theorems 3, 4 and 5, respectively. The proofs of
these theorems are provided in the full version of the paper [24].

Theorem 3. The VLR group signature scheme is correct with overwhelming
probability.

In the random oracle model, our scheme is selfless-anonymous.

Theorem 4. If COM is a statistically hiding string commitment scheme, then
the VLR group signature scheme in Section 5.1 is selfless-anonymous in the
random oracle model.

Finally, in the random oracle model, our VLR group signature scheme is
traceable if the SIS∞

n,(�+1)·m,q,2β problem is hard.

Theorem 5. If there is a traceability adversary A with success probability ε and
running time T , then there is an algorithm F that solves the SIS∞

n,(�+1)·m,q,2β

problem with success probability ε′ >
(

1 − (7/9)t
)

· 1
2N , and running time T ′ =

32 ·T ·qH/(ε−3−t)+poly(n,N), where qH is the number of queries to the random
oracle H : {0, 1}∗ → {1, 2, 3}t.
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The results of Theorem 1 and Theorem 5 imply that the traceability of our
scheme in the random oracle model can be based on the worst-case hardness of
the SIVP2

γ problem, with γ = 2β · ˜O(n) = ˜O(n1.5).
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