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Abstract. In AsiaCrypt 2013, Qin and Liu proposed a new approach
to CCA-security of Public-Key Encryption (PKE) in the presence of
bounded key-leakage, from any universal hash proof system (due to
Cramer and Shoup) and any one-time lossy filter (a simplified version
of lossy algebraic filters, due to Hofheinz). They presented two instan-
tiations under the DDH and DCR assumptions, which result in leakage
rate (defined as the ratio of leakage amount to the secret-key length) of
1/2 − o(1). In this paper, we extend their work to broader assumptions
and to flexible leakage rate, more specifically to leakage rate of 1− o(1).

– We introduce the Refined Subgroup Indistinguishability (RSI) as-
sumption, which is a subclass of subgroup indistinguishability as-
sumptions, including many standard number-theoretical assumptions,
like the quadratic residuosity assumption, the decisional composite
residuosity assumption and the subgroup decision assumption over
a group of known order defined by Boneh et al.

– We show that universal hash proof (UHP) system and one-time lossy
filter (OT-LF) can be simply and efficiently constructed from the
RSI assumption. Applying Qin and Liu’s paradigm gives simple and
efficient PKE schemes under the RSI assumption.

– With the RSI assumption over a specific group (free of pairing),
public parameters of UHP and OT-LF can be chosen in a flexible
way, resulting in a leakage-flexible CCA-secure PKE scheme. More
specifically, we get the first CCA-secure PKE with leakage rate of
1− o(1) without pairing.
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1 Introduction

Traditional securitymodels (e.g., semantic security [17]) of cryptographic schemes
assume that the secret key or the internal secret state involved in a cryptosystem is
completely unknown to adversaries. However, in the real world, an adversary may
obtain partial knowledge of the secret information via a side channel attack [18].
Side channel attacks gain (secret) information from physical attributions (e.g.,
timing, power consumption, etc.) revealed by a computing device. Inspired by
side channel attacks, many cryptographic researchers have contributed their work
to design of cryptosystems that remain secure even if an adversary obtains some
information on the secret keys, including symmetric-key encryption [11,13,30],
public-key encryption [1,27,2,4,5,31], digital signatures [21,14], identity-based en-
cryption [7,15,24].

To model security against side channel attacks, it is natural to consider an
adversary that only learns a limited amount of information on the secret key.
Otherwise, the security of the system will be compromised completely. A simple
yet general model of key-leakage is the bounded-leakage model [1]. It is formal-
ized by allowing an adversary to adaptively and repeatedly choose functions of
the secret key and gain the outputs of the functions as long as the total amount
of leaked information on the secret key is bounded by some parameter λ (called
the leakage amount). Clearly, from this perspective, the leakage amount must
be strictly smaller than the secret-key length |sk|. We call the ratio λ/|sk| the
relative leakage or the leakage rate of a cryptosystem. An obvious goal of de-
signing a leakage-resilient cryptosystem is to make its leakage rate as close to 1
as possible. There are also other security models for leakage-resilience that con-
sider more complicated scenarios of key leakage, e.g., auxiliary input model [11],
continual-leakage model [5,9] and continual auxiliary input model [33]. Never-
theless, many works from those complicated models rely on the results from the
bounded-leakage model as basic building blocks [19]. In this paper, we consider
the bounded-leakage model in the setting of public-key encryption.

Prior Constructions and Limitations. Inspired by Halderman et al.’s “cool
boot” attacks [18], Akavia et al. [1] formalized the notion of leakage-resilient
chosen-plaintext security (LR-CPA) in the bounded-leakage model. Since then,
many encryption schemes [32,16,3,27,19] have been proved secure in this model.
In particular, Naor and Segev presented a generic construction of LR-CPA secure
PKE schemes from any hash proof system (HPS) [8]. Moreover, they gave some
efficient instantiations based on the DDH and k-linear assumptions, where the
relative leakage is flexibly ranging over [0, 1). We also call such PKE leakage-
flexible. In [27], Naor and Segev also extended the framework of key leakage to
the setting of chosen-ciphertext attacks, i.e., leakage-resilient chosen-ciphertext
security (LR-CCA). They showed how to achieve LR-CCA secure PKE schemes
by relying on the Naor-Yung paradigm which results in (impractical) leakage
flexible PKE schemes or the hash proof systems which result in an efficient
variant of the Cramer-Shoup cryptosystem with leakage-rate 1/6. Later, some
new variants of the Cramer and Shoup cryptosystem [25,26] are showed to be
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LR-CCA secure but with a leakage-rate smaller than 1/4. Very recently, Qin and
Liu [31] proposed a novel approach to achieve LR-CCA security by replacing the
universal2 hash proof system in Naor and Segev’s HPS-based framework with a
new primitive called one-time lossy filter. This results in efficient constructions
of LR-CCA secure PKE schemes based on the DDH and DCR assumptions with
leakage rate 1/2− o(1).

The open problem of constructing a practical LR-CCA secure PKE scheme
with flexible leakage was solved by Dodis et al. [10]. They showed that Naor
and Segev’s generic construction in the Naor-Yung paradigm can be made effi-
cient under the Symmetric External Diffie-Hellman (SXDH) and Decisional Lin-
ear (DLIN) assumptions related to bilinear pairing on elliptic curves. Another
leakage-flexible CCA-secure PKE scheme was due to Galindo et al. [15]. Their
construction is obtained by applying the CHK transform [6] to their identity-
based encryption scheme with master-key leakage flexibility (without rigorous
proof) under the DLIN assumption on pairing-friendly groups. We observe that
all existing leakage-flexible CCA-secure PKE schemes rely on assumptions over
pairing-friendly groups. Moreover, even though they are practical, the construc-
tions are complicated and computations inevitably involve pairings.

Our Contributions. In this paper, we define a class of assumptions called
Refined Subgroup Indistinguishability (RSI) assumptions which are similar to
the Subgroup Indistinguishability (SI) assumptions (due to Brakerski and Gold-
wasser [4]) except for the restriction to cyclic groups. Specifically, a subgroup
indistinguishability problem is defined by a finite commutative multiplicative
group G, which is a direct product of two groups G = Gτ1 × Gτ2 of order τ1,
τ2 respectively. It requires that gcd(τ1, τ2) = 1 and Gτ2 is a cyclic group. The
subgroup indistinguishability assumption states that a random element of G is
computationally indistinguishable from a random element in Gτ1 . Brakerski and
Goldwasser [4] showed that the DCR and QR assumptions are two special cases
of the subgroup indistinguishability assumptions. In the Refined Subgroup In-
distinguishability (RSI) problem, we further require that the subgroup Gτ1 is
also cyclic. Nevertheless, all known instances of SI problems can be modified to
RSI problems. Moreover, the instantiations of RSI assumption under the DCR
and QR assumptions are operated over groups of unknown order. We can also
instantiate the RSI assumption over a specific group of known order (without
pairing).

We further show that the RSI assumption implies efficient construction of
leakage-resilient CCA-secure PKE schemes by presenting simple and efficient
constructions of universal hash proof systems and one-time lossy filters under
the RSI assumption. Here we follow Qin and Liu’s paradigm [31](details in Sec-
tion 4.1) of constructing leakage-resilient CCA-secure PKE from universal HPS
and OT-LF, but we extend their work to the RSI assumption.

When instantiating over a specific group of known order (without pairing),
we obtain a simple and efficient CCA-secure PKE scheme with leakage-rate of
1 − o(1). This is the first leakage-resilient CCA-secure PKE with leakage rate
1− o(1), but free of pairing.
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Organization. The rest of this paper is organized as follows. Basic notations
and definitions are introduced in Section 2. The definition of refined subgroup
indistinguishability assumptions and instantiations are presented in Section 3.
Our leakage-resilient CCA-secure PKE schemes from the refined subgroup indis-
tinguishability assumptions are given in Section 4. Finally, we summarize this
paper in Section 5.

2 Preliminary

Notations. Let κ ∈ N denote a security parameter and 1κ denote the string of
κ ones. We say that a function ε(κ) is negligible in κ if for all polynomial ploy
and sufficiently large κ, ε(κ) ≤ 1/ploy(κ). For n ∈ N, we write [n] for the set
{1, . . . , n}. We denote by |s| the length of a bitstring s and by |S| the size of a
set S. Moreover, s ←R S denotes the operation of sampling an element s from
S uniformly at random. We denote y ← A(x) the operation of running A with
input x, and assigning y as the result. We write log s for logarithms over the
reals with base 2.

Statistical Distance. The statistical distance between two random variablesX
and Y over a finite set Ω is defined as Δ(X,Y ) = 1

2

∑
ω∈Ω |Pr[X = ω]−Pr[Y =

ω]|. A random variable X is called ε-uniform over Ω, if Δ(X,Y ) ≤ ε, where
Y is a uniform distribution. Let X and Y be two families of random variables
indexed by a security parameter κ. We say that X and Y are statistically indis-
tinguishable and write X ≈s Y if for all polynomial ploy and sufficiently large κ,
Δ(X,Y ) ≤ 1/ploy(κ). If for any PPT algorithm A, its advantage in distinguish-
ing between X and Y defined as |Pr[A(X) = 1]−Pr[A(Y ) = 1]| is negligible in κ,
we say that X and Y are computationally indistinguishable and write X ≈c Y .

Min-Entropy and Average Min-Entropy. The min-entropy of a random
variable X is H∞(X) = − log(maxx Pr[X = x]). The average min-entropy X
conditioned on a random variable Y is formally defined by Dodis et al. [12] as

H̃∞(X |Y ) = − log
(
Ey←Y [2

−H∞(X|Y=y)]
)
.

Definition 1 (Universal hash). A family of functions H = {h : X → Y } is
called universal if, for all distinct x, x′ ∈ X, Prh←RH[h(x) = h(x′)] = 1/|Y |.

The following lemma shows that a universal hash function can be used as a
randomness extractor.

Lemma 1 ([12]). Let X and Y be random variables such that X ∈ {0, 1}n
and H̃∞(X |Y ) ≥ v. Let H = {h : {0, 1}n → {0, 1}m} be a family of uni-
versal hash functions. If m ≤ v − 2 log(1/ε), then for h ←R H it holds that
Δ((Y, h, h(X)), (Y, h, Um)) ≤ ε, where Um is uniform over {0, 1}m.

Public-Key Encryption. A public-key encryption scheme PKE with message
space M consists of three PPT algorithms (Kg,Enc,Dec). For a security parame-
ter 1κ, the randomized key generation algorithm Kg(1κ) produces a public/secret
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key pair (PK, SK). For a public key PK, the randomized encryption algorithm
Enc(PK,M) creates a ciphertext C of the message M ∈ M. For a secret key
SK and a ciphertext C, the decryption algorithm Dec(SK,C) returns a mes-
sage M ∈ M or a special rejection symbol ⊥. For consistency, we require that
Dec(SK,Enc(PK,M)) = M always holds, for all κ ∈ N, all (PK, SK) ← Kg(1κ)
and all M ∈ M.

For security, we consider the standard notion of leakage-resilient chosen-
ciphertext (LR-CCA) security in the bounded leakage model [27]. In this model,
the adversary is allowed to query a decryption oracle Dsk(·) which returns
Dec(sk, C) for a query C, and a leakage oracle Oλ

sk(·) which returns fi(sk) for
a leakage function fi : {0, 1}∗ → {0, 1}λi. The adversary can adaptively query
either of these two oracles polynomial times, with the following restrictions: (1)
the total amount of information leaked is bounded by

∑
i λi ≤ λ; (2) after seeing

the challenge ciphertext, the adversary is not allowed to query the decryption
oracle with the challenge ciphertext and query the leakage oracle at all.

Definition 2 (Leakage-resilient CCA-secure PKE). We say that a PKE
scheme PKE = (Kg,Enc,Dec) is λ-LR-CCA secure if, for any PPT adversary,
the following function Advλ-lr-ccaPKE,A (κ) is negligible in κ:

Advλ-lr-ccaPKE,A (κ) :=∣
∣
∣
∣
∣
∣
Pr

⎡

⎣γ′ = γ :

(PK, SK) ← Kg(1κ), γ ←R {0, 1},
(M0,M1, St) ← ADsk(·),Oλ

sk(·)(PK) s.t. |M0| = |M1|,
C∗ ← Enc(PK,Mγ), γ

′ ← ADsk(·)(St, C∗).

⎤

⎦− 1
2

∣
∣
∣
∣
∣
∣
.

The leakage rate of a λ-LR-CCA secure PKE scheme is defined as λ/|SK|,
where |SK| denotes the secret-key length. If λ/|SK| can be made arbitrarily
close to 1 by properly choosing the parameter of the scheme, we call such scheme
leakage-flexible.

One-Time Lossy Filters. One-time lossy filter (OT-LF), a simplified lossy
algebraic filter [20], is a special collection of one-way functions. It can be operated
in either an “injective mode”, in which the function is injective (not requiring
efficiently invertible), or a “lossy mode”, in which the function is non-injective.

Definition 3. A collection of (Dom, 
LF)-one-time lossy filter consists of three
PPT algorithms (FGen,FEval,FTag). The key generation algorithm FGen(1κ),
on input 1κ, generates an evaluation key ek and a trapdoor td (that allows for
efficiently sampling a lossy tag). The evaluation key ek defines a tag space T =
{0, 1}∗ × Tc that contains the disjoint sets of lossy tags Tloss ⊆ T and injective
tags Tinj ⊆ T . For an evaluation key ek and a tag t ∈ T , the evaluation algorithm
FEval(ek, t, x) maps x ∈ Dom to a unique image y = fek,t(x). For a trapdoor td
and an auxiliary part ta ∈ {0, 1}∗, the lossy tag generation algorithm FTag(td, ta)
computes a core tag tc ∈ Tc such that (ta, tc) ∈ Tloss. We require that OT-LF
has the following properties.

Lossiness. If t is injective, then so is the function fek,t(x). If t is lossy, then
fek,t(x) computes a lossy function, which has only 2	LF possible outputs.
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Additionally, it is possible to set the evaluation key so that the parameter

LF is constant even for larger domain.

Indistinguishability. A lossy tag and a random tag are computationally indis-
tinguishable for any PPT adversary A, i.e.,

AdvindLF,A(κ) := |Pr [A(ek, (ta, tc)) = 1]− Pr [A(ek, (ta, t
′
c)) = 1]|

is negligible in κ, where (ek, td) ← FGen(1κ), ta ← A(ek), tc ← FTag(td, ta)
and t′c ←R Tc.

Evasiveness. It is hard to generate a fresh non-injective tag for any PPT ad-
versary A even given a lossy tag, i.e.,

AdvevaLF,A(κ) := Pr

⎡

⎣ (t′a, t
′
c) 
= (ta, tc) ∧

(t′a, t′c) ∈ T \ Tinj
:
(ek, td) ← FGen(1κ),
ta ← A(ek), tc ← FTag(td, ta),
(t′a, t

′
c) ← A(ek, (ta, tc)).

⎤

⎦

is negligible in κ.

Hash Proof System. Hash proof system (HPS) was introduced by Cramer and
Shoup [8]. For simplicity, we describe it as a key-encapsulation mechanism, as
did in [22].

Let PK, SK and K be the sets of public keys, secret keys and encapsulated
keys. Let C be the set of (all possible) ciphertexts and V ⊂ C be the set of all
valid ciphertexts. Let W be a set and let χ be an injective map from W to V . If
for any ciphertext c ∈ V , there exists a w ∈ W such that χ(w) = c, we say that
(C,V ,W , χ) is a subset membership problem and w is a witness of c. We require
that there are efficient algorithms for sampling sk ∈ SK, c ∈ V together with a
witness w ∈ W and c ∈ C \ V uniformly at random.

Let Λsk : C → K be a family of hash functions indexed by sk ∈ SK. We say
that Λsk is projective if there exists a projection μ : SK → PK such that μ(sk)
defines the action of Λsk over the subset V . In contrast, nothing is guaranteed for
c ∈ C\V . In a hash proof system, it should be hard to compute Λsk(c) from μ(sk)
and c ∈ C \ V , which is guaranteed by the universal property of HPS (defined
later in Definition 4). A HPS assumes the hardness of the subset membership
problem over C, meaning that for any PPT adversary

Advsmp
HPS,A(κ) = Pr[A(C,V , c) = 1 | c ←R V ]− Pr[A(C,V , c) = 1 | c ←R C \ V ]

is negligible in κ.

Definition 4 (Universal hash proof system). A hash proof system (HPS)
consists of a tuple of PPT algorithms (Param,Priv,Pub). The parameter gen-
eration algorithm Param(1κ), on input 1κ, generates an instance of param =
(group, C,V ,PK,SK,K, μ, Λ(·)), where group may contain additional structural
parameters. For sk ∈ SK and c ∈ C, the private evaluation algorithm Priv(sk, c)
computes Priv(sk, c) = Λsk(c). For pk = μ(sk) and a witness w indicating that
c ∈ V, the public evaluation algorithm Pub(pk, c, w) computes Pub(pk, c, w) =
Λsk(c).
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We say that a hash proof system is ε-universal, if for all pk = μ(sk), all
c ∈ C \ V and all K ∈ K, it holds that Pr[Priv(sk, c) = K | μ(sk) = pk] ≤ ε,
where the probability space is defined by choosing sk ∈ SK uniformly at random.
We sometimes call the above value ε as the error rate of HPS.

Chameleon Hash Function. A chameleon hash function [23] CH is essentially
a keyed and randomized hash function, which consists of three PPT algorithms
(HGen,HEval,HEquiv). The key generation algorithm HGen(1κ), on input a secu-
rity parameter 1κ, returns a key pair (ekch, tdch). Given a preimage x ∈ {0, 1}∗
and a randomness r ∈ R, HEval(ekch, x; r) computes a hash value y. If r is uni-
formly distributed over R, so is y over its range. We require that CH is collision-
resistant, meaning that for any PPT adversary A, the following probability

AdvcrCH,A(1κ) :=

Pr

[
(x′, r′) 
= (x, r) ∧
HEval(ekch, x

′; r′) = HEval(ekch, x; r)
:
(ekch, tdch) ← HGen(1κ)
(x′, r′, x, r) ← A(ekch)

]

is negligible in κ. We further require that given x, r, x′ and the trapdoor tdch,
HEquiv(tdch, x, r, x

′) computes r′ such that HEval(ekch, x
′; r′) = HEval(ekch, x; r)

and the distribution r′ is uniform over R given only ekch and x.

3 Refined Subgroup Indistinguishability Assumption

In this section, we present the formal definition of Refined Subgroup Indistin-
guishability (RSI) assumption and instantiate it under two number-theoretical
assumptions.

Let Gen(1κ) be a group generation algorithm that, on input a security pa-
rameter 1κ, outputs a description of a finite commutative multiplicative group
G = (G, T, g, h), where G is a direct product of two groups: G = Gτ1 ×Gτ2 , such
that each group Gτi is a cyclic group of order τi, and g, h are generators of Gτ1 ,
Gτ2 respectively. We require that: (1) elements in G are efficiently checkable;
(2) gcd(τ1, τ2) = 1. This implies that G is also a cyclic group with order τ1τ2;
(3) an upper bound T ≥ τ1 · τ2 is given in the group description, such that for
x ←R ZT , x mod τ1τ2 is ε-uniform over Zτ1τ2 , where ε = ε(κ) is negligible in κ.
This implies that for x ←R ZT , g

x (resp. hx) is ε-uniform over Gτ1 (resp. Gτ2).

Definition 5. Let G = (G, T, g, h) ← Gen(1κ). The refined subgroup indistin-
guishability (RSI) assumption in group G states that for any PPT adversary A,
the advantage

AdvrsiG,A(κ) := |Pr[A(G, x) = 1 | x ←R Gτ1 ]− Pr[A(G, x) = 1 | x ←R G|

is negligible in κ.

From the above refined subgroup indistinguishability assumption, it is not
hard to derive the following lemma.
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Lemma 2. Let G = (G, T, g, h) ← Gen(1κ). If the refined subgroup indistin-
guishability assumption in group G holds, then for any PPT adversary B

|Pr[B(G, x) = 1 | x ←R Gτ1 ]− Pr[B(G, x) = 1 | x ←R G \Gτ1 ]| ≤ 2AdvrsiG,A(κ) (1)

|Pr[B(G, x) = 1 | x ←R Gτ1 ]− Pr[B(G, x · h) = 1 | x ←R Gτ1 ]| ≤ 2AdvrsiG,A(κ) (2)

Finally, we present two instantiations of the refined subgroup indistinguisha-
bility assumptions: one is over groups of unknown order and the other is over
groups of known order.

Example 1 (Instantiation under the QR assumption). Let p, q, p′, q′ be distinct
primes with p = 2p′ + 1 and q = 2q′ + 1. For security parameter κ, p′ and q′

are both at least κ bits in length. Let N = pq and N ′ = p′q′. From [8], Z∗
N has

a unique subgroup JN which is the set of elements in Z∗
N with Jacobi symbol

1. Let QRN be the set of the quadratic residues modulo N and G2 = {±1}.
Then, JN = QRN × G2 and gcd(2, N ′) = 1. Additionally, h = −1 generates
G2, and for a random x ←R Z∗

N , with overwhelming probability g = x2 mod N
generates group QRN . Set T = (N − 1)/4. Then, for x ←R ZT , x mod 2N ′

is O(2−κ)-uniform in Z2N ′ . The quadratic residuosity (QR) assumption states
that it is hard to distinguish a random element in JN from a random element in
QRN . So, the QR assumption is an instantiation of the RSI assumption if we set
(G, T, g, h) ← Gen(1κ), where G = JN , Gτ1 = QRN (with τ1 = N ′), Gτ2 = {±1}
(with τ2 = 2), T = (N − 1)/4, g = x2 mod N (for x ←R Z∗

N ) and h = −1.

Example 2 (Instantiation over a group of known order). Let p, p, q be distinct
primes with p = 2pq+1. For security parameter κ, p and q are both at least κ bits
in length. Clearly, Z∗

p has a unique subgroup of order N = pq, denoted by QRp,
which is the set of the quadratic residues modulo p. Moreover, gcd(p, q) = 1 and
QRp can be uniquely decomposed as a direct product QRp = Gp × Gq, where
Gp, Gq are cyclic groups of prime orders p, q respectively. For x, y ←R Z∗

p,
with overwhelming probability g = xq mod p generates Gp and h = yp mod p
generates Gq. The refined subgroup indistinguishability assumption over group
QRp is conjectured to hold if integer factorization of N is hard [28]. So, we
obtain an instantiation of RSI assumption by setting (G, T, g, h) ← Gen(1κ),
where G = QRp, Gτ1 = Gp (with τ1 = p), Gτ2 = Gq (with τ2 = q), T = pq,
g = xq mod p (for x ←R Z

∗
p) and h = yp (for y ←R Z

∗
p).

4 Leakage-Resilient CCA-secure PKE under the RSI
Assumption

Following Qin and Liu’s generic construction of leakage-resilient CCA-secure
PKE schemes from any universal hash proof systems and any one-time lossy
filters [31], we present an efficient instantiation under the refined subgroup in-
distinguishability assumption in this section.

The rest of this section is organized as follows. In Section 4.1, we give an
overview of Qin and Liu’s approach to leakage-resilient CCA-security. In sec-
tion 4.2 and Section 4.3, we present efficient constructions of universal hash
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proof system and one-time lossy filter from any RSI assumption respectively.
Finally, in Section 4.4, we show how to construct a leakage-flexible (with leakage
rate of [0,1)) PKE scheme under a specific RSI assumption.

4.1 Review of Qin and Liu’s Approach to LR-CCA Security

Recently, Qin and Liu [31] proved that a universal hash proof (UHP) system,
combined with a one-time lossy filter (OT-LF), yields a public-key encryption
(PKE) scheme that is secure against key-leakage chosen-ciphertext attacks. This
approach results in a simple and efficient CCA-secure PKE scheme with a higher
leakage rate than those constructions solely from UHPs [27,25].

More precisely, they applied a UHP system as a basic (CPA-secure) encryp-
tion scheme to hide the plaintext and then applied an OT-LF as a message
authentication code (MAC) to verify the well-formedness of the ciphertext. In
fact, the HPS is used as a key encapsulation mechanism and the encapsulated
key is exactly the hash value Λsk(c), which functions in two ways: (1) it is used
as an input of a random extractor to distill a random string for hiding a plain-
text; (2) it is used as a MAC key to authenticate one-time lossy filter’s tag. By
the hardness of the underlying subset membership problem and the universal-
ity property of HPS, Λsk(c) is computationally indistinguishable from a random
variable that has at least log(1/ε) min-entropy if HPS is ε-universal. While in
the security proof, the challenge ciphertext uses a lossy LF tag which results
in a MAC that only reveals a constant amount of information on Λsk(c). Thus,
the PKE scheme can withstand almost log(1/ε)-bit leakage of the secret key.
Suppose that (Param,Priv,Pub) is an ε-universal HPS, (FGen,FEval,FTag) is a
(K, 
LF)-one-time lossy filter, H is a family of universal hash functions from K
to {0, 1}m. Then, the PKE scheme (Kg,Enc,Dec) with message space {0, 1}m
from [31] works as follows.

– (PK, SK) ← Kg(1κ). Run Param(1κ) to produce a HPS instance: param =
(group, C,V ,PK,SK,K, μ, Λ(·)). Pick sk ←R SK and set pk = μ(sk). Run
(ek, td) ← FGen(1κ). Return PK = (pk, ek) and SK = sk.

– C ← Enc(PK,M). For M ∈ {0, 1}m, it samples a random c ∈ V together
with its witness w, and then computes K = Pub(pk, c, w). Next, it samples
h ←R H and tc ←R Tc. Finally, it returns

C = (c, h, h(K)⊕M,FEval(ek, t,K), tc)

where t = (ta, tc) and ta = (c, h, h(K)⊕M).
– M/ ⊥← Dec(SK,C): For C = (c, h, ψ, v, tc), it computes K ′ = Priv(sk, c),

and then checks whether FEval(ek, t,K ′) = v where t = ((c, h, ψ), tc). If not,
it returns ⊥, else returns M = h(K ′)⊕ ψ.

From [31], the security of the above scheme is established by the following
theorem.

Theorem 1. If there exists an ε-universal HPS and a (K, 
LF)-one-time lossy
filter, then there exists a CCA-secure PKE scheme with any leakage of λ bits,
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as long as λ ≤ log(1/ε) − m − 
LF − ω(log κ), where m is the plaintext length.
Additionally, by reducing the error rate ε of HPS, the leakage rate in the above
scheme can be arbitrarily close to log(1/ε)/|sk|.

4.2 Universal Hash Proof System from the RSI Assumption

Let G = (G, T, g, h), where G = Gτ1 ×Gτ2 , be a group description returned by
Gen(1κ). We can build a subset membership problem by setting C = G and V =
Gτ1 (with witness setW = ZT ). From Lemma 2, this subset membership problem
is hard under the refined subgroup indistinguishability assumption. Next, we
build a universal hash proof system for (C,V).

Construction 1 (UHP). The hash proof system (Param,Priv,Pub) is defined
as follows:

– Param(1κ): run G = (G, T, g, h) ← Gen(1κ), where G = Gτ1 ×Gτ2 . Define

C = G, V = Gτ1 , W = ZT , PK = G, SK = ZT , K = G.

Clearly, for c ∈ V, there exists a witness w ∈ W such that c = gw. For
sk = x ∈ SK and c ∈ C, we define

μ(sk) = gx ∈ G, Λsk(c) = cx ∈ G

Finally, Param(1κ) outputs param = (G, C,V ,PK,SK,K, μ, Λ(·)).
– Priv(sk, c): for sk ∈ SK and c ∈ C, compute K = Λsk(c) = cx, where sk = x.
– Pub(pk, c, w): for pk = μ(sk) = gx ∈ G and a witness w ∈ W such that

c = gw ∈ G, compute K = pkw which equals Λsk(c) = cx.

Theorem 2. Suppose that q̃ ≥ 2 is the smallest prime factor of τ2. Then, con-
struction 1 gives a 1/q̃-universal hash proof system.

Proof. Clearly, correctness follows from the definitions of the projection μ and
the projective hash function Λsk(·), and the hardness of the subset membership
follows from the RSI assumption and Lemma 2. It remains to prove its univer-
sality. To do so, it suffices to show that for all pk = μ(sk) ∈ PK, all c ∈ C\V and
all K ∈ K, it holds that Pr[Λsk(c) = K | μ(sk) = pk] ≤ 1/q̃. Recall that g has
order τ1. So, pk = gsk = gsk mod τ1 is determined only by the value sk mod τ1. If
sk is uniform in Zτ1τ2 and gcd(τ1, τ2) = 1, by the Chinese Remainder Theorem,
it holds that sk mod τ2 is still uniform over Zτ2 even for a fixed pk. Moreover,
for any element c ∈ C \ V , it has a non-trivial component of order (at least) q̃
and thus csk has at least q̃ possible values uniformly distributed over its support.
This means that Pr[Λsk(c) = K | μ(sk) = pk] ≤ 1/q̃. ��

Reducing the error rate. As introduced in [8], we can reduce the error rate
of a universal hash proof system from ε to εn by a trivial “n-fold parallelization”.
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4.3 One-Time Lossy Filter from the RSI Assumption

In this section, we first propose a variant of one-time lossy filters, namely all-
but-one (ABO) lossy functions. Then, we show how to construct an ABO lossy
function under the refined subgroup indistinguishability assumption. Finally, we
show how to derive a one-time lossy filter from an ABO lossy function with large
tag space, whose size is determined by κ.

All-But-One Lossy Functions. ABO lossy functions are a family of func-
tions parameterized with a tag. All tags are injective, leading to injective func-
tions, except for one lossy tag, leading to a lossy function. ABO lossy functions
are conceptionally simpler than one-time lossy filters. For one-time lossy filters,
a tag consists of an auxiliary and a core tag part; lossy tags are produced via
a trapdoor for any auxiliary tags. For ABO lossy functions, it simply uses arbi-
trary bit strings as tags. There is only one lossy tag which can be predetermined.

Definition 6 (ABO lossy functions). A collection of (Dom, 
)-ABO lossy
functions with tag space B consists of two PPT algorithms (ABOGen,ABOEval).
The key generation algorithm ABOGen(1κ, b∗) takes as input a security parameter
1κ and any b∗ ∈ B, and samples an evaluation key ek. The evaluation algorithm
ABOEval(ek, b, x), for b ∈ B and x ∈ Dom, computes fek,b(x). We require the
following properties.

Lossiness. For injective tags (i.e., b 
= b∗), ABOEval(ek, b, x) computes an in-
jective function fek,b(x). For the lossy tag b∗, ABOEval(ek, b∗, x) computes
a lossy function fek,b∗(x) which only reveals at most 
-bit information of x.
We require that by setting the parameter of evaluation key ek, the size of
domain Dom is flexible even for constant 
.

Hidden lossy tag. For any PPT adversary A and for any b∗0, b
∗
1 ∈ B, the

following advantage

AdvABO,A(κ) := |Pr [A(1κ, ek0) = 1]− Pr [A(1κ, ek1) = 1]|

is negligible in κ, where ek0 ← ABOGen(1κ, b∗0) and ek1 ← ABOGen(1κ, b∗1).

The conception of ABO lossy functions is very similar to ABO lossy trapdoor
functions introduced by Peikert and Waters [29]. However, we do not require
efficient inversion. Instead, we require that the lossy function reveals only a
constant amount of information on its input even for flexibly large domain. The
following construction from an ABO lossy function (ABOGen,ABOEval) with a

tag space B (even for B = {0, 1}) results in a new one ( ˜ABOGen, ˜ABOEval) with
tag space Bñ for any positive integer ñ (the analogous construction for ABO
lossy trapdoor functions are shown in [29]).

Construction 2. Let (ABOGen,ABOEval) be a collection of (Dom, 
)-ABO lossy

functions with tag space B. We define ( ˜ABOGen, ˜ABOEval) as follows.
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– ˜ABOGen(1κ, b̃∗): for b̃∗ = (b∗1, · · · , b∗ñ) ∈ Bñ, it runs eki ← ABOGen(1κ, b∗i ),
i = 1, . . . , ñ, and returns ẽk = (ek1, . . . , ekñ).

– ˜ABOEval(ẽk, b̃, x): for b̃ = (b1, · · · , bñ) ∈ Bñ and x ∈ Dom, it computes

f
˜ek,˜b

(x) = (fek1,b1(x), . . . , fekñ,bñ(x)).

Lemma 3. Construction 2 gives a collection of (Dom, ñ
)-ABO lossy functions
with tag space Bñ.

Proof. The proof is nearly straightforward. First, for a lossy tag b̃∗, all feki,b∗i (x)s
work in lossy mode and thus reveal at most ñ
-bit information of their common
input x. Secondly, for an injective tag b̃ 
= b̃∗, there must exist an index i ∈ [ñ]
such that bi 
= b∗i . That is, feki,bi(x) computes an injective function and so does
f
˜ek,˜b

(x). ��

From RSI Assumption to ABO lossy functions. We start from a RSI
instance to derive a collection of ABO lossy functions with tag space {0, 1}.

Construction 3. Let G = (G, T, g, h) and G = Gτ1 × Gτ2 be defined as in
Section 3. Let I = (Ii,j) ∈ Gn×n

τ2 be an n × n matrix over group Gτ2 , where
Ii,j = 1 if i 
= j and Ii,i = h for all i, j ∈ [n]. Set B = {0, 1} and Dom = Zn

τ2 .
We define (ABOGen,ABOEval) as follows.

– ABOGen(1κ, b∗): for b∗ ∈ B, it picks r1, . . . , rn, s1, . . . , sn ←R ZT and sets

R =

⎛

⎜
⎜
⎜
⎝

gr1

gr2

...
grn

⎞

⎟
⎟
⎟
⎠

S =

⎛

⎜
⎜
⎜
⎝

gr1s1hb∗ gr1s2 · · · gr1sn

gr2s1 gr2s2hb∗ · · · gr2sn

...
...

. . .
...

grns1 grns2 · · · grnsnhb∗

⎞

⎟
⎟
⎟
⎠

Finally, ABOGen(1κ, b∗) returns ek = (R,S) ∈ Gn ×Gn×n.
– ABOEval(ek, b, x): for ek = (R,S), b ∈ B and x = (x1, . . . , xn) ∈ Z

n
τ2 , it

computes

fek,b(x) :=
(
x ·R, x · (S ⊗ I−b)

)
=

(
g
∑n

i=1 xiri ,
(
gsj ·

∑n
i xiri · h(b∗−b)xj

)n
j=1

)

where ⊗ denotes the component-wise product of matrices over G.

Lemma 4. Construction 3 forms a collection of (Zn
τ2 , log τ1)-ABO lossy func-

tions with tag space B = {0, 1}.

Proof. It is a straightforward calculation to verify that: (1) for b = b∗, fek,b∗(x)
is completely determined by g

∑n
i=1 xiri which has only τ1 possible values; (2)

for b 
= b∗, fek,b(x) completely determines the vector (h(b∗−b)x1 , . . . , h(b∗−b)xn),
hence (x1, . . . , xn). So it is an injective map. The remainder is to show its hidden
lossy tag property. Let S[j, k] denote the entry of matrix S, located by row j and
column k. For any b∗0, b

∗
1 ∈ B, let EKi = (Ri, Si), 0 ≤ i ≤ n, be the distribution on
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the function evaluation key, where Ri = R and Si is almost the same as S except
that the first i diagonal elements of Si are now

(
Si[j, j] = grjsjhb∗1

)
1≤j≤i

while

the last n − i diagonal elements of Si are
(
Si[j, j] = grjsjhb∗0

)
i+1≤j≤n

. Clearly,

EK0 is the distribution output by ABOGen(1κ, b∗0) and EKn is the distribution
output by ABOGen(1κ, b∗1). It suffices to show that for any 1 ≤ i ≤ n, EKi−1

and EKi are computationally indistinguishable under the RSI assumption. To do
so, we again define two distributions EK′

i−1 = (R′
i−1, S

′
i−1) and EK′

i = (R′
i, S

′
i),

where EK′
i−1 is almost the same as EKi−1 except for the value of R′

i−1[i] and
(S′

i−1[i, k])k∈[n]. Now R′
i−1[i] := grih while Ri−1[i] = gri , and (S′

i−1[i, k])k∈[n] =(
(grih)skhb∗0

)
k∈[n]

while (Si−1[i, k])k∈[n] =
(
griskhb∗0

)
k∈[n]

. Similarly, EK′
i is al-

most the same as EKi except for the value of R′
i[i] and (S′

i[i, k])k∈[n]. Now

R′
i[i] := grih while Ri[i] = gri , and (S′

i[i, k])k∈[n] =
(
(grih)skhb∗1

)
k∈[n]

while

(Si[i, k])k∈[n] =
(
griskhb∗1

)
k∈[n]

. It is a straightforward reduction to show that

if there exists a PPT algorithm A that can distinguish EKi−1 and EK′
i−1, we

can construct a PPT algorithm D to distinguish the distributions defined in the
left side of Eq. (2). This also applies to EKi and EK′

i. From Lemma 2, it follows
that

Pr[A(ek) = 1 | ek ←R EKi−1]− Pr[A(ek) = 1 | ek ←R EK′
i−1] ≤ 2AdvrsiG,D(κ) (3)

Pr[A(ek) = 1 | ek ←R EKi]− Pr[A(ek) = 1 | ek ←R EK′
i] ≤ 2AdvrsiG,D(κ) (4)

Additionally, given r1, . . . , rn, s1, . . . , sn ←R ZT , (R
′
i−1, S

′
i−1) take exactly the

samevalues as (R′
i, S

′
i) except thatS

′
i−1[i, i] = (grih)sihb∗0 butS′

i[i, i]=(grih)sihb∗1 .
Next we will show that S′

i−1[i, i] is statistically indistinguishable to S′
i[i, i], given

the value of r1, . . . , rn, s1, . . . , sn.
Observe that the information of si is characterized by gsi in both (R′

i−1, S
′
i−1)

and (R′
i, S

′
i). If si is chosen from Zτ1τ2 uniformly at random, si mod τ2 is uni-

form over Zτ2 even conditioned on the value of si mod τ1, according to Chi-
nese Remainder Theorem. Now that si is ε-uniform over Zτ1τ2 , so si mod τ2
is also ε-uniform over Zτ2 , even conditioned on the value of gsi = gsi mod τ1 .
Consequently,

S′
i−1[i, i] =

(grih)sihb∗0 = grisihsi mod τ2+b∗0 ≈s g
risihsi mod τ2+b∗1 = (grih)sihb∗1 = S′

i[i, i].

So, EK′
i−1 ≈s EK′

i. Combined with Eq. (3) and Eq. (4), we have that EKi−1 ≈c

EKi holds for all i. This completes the proof of Lemma 4. ��

Applying the method of Construction 2, we can amplify the tag space {0, 1}
in Construction 3 to space {0, 1}ñ for any positive integer ñ, resulting in a
(Zn

τ2 , ñ log τ1)-ABO lossy function. However, the information revealed by the
lossy function increases linearly with the extension factor (i.e., ñ) of the tag
space via this method. To solve this problem, we can set R as a global parameter.
That is, each function evaluation key eki has the same R but different Si. As
we proved earlier, for a lossy tag b∗i , feki,b∗(x) is completely determined by the
value x ·R = g

∑n
i=1 xiri which has τ1 possible values. Thus, the ñ concatenation
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fek1,b∗1 (x)|| · · · ||fekñ,b∗ñ(x) in Construction 2 still has τ1 possible values. In this

way, we have a (Zn
τ2 , log τ1)-ABO lossy function with large tag space B = {0, 1}ñ

for any positive integer ñ.
Next, we show that if the order τ2 ofGτ2 is large enough, it is possible to obtain

ABO lossy function with large tag space directly. For a security parameter κ,
let θ = ω(log κ) be a suitable tag length. We assume that θ ≤ �log τ2� − 1. Set
τ ′2 = �τ2/(2θ−1)� and thus τ ′2 ≥ 2. We introduce two variants of Construction 3.

Variant I. This variant is the same as Construction 3, except for the tag space
and the domain. In this case, we set B = {0, 1}θ and Dom = Zn

τ ′
2
. Clearly,

for an injective tag b and an input x = (x1, . . . , xn) ∈ Zn
τ ′
2
, |(b∗ − b)xi| ≤ τ2

for all i. Since h has order τ2, xi is completely determined by the group
element h(b∗−b)xi and the value (b∗ − b), i.e., xi = (logh h

(b∗−b)xi)/(b∗ − b).
Thus, fek,b(x) computes an injective function. While for the lossy tag b∗,
fek,b∗(x) reveals at most log τ1 bits information of its input x. In this case,
Construction 3 now becomes a collection of (Zn

τ ′
2
, log τ1)-ABO lossy functions

with tag space B = {0, 1}θ. Additionally, we can amplify the domain size
with large n without increasing the parameter log τ1. Construction 3 is in
fact the special case of θ = 1.

Variant II. If τ2 is a prime or the smallest prime factor of τ2 is larger than 2θ−1,
we can set B = {0, 1}θ and Dom = Zn

τ2 . In this case, gcd(b∗−b, τ2) = 1, hence
(b∗ − b)−1 mod τ2 always exists. It is not hard to see that Construction 3
now becomes a collection of (Zn

τ2 , log τ1)-ABO lossy functions with tag space
B = {0, 1}θ.

If τ1 is a prime, we further choose n = 1 and Dom = Zτ1τ2 (note that
the domain is now further enlarged to Zτ1τ2 ), and reduce the evaluation
key ek to one group element gr1s1hb∗ . Then, for x ∈ Zτ1τ2 and b 
= b∗,
fek,b(x) = gr1s1xh(b∗−b)x is injective, and gives a collection of (Zτ1τ2 , log τ1)-
ABO lossy functions, which is just the case used later in Section 4.4.

From ABO lossy functions to One-time Lossy Filters. We start from a
collection of ABO lossy functions with a large tag space determined by security
parameter κ and a family of chameleon hash functions, to derive a collection of
one-time lossy filters.

Construction 4. Let (ABOGen,ABOEval) be a collection of (Dom, 
)-ABO lossy
functions with tag space B and let (HGen,HEval,HEquiv) be a chameleon hash
function from {0, 1}∗ ×R to B. We define LF = (FGen,FEval,FTag) as follows.

– FGen(1κ): for a security parameter 1κ, it first runs (ekch, tdch) ← HGen(1κ).
Then, FGen(1κ) selects t∗a ∈ {0, 1}∗ and t∗c ∈ R uniformly at random, and
computes b∗ = HEval(ekch, t

∗
a; t

∗
c); Next, it runs ek′ ← ABOGen(1κ, b∗). Fi-

nally, it returns ek = (ekch, ek
′) and td = (tdch, t

∗
a, t

∗
c). Set T = {0, 1}∗ ×R

and Tloss = {(ta, tc) : HEval(ekch, ta; tc) = b∗}.
– FEval(ek, t, x): for t = (ta, tc) ∈ T and x ∈ Dom, it computes

b = HEval(ekch, ta; tc) and fek,t(x) = fek′,b(x).
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– FTag(td, ta): for td = (tdch, t
∗
a, t

∗
c) and ta ∈ {0, 1}∗, it computes

tc = HEquiv(tdch, t
∗
a, t

∗
c , ta).

Theorem 3. Construction 4 gives a collection of (Dom, 
)-one-time lossy filters.

Proof. The proof is very similar to the concrete DCR-based construction in [31].
Due to space limitation, we give it in the full version of this paper. ��

4.4 An Efficient Leakage-Flexible CCA-secure PKE

In the previous two subsections, we presented the generic constructions of uni-
versal hash proof systems and one-time lossy filters from the refined subgroup
indistinguishability assumptions. According to Theorem 1, we immediately ob-
tain the following theorem.

Theorem 4. Let G = (G, g, h, T ) ← Gen(1κ), where G = Gτ1 × Gτ2 . Suppose
that the smallest prime factor of τ2 is q̃ ≥ 2. If the refined subgroup indistin-
guishability assumption holds over group G, then we can construct a λ-LR-CCA
secure PKE scheme with message space {0, 1}m, where the amount of leakage
is bounded by λ ≤ n log q̃ − log τ1 −m− ω(log κ) and n is a positive integer. In
particular, the leakage rate can be made to approach log q̃/ logT .

Next, we instantiate our generic construction under the RSI assumption in-
troduced in Example 2 and obtain a leakage-flexible CCA-secure PKE scheme
without pairing. (However, in our QR-based instantiation both the leakage-rate
and the parameter are rather poor. The main reason is that the universality of
the underlying hash proof system and the lossiness of the underlying one-time
lossy filter are not good. For details, see the full version of this paper.)

Parameters. Recall that in Example 2, p = 2pq+1 is a prime and p, q both are
primes too. So, G = QRp can be decomposed as a direct product of two prime-
order groups: QRp = Gp ×Gq. If we choose n = 1, then by Theorem 2, we may
obtain a 1/q-universal hash proof system with secret key space SK = Zpq and
encapsulated key space K = QRp. While by Theorem 3 for Variant II, we can
obtain a (Zpq, log p)-one-time lossy filter. Observe that, every element K ∈ QRp

can be efficiently encoded as an element K ′ ∈ Zpq by setting K ′ := K − 1 if
1 ≤ K ≤ pq and K ′ := p−K − 1 if pq + 1 ≤ K ≤ p− 1. So, by Theorem 4, we
obtain a PKE scheme with leakage λ ≤ log q− log p−m−ω(log κ). Particularly,
the ciphertext only contains two group elements in Z

∗
p (ignoring the other length

fixed elements, e.g., the description of a universal hash function and an auxiliary
tag). For a 80-bit security level, we choose m = 80, ω(log κ) = 160, |p| = 512
and |q| ≥ 512. It suffices to guarantee that pq is hard to factor and thus the
refined subgroup indistinguishability assumption in group QRp holds. In this

case, λ ≤ log q− 752 and |SK| ≤ log q+512. Therefore, the leakage rate λ
|SK| =

log q−752
log q+512 = 1− 1264

log q+512 is arbitrarily close to 1 if we choose a sufficiently large q.
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Finally, we give a parameter comparison (for 80-bit security level) of this
scheme with known leakage-flexible schemes [10,15] in Table 1 where 1 − α de-
notes the leakage rate, “SXDH” denotes the symmetric external Diffie-Hellman
assumption, “DLIN” denotes the decisional linear assumption and “RSI” denotes
the refined subgroup indistinguishability assumption. Assume that elements in
a group of order q can be encoded as bit strings of length |q|. From Table 1, we
can see that the ciphertext size (in bits) in our scheme grows slightly faster than
the other three schemes. Nevertheless, our scheme has some interesting proper-
ties that do not exist in other schemes: simple construction, constant number of
group elements in ciphertext and free of pairing.

Table 1. Parameters of leakage-flexible CCA-secure PKE schemes

Scheme Group Type Assumption Group Size Ciphertext Size Pairing
# bits # G

DHLW10 [10] Prime SXDH 160 �(2/α)(2 + 1/2)� + 16 Yes
DHLW10 [10] Prime DLIN 160 �(3/α)(3 + 1/2)� + 35 Yes
GHV12 [15] Prime DLIN 160 2�4/α� + 6 Yes
Ours Composite RSI �1264/α� 2 No

5 Conclusion

We proposed a simple and efficient construction of LR-CCA secure PKE scheme
based on the Refined Subgroup Indistinguishability (RSI) assumption, which is a
more general group of assumptions and can be instantiated under many number-
theoretical assumptions. Our construction follows a recently proposed approach
for leakage-resilient chosen-ciphertext security [31]. However, the known results
in [31] has only a small leakage rate of 1/2 − o(1). Our construction further
improved the leakage rate to 1− o(1) under the RSI assumption over a pairing-
free group of known order. As far as we know, this is the first pairing-free LR-
CCA secure PKE with leakage rate of 1− o(1).
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10. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010)

11. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In:
Mitzenmacher, M. (ed.) STOC 2009, pp. 621–630. ACM (2009)

12. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

13. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS 2008,
pp. 293–302. IEEE Computer Society (2008)

14. Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures. In:
Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer, Heidelberg
(2010)

15. Galindo, D., Herranz, J., Villar, J.L.: Identity-based encryption with master key-
dependent message security and leakage-resilience. In: Foresti, S., Yung, M., Mar-
tinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 627–642. Springer, Heidel-
berg (2012)

16. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Dwork, C. (ed.) STOC 2008, pp. 197–206. ACM
(2008)

17. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

18. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: Cold boot
attacks on encryption keys. In: van Oorschot, P.C. (ed.) USENIX Security Sym-
posium 2008, pp. 45–60. USENIX Association (2008)
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